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Abstract— We consider a class of non-smooth strongly convex-
strongly concave saddle point problems in a decentralized setting
without a central server. To solve a consensus formulation of
problems in this class, we develop an inexact primal dual hybrid
gradient (inexact PDHG) procedure that allows generic gradient
computation oracles to update the primal and dual variables.
We first investigate the performance of inexact PDHG with
stochastic variance reduction gradient (SVRG) oracle. Our
numerical study uncovers a significant phenomenon of initial
conservative progress of iterates of IPDHG with SVRG oracle.
To tackle this, we develop a simple and effective switching idea,
where a generalized stochastic gradient (GSG) computation
oracle is employed to hasten the iterates’ progress to a saddle
point solution during the initial phase of updates, followed by
a switch to the SVRG oracle at an appropriate juncture. The
proposed algorithm is named Decentralized Proximal Switching
Stochastic Gradient method with Compression (C-DPSSG), and
is proven to converge to an ϵ-accurate saddle point solution with
linear rate. Apart from delivering highly accurate solutions,
our study reveals that utilizing the best convergence phases
of GSG and SVRG oracles makes C-DPSSG well suited for
obtaining solutions of low/medium accuracy faster, useful for
certain applications. Numerical experiments on two benchmark
machine learning applications show C-DPSSG’s competitive
performance which validate our theoretical findings. The codes
used in the experiments can be found here.

I. INTRODUCTION

We focus on solving the following saddle point (or mini-
max) problem in a fully decentralized setting without a
central server:

min
x∈Rdx

max
y∈Rdy

1

m

m∑
i=1

(fi(x, y) + g(x)− r(y)), (SPP)

where fi : Rdx×Rdy → R private to every node i ∈
{1, 2, . . . ,m} =: [m] is smooth, strongly convex in primal
variable x and strongly concave in dual variable y and g :
Rdx → R and r : Rdy→R are proper, convex and potentially
non-smooth functions. This class of saddle point problems
finds its use in distributionally robust optimization, robust
classification and regression applications, AUC maximization
problems [24], [32], [34] and multi-agent reinforcement
learning [29]. Additionally, saddle point problems appear
in the Lagrangian formulations of constrained minimization
problems [35], [21]. Decentralized environments are useful
for large-scale systems where privacy and other constraints on
data sharing (e.g. legal, geographical) prevent the availability
of entire data set in a single computing machine (or node).
In this work, we consider a decentralized environment

Chhavi Sharma, Vishnu Narayanan and P. Balamurugan are with
Industrial Engineering and Operations Research (IEOR), IIT Bom-
bay, Mumbai, India-400076. Email: {chhavisharma, vishnu,
balamurugan.palaniappan}@iitb.ac.in

where the computing nodes possess similar processing and
storage capabilities. The (static) topology of the decentralized
environment is represented using an undirected, connected,
simple graph G = (V, E), where V = [m] denotes the set of
m computing nodes and an edge eij ∈ E denotes the fact
that nodes i, j ∈ V are connected. Also, we assume that the
communication is synchronous and at every synchronization
step, node i communicates only with its neighbors N (i) =
{j ∈ V : eij ∈ E}.

General stochastic gradient oracle (GSGO) [5], popularly
used to solve saddle point problems [19], [30], [34], [3],
unfortunately suffers from inherent variance developed due
to stochastic gradients used for updating primal and dual
variables at every epoch. Despite the availability of stochastic
variance reduction gradient oracle (SVRGO) [9], [12], which
addresses GSGO’s variance issue, GSGO is adopted by
practitioners due to its simplicity and fast progress in the
initial stage. SVRGO prepares itself from the start to keep the
variance under control which affects the crucial initial phase
convergence. However, the variance in SVRGO vanishes
asymptotically speeding up its progress at the later stages.
The fast convergence behavior of GSGO at the initial stage
and SVRGO at the later stage respectively, provide inspiration
for developing a novel algorithm in this work, where a switch
is performed between these stochastic gradient oracles.

Apart from gradient computations, high dimensional pa-
rameters are communicated by each node in the decentralized
environment with its neighbors, which becomes expensive.
Thus in this paper, we aim to develop a primal dual
decentralized algorithm which attains efficiency in gradient
computations by harnessing the best convergence phases of
GSGO and SVRGO, and communication efficiency by using
compressed representations [17], [22], [20], [34] of iterates.
We summarize below the contributions of this work:

1) Inspired by algorithms developed for decentralized
minimization problems [20], [15], we design a decen-
tralized inexact primal dual hybrid gradient method
with compression (IPDHG) by exploiting the consensus
constrained formulation of (SPP).

2) We numerically study the initial behavior of IPDHG
with SVRGO and GSGO. To improve the observed
initial conservative progress of iterates of IPDHG with
SVRGO towards an ϵ-accurate saddle point solution, we
propose a Decentralized Proximal Switching Stochastic
Gradient method with Compression (C-DPSSG), where
a generalized stochastic gradient oracle guides the initial
progress of iterates, which switches to SVRGO at an
appropriate point during the iterative update process.
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C-DPSSG is useful to obtain solutions of low/medium
accuracy (where ϵ ≈ 10−4) faster, pertinent to certain
applications. Using SVRGO at the later iterations of C-
DPSSG reduces the variance and hence provides highly
accurate solutions in the long run. We further prove
that C-DPSSG converges to an ϵ-accurate saddle point
solution with linear rate.

3) We conduct experiments on robust binary classification
and AUC maximization problems to demonstrate the
practical performance of proposed algorithms.

To our knowledge, this is the first work which provides
a closer look at the behavior of GSGO and SVRGO in a
newly designed IPDHG scheme with compression to solve
saddle point problems of the form (SPP). Note that a practical
improvement in SVRG is studied in [2] using a combination of
GSGO and SVRGO for solving smooth convex minimization
problems in a single machine setting; however we leverage the
best performance phases of GSGO and SVRGO to solve non-
smooth saddle point problems in a decentralized environment.
We now present notations useful for subsequent discussion.

Notations: Let z=(x, y)∈Rdx+dy denote the pair of primal
variable x and dual variable y, z⋆=(x⋆, y⋆) denote a saddle
point solution of problem (SPP) and z⋆ = ((z⋆)⊤, . . . , (z⋆)⊤).
Weights Wij associated with the communication link between
a pair of nodes (i, j) ∈ V × V are collected into a matrix
W of size m × m. Id denotes a d × d identity matrix, 1
denotes a m × 1 column vector of ones and J = 1

m11⊤

denotes a m × m matrix of uniform weights equal to 1
m .

A⊗B denotes the Kronecker product of two matrices A and
B. Let f(x, y) :=

∑m
i=1 fi(x, y). Condition number κf of f

is defined as L/µ, where L is the smoothness parameter of
fi(x, y) (see Appendix XI in [27]) and µ = min{µx, µy} (see
Assumptions 1-2). Condition number κg of communication
graph G is defined as the ratio of largest eigenvalue and
second smallest eigenvalue of I −W . For a d× 1 vector u
and for some d× d symmetric positive semi-definite (p.s.d)
matrix A, we define ∥u∥2A = u⊤Au.

Paper Organization: We develop and interpret IPDHG
algorithm in Section II, followed by a discussion of assump-
tions (Section III). Early stage behavior of IPDHG with
SVRGO and GSGO is explained is Section IV. The proposed
C-DPSSG algorithm is presented in Section V. Related work
is discussed in Section VI and experimentation details are in
Section VII. Due to space constraints, all proofs and additional
experiments are deferred to our technical report [27].

II. ALGORITHM DEVELOPMENT

Before proceeding to the algorithm development, we first
present few terminologies to be used in the remaining part of
the paper. Assuming the local copy of (x, y) in i-th node as
(xi, yi), we collect local primal and dual variables into x =(
x1, x2, . . . xm

)
∈ Rmdx and y =

(
y1, y2, . . . ym

)
∈ Rmdy .

Using this notation and following [21], the problem (SPP)
can be formulated as:

min
x∈Rmdx

max
y∈Rmdy

F (x,y) +G(x)−R(y)

s.t. (U ⊗ Idx)x = 0, (U ⊗ Idy )y = 0, (1)

where F (x,y) =
∑m

i=1 fi(x
i, yi), G(x) =

∑m
i=1 g(x

i),
R(y) =

∑m
i=1 r(y

i), U =
√
Im −W and consensus

constraints are present on x and y. The assumptions on
W (to be made later) would imply Im −W to be symmetric
p.s.d. and hence leads to existence of

√
Im −W . We consider

the following Lagrangian function of problem (1):
L(x,y;Sx, Sy) = F (x,y) +G(x)−R(y)

+ ⟨Sx, (U ⊗ Idx)x⟩+ ⟨Sy, (U ⊗ Idy )y⟩, (2)
where Sx ∈ Rmdx and Sy ∈ Rmdy denote the Lagrange
multipliers associated with consensus constraints on variables
x and y respectively. We prove that solving constrained
problem (1) is equivalent to solving the following problem
(see Theorem 3 in [27]):

min
x∈Rmdx ,Sy∈Rmdy

max
y∈Rmdy ,Sx∈Rmdx

L(x,y;Sx, Sy). (3)

A similar equivalence is provided in [26] under the assumption
of convex compact constraint sets and bounded gradients of
F (x,y). On the contrary, we formally show the equivalence
using convexity-concavity of fi(x, y) and using properties of
weight matrix W (to be defined in next section). Further, our
proof does not require compactness and bounded gradient
assumptions.

To solve problem (3), we propose gradient descent ascent
parallel updates for the primal-dual variable pair x, Sx and
dual-primal pair y, Sy, illustrated in equations (P1) and (D1).
Note that in eq. (P1), νxt+1 is found using a prox-linear step
involving linearization of F (x,y) with respect to x and a
penalized cost-to-move term 1

2s∥x − xt∥2, followed by an
ascent step to update the Lagrange dual variable Sx. Then
x̂t+1 is found using prox-linear step similar to the first step
but using the recent Sx

t+1 to further correct the direction.
Finally xt+1 is found by a prox step where proxsG(x) =
argminu∈Rmdx G(u) + 1

2s∥u − x∥2. Letting Dx
t = (U ⊗

Idx
)Sx

t , and pre-multiplying by U ⊗Idx
in the update step of

Sx, Sx
t+1 update reduces to Dx

t+1 = Dx
t + γ

2s ((Im −W )⊗
Idx)ν

x
t+1. Now using νxt+1 and Dx

t+1 updates, we can further
reduce x̂t+1 update to x̂t+1 = νxt+1−

γ
2 ((Im−W )⊗Idx

)νxt+1.
Similarly, the updates to y, Sy can be done using appropriate
gradient ascent-descent steps which lead to corresponding
equations (D1). Further the update of Dy

t+1 analogous to
Dx

t+1 update can be obtained by letting Dy
t = −(U⊗Idy )S

y
t .

A similar update process is explored in [15], however
for solving convex minimization problems only. The dual
variable in [15] is simpler since it arises from the Lagrangian
formulation of consensus constrained minimization problem
and appears only as linear term in the Lagrangian function.
However in our work, the Lagrangian function in eq. (2) is
not in general linear in the dual variable y despite the linear
terms associated with Lagrange multipliers Sx, Sy. Hence
updates (P1) and (D1) in our work need to tackle the original
primal dual pair x,y along with the Lagrange multipliers
Sx, Sy related to consensus constraints.

Observe that the terms ((Im−W )⊗ Idx
)νxt+1 and ((Im−

W ) ⊗ Idy
)νyt+1 respectively in Dx

t+1 and Dy
t+1 updates

denote the communication of νxt+1 and νyt+1 across the nodes.
Further note that νxt+1 and νyt+1 need to be communicated
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Updates to primal dual pair x, Sx:
νxt+1 = xt − s∇xF (xt,yt)− s(U ⊗ Idx

)Sx
t

Sx
t+1 = Sx

t +
γ

2s
(U ⊗ Idx)ν

x
t+1

x̂t+1 = xt − s∇xF (xt,yt)− s(U ⊗ Idx
)Sx

t+1

xt+1 = prox
sG

(x̂t+1).


(P1)

Updates to dual primal pair y, Sy:
νyt+1 = yt + s∇yF (xt,yt)− s(U ⊗ Idx)S

y
t

Sy
t+1 = Sy

t −
γ

2s
(U ⊗ Idy

)νyt+1

ŷt+1 = yt + s∇yF (xt,yt)− s(U ⊗ Idx)S
y
t+1

yt+1 = prox
sR

(ŷt+1).


(D1)

only once for updating Dx
t+1, x̂t+1 and Dy

t+1, ŷt+1 To
improve the communication efficiency further, we propose to
compress νxt+1 and νyt+1 using a compression module (COMM
procedure [20]) as illustrated in Algorithm 1. Algorithm 2
illustrates the proposed Inexact Primal Dual Hybrid Gradient
(IPDHG) method with compression. In the next section, we
state assumptions useful for further discussions.

Algorithm 1 Compressed Communication Procedure
(COMM) [20]
1: INPUT: νt+1, Ht, Hw

t , α
2: Qi

t = Q(νit+1 −Hi
t) (compression)

3: ν̂it+1 = Hi
t +Qi

t ,
4: Hi

t+1 = (1− α)Hi
t + αν̂it+1 ,

5: ν̂i,wt+1 = Hi,w
t +

∑m
j=1 WijQ

j
t , (communicating compressed vectors)

6: Hi,w
t+1 = (1− α)Hi,w

t + αν̂i,wt+1 ,
7: RETURN: ν̂it+1, ν̂

i,w
t+1, H

i
t+1, H

i,w
t+1 for each node i .

Algorithm 2 Inexact Primal Dual Hybrid Gradient method
with compression using stochastic gradient oracle G (IPDHG)
1: INPUT: x, y, Dx, Dy, Hx, Hy, Hw,x, Hw,y, s, γx, γy, αx, αy, G
2: Compute gradients Gx and Gy at (x, y) via oracle G = (Gx,Gy)
3: νx = x − sGx − sDx

4: ν̂x, ν̂w,x,Hx
new,Hw,x

new = COMM (νx,Hx,Hw,x, αx)
5: Dx

new = Dx + γx
2s

(ν̂x − ν̂w,x)
6: x̂ = νx − γx

2
(ν̂x − ν̂w,x)

7: xnew = proxsG(x̂)
8: νy = y + sGy − sDy

9: ν̂y, ν̂w,y,Hy
new,Hw,y

new = COMM (νy,Hy,Hw,y, αy)
10: Dy

new = Dy +
γy
2s

(ν̂y − ν̂w,y)

11: ŷ = νy − γy
2
(ν̂y − ν̂w,y)

12: ynew = proxsR(ŷ)
13: RETURN: xnew, ynew,Dx

new,Dy
new,Hx

new,Hy
new,Hw,x

new,Hw,y
new

III. ASSUMPTIONS

We make the following assumptions, which would be useful
throughout this work.
Assumption 1. Each fi(·, y) is µx-strongly convex for every
y ∈ Rdy ; hence for any x1, x2 ∈ Rdx and fixed y ∈ Rdy ,
it holds: fi(x1, y) ≥ fi(x2, y) + ⟨∇xfi(x2, y), x1 − x2⟩ +
µx

2 ∥x1 − x2∥2.
Assumption 2. Each fi(x, ·) is µy-strongly concave for every
x ∈ Rdx ; hence for any y1, y2 ∈ Rdy and fixed x ∈ Rdx ,

it holds: fi(x, y1) ≤ fi(x, y2) + ⟨∇yfi(x, y2), y1 − y2⟩ −
µy

2 ∥y1 − y2∥2.
Assumption 3. g(x) and r(y) are proper, convex and possibly
non-smooth functions.
Assumption 4. The compression operator Q (see Algorithm
1) satisfies the following for every u ∈ Rd: (i) Q(u) is an
unbiased estimate of u: E [Q(u)] = u (ii) E[∥Q(u)− u∥2] ≤
δ∥u∥2, where the constant δ ≥ 0 denotes the amount of com-
pression induced by operator Q and is called a compression
factor. When δ = 0, Q achieves no compression.
Assumption 5. Weight matrix W is symmetric, row stochastic
and Wij > 0 if and only if (i, j) ∈ E and Wii > 0 for all
i ∈ [m]. Eigenvalues of W denoted by λ1, . . . , λm satisfy:
−1 < λm ≤ λm−1 ≤ . . . ≤ λ2 < λ1 = 1.
Assumption 6. Assume that each fij(x, y) is Lxx

smooth in x, i.e. for every fixed y, ∥∇xfij(x1, y) −
∇xfij(x2, y)∥≤Lxx∥x1 − x2∥,∀x1, x2 ∈ Rdx .
Assumption 7. Assume that each fij(x, y) is Lyy

smooth in y, i.e. for every fixed x, ∥∇yfij(x, y1) −
∇yfij(x, y2)∥≤Lyy∥y1 − y2∥, ∀y1, y2 ∈ Rdy .
Assumption 8. Assume that each ∇xfij(x, y) is Lxy

Lipschitz in y, i.e. for every fixed x, ∥∇xfij(x, y1) −
∇xfij(x, y2)∥≤Lxy∥y1 − y2∥, ∀y1, y2 ∈ Rdy .
Assumption 9. Assume that each ∇yfij(x, y) is Lyx

Lipschitz in x, i.e. for every fixed y, ∥∇yfij(x1, y) −
∇yfij(x2, y)∥≤Lyx∥x1 − x2∥, ∀x1, x2 ∈ Rdx .

Note that Assumptions 1-3 and Assumptions 5-9 are
standard in the study of saddle point problems (e.g. [3],
[4], [19], [23]). Assumption 4 is also standard in existing
works (e.g. [1], [15], [20]).

IV. UNDERSTANDING EARLY STAGE BEHAVIOR OF
IPDHG WITH SVRGO AND GSGO

In this section, we first recap SVRG oracle and then draw
key observations on the behavior of IPDHG with SVRG
oracle. We refer to IPDHG with SVRGO as Decentralized
Proximal Stochastic Variance Reduced Gradient algorithm
with Compression (C-DPSVRG).

We assume that each local function fi(x, y) is of the form
1
n

∑n
j=1 fij(x, y) where fij(x, y) represents the loss function

at j-th batch of samples at node i. This type of structure can
be seen for instance in empirical risk minimization problems
[5]. For simplicity, we assume that each node i has same
number of batches n. However, our analysis easily extends
to different number of batches ni. Let Nℓ denote the number
of ℓocal samples at each node i. Then number of samples
in the function component fij is determined by the batch
size B = Nℓ/n. Let Pi = {pil : l ∈ {1, 2, . . . , n}} denote
a probability distribution where pil is the probability with
which batch l is sampled at node i. Let pmin := mini,l pil.
Without loss of generality we assume that pmin > 0, hence
each batch is chosen with a positive probability. Inspired from
[9], [13], we consider stochastic variance reduced gradient
oracle comprising the following steps to compute stochastic
gradients in IPDHG:
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Stochastic Variance Reduced Gradient Oracle
(SVRGO):
(1). Index sampling: Sample l ∈ {1, 2, . . . , n} ∼ Pi

for every node i.
(2). Stochastic gradient computation with variance
reduction: For a reference point z̃i = (x̃i, ỹi),
compute stochastic gradients at zi = (xi, yi) with
respect to x and y as follows:

Gi,x =
1

npil
(∇xfil(z

i)−∇xfil(z̃
i)) +∇xfi(z̃

i),

Gi,y =
1

npil
(∇yfil(z

i)−∇yfil(z̃
i)) +∇yfi(z̃

i).

(3). Reference point update: Sample ω ∼
Bernoulli(p) and update the reference point z̃i as
follows:
x̃i ←− ωxi + (1− ω)x̃i, ỹi ←− ωyi + (1− ω)ỹi.

As described above, SVRGO evaluates stochastic gradients
at current iterate zit and reference point z̃it as follows:

Gi,xt =
1

npil

(
∇xfil(z

i
t)−∇xfil(z̃

i
t)
)

︸ ︷︷ ︸+∇xfi(z̃
i
t). (4)

SVRGO contains an expensive but key component ∇xfi(z̃
i
t)

obtained using full batch gradient evaluation to reduce the
variance in stochastic gradients. Until the current iterate zit
and reference point z̃it start converging to saddle point, there
is a gradient approximation error captured by first term in (4).
Therefore, full batch gradients evaluated at the early iterations
are not effective due to large distance between early iterates
and saddle point solution. In addition, SVRGO evaluates on
an average 2B+ pNℓ gradients per iterate. This phenomenon
leads to slow convergence of C-DPSVRG in the initial stage
with high computational cost. In this work, we propose a
remedy to improve the early stage slow convergence of C-
DPSVRG using a general stochastic gradient oracle described
below:

General Stochastic Gradient Oracle (GSGO):
(1). Index sampling: Sample l ∈ {1, 2, . . . , n} ∼ Pi

for every node i.
(2). Stochastic gradient computation: Compute
stochastic gradients at zi = (xi, yi) with respect to
x and y as follows:

Gi,x =
1

npil
∇xfil(z

i), Gi,y =
1

npil
∇yfil(z

i).

Stochastic gradient descent ascent (SGDA) [31], [16], [19],
[30], [34] which uses GSGO or its variant is the workhorse of
several algorithms due to its promising fast convergence in the
initial phase of iterate updates along with low computational
cost. Though SGDA exhibits slow convergence or saturation
behavior asymptotically due to inherent variance in the
stochastic gradients, its impressive behavior in initial phase
motivates us to exploit GSGO in Algorithm 2 to obtain
fast convergence along with low computation cost during
the initial iterate updates. Incorporating GSGO in IPDHG
scheme pushes the iterates to a region close to the saddle
point solution which can potentially make the full batch

gradients in SVRGO more effective. Leveraging fast early
convergence using GSGO and fast asymptotic convergence
using SVRGO, we propose a switching algorithm which uses
GSGO in IPDHG for a fixed number of initial iterations and
then switches to SVRGO to achieve highly accurate solution.
Before discussing the algorithm details, we examine this
behavior empirically on robust logistic regression problem
(10). In Figure 1, the behavior of C-DPSVRG on (10) at
every iterate update is compared with a switching scheme
where GSGO is used for first Ti iterate updates followed
by SVRGO. We can clearly see that iterates of C-DPSVRG
(blue line) make little progress in initial stage whereas the
use of GSGO leads to faster progress of iterates towards
saddle point solution with much lesser gradient computations.
We further observe that larger values of Ti lead to clear

Fig. 1. Iterate convergence behavior of IPDHG using GSGO and SVRGO
on robust logistic regression problem. T1 > T2 > T3 > T4 > T5 > T6 >
T7 > T8 are the switching points from GSGO to SVRGO in IPDHG

saturation of progress of iterates due to ineffective GSGO
update steps after a while, whereas small values of Ti cause
early switching to SVRGO. Thus choosing a right switching
point is crucial to harness the effectiveness of both GSGO
and SVRGO, which we will discuss in the next section.

V. IPDHG WITH SWITCHING BETWEEN STOCHASTIC
GRADIENT ORACLES

In the previous section, we have seen the advantage of
leveraging GSGO in the initial stage of IPDHG iterate updates.
We are now ready to describe our novel switching algorithm
to solve (SPP). Starting from initial points x0, y0, each node
i updates its primal and dual variables using IPDHG with
GSGO as illustrated in Steps 5-6 of Algorithm 3. This process
is repeated for the first T0 iterations. After T0 iterations, each
node i switches to SVRGO with reference point z̃iT0

initialized
to (xi

T0
, yiT0

) and performs IPDHG updates using SVRGO
for the remaining T − T0 iterations. We see that Algorithm
3 requires the knowledge of switching point T0. To address
this, we first analyze the behavior of Algorithm 3 during the
first T0 iterations in the following lemma.

Lemma 1. Let {xt}t, {yt}t be the sequences generated by
Algorithm 3. Suppose Assumptions 1-9 hold. Then for every
0 ≤ t ≤ T0 − 1 :

E0[Φt+1] ≤ (ρ0)
t+1Φ0 +

2s20(Cx + Cy)

(1− ρ0)n2pmin
, (5)

1315



where E0 denotes the total expectation when t ≤ T0 − 1, Φt

denotes the distance of the iterates xt,yt, D
x
t , D

y
t , H

x
t , H

y
t

from their respective limit points (described in eq. (123) in
[27]), ρ0 ∈ (0, 1) is a problem dependent parameter defined
in eq. (141) in [27] and Cx =

∑m
i=1

∑n
l=1 ∥∇xfil(z

⋆)∥2,
Cy =

∑m
i=1

∑n
l=1 ∥∇yfil(z

⋆)∥2.

Due to space considerations, the proof of Lemma 1 is
provided in Appendix XIV-B [27]. Note that Cx and Cy in (5)
appear due to variance in the stochastic gradients. If Gix,t,Giy,t
are set to be ∇xfi(x

i
t, y

i
t) and ∇yfi(x

i
t, y

i
t) respectively in

Algorithm 3 for t ≤ T0 − 1, the second term in the r.h.s of
(5) will be absent. Consequently, using Lemma 1, IPDHG
converges to ϵ-accurate saddle point solution with linear rate.
Without loss of generality, we assume that Cx and Cy are
positive. We can also see that Cx and Cy are bounded because
z⋆ is unique since each fi is assumed to be strongly convex
in x and strongly concave in y.

Lemma 1 indicates that Algorithm 3 has an error term
(second term in the bound in RHS) due to the variance in
stochastic gradients accumulated in the course of t iterations.
This shows that IPDHG with GSGO returns an approximate
solution asymptotically. By choosing large t = T0, the first
term in the RHS of (5) can be made sufficiently small.
However, there might be wastage of iterations once the iterates
converge in the neighborhood of saddle point solution as
demonstrated in Figure 1. Further, choosing small T0 might
not exploit the full potential of GSGO in the early stage. To
address this situation, we propose to choose T0 such that there
is a sufficient drift from the initial value Φ0. We introduce a
hyperparameter ϵ0 ∈ (0, 1) to achieve this and set T0 such
that ρT0

0 = ϵ0. This reduces the upper bound of E0[ΦT0
] to

ϵ0Φ0 +
2s20(Cx+Cy)
(1−ρ0)n2pmin

. We still have an unanswered question
on the choice of ϵ0. We exploit the convergence behavior of
Algorithm 3 for t ≥ T0 to find a suitable ϵ0 and hence the
switching point T0.

A. Determining Switching Point

As discussed earlier, the switching point T0 depends on a
hyperparameter ϵ0. Using Lemma 1 and the choice of T0, it is
clear that the upper bound on E0[ΦT0

] increases linearly with
ϵ0. However, the effect of ϵ0 on the convergence behavior of
Algorithm 3 is not clear after GSGO is switched to SVRGO
(i.e. t ≥ T0). We investigate this effect in Lemma 2, which
further paves the way for determining a suitable value of ϵ0.

Lemma 2. Let {xt}t, {yt}t be the sequences generated by
Algorithm 3. Suppose Assumptions 1-9 hold. Then for any
T ≥ T0 + 1:

E[Φ̃T ] ≤ Cmax

(ϵ0Φ0

ρT0
ρT +

Veρ
T

ϵ0

)
+

C1ρ
T

ϵ0
, (6)

where Φ̃T denotes the distance of the iterates
xT , x̃T ,yT , ỹT , D

x
T , D

y
T , H

x
T , H

y
T from their respective limit

points (described in eq. (206) in [27]), Ve =
2s20(Cx+Cy)
(1−ρ0)n2pmin

and Cmax, C1, ρ ∈ (0, 1) are problem dependent constant
parameters defined in equations (262), (263) and (205) [27].

Lemma 2 which is proven in Appendix XVI [27], leads to

Algorithm 3 Decentralized Proximal Switching Stochastic
Gradient method with Compression (C-DPSSG)
1: INPUT: x0 = (1 ⊗ Idx )x0,y0 = (1 ⊗ Idy )y0, D

x
0 =

Dy
0 = 0, Hx

0 = x0, Hy
0 = y0, Hw,x

0 = (W ⊗
Idx )x0, Hw,y

0 = (W ⊗ Idy )y0, s0 = npmin

4
√
2Lκf

, s = µnpmin
24L2 ,

γx,0, γx, γy,0, γy , αx,0, αx, αy,0, αy defined in Appendices XIV-A
and XV-A [27], switching point T0.

2: for t = 0 to T − 1 do
3: Sample l ∈ {1, 2, . . . , n} ∼ Pi for every node i
4: if t ≤ T0 − 1 then
5: Gi,x

t = 1
npil

∇xfil(z
i
t) and Gi,y

t = 1
npil

∇yfil(z
i
t) for every

node i
6: xt+1,yt+1, Dx

t+1, D
y
t+1, H

x
t+1, H

y
t+1, H

w,x
t+1, H

w,y
t+1

=IPDHG(xt,yt, Dx
t , D

y
t , H

x
t , H

y
t , H

w,x
t ,

Hw,y
t , s0, γx,0, γy,0, αx,0, αy,0,Gt)

7: else
8: x̃T0

= xT0
, ỹT0

= yT0

9: Compute stochastic gradients Gi,x
t and Gi,y

t using SVRGO for
every node i

10: xt+1,yt+1, Dx
t+1, D

y
t+1, H

x
t+1, H

y
t+1, H

w,x
t+1, H

w,y
t+1

=IPDHG(xt,yt, Dx
t , D

y
t , H

x
t , H

y
t , H

w,x
t ,

Hw,y
t , s, γx, γy , αx, αy ,Gt)

11: end if
12: end for
13: RETURN: xT ,yT .

an upper bound on E[Φ̃T ] when GSGO switches to SVRGO at
T0 in Algorithm 3. This upper bound is small for sufficiently
large T and hence iterates xi

T , y
i
T are also close to saddle point

solution x⋆, y⋆ in expectation according to the definition of
Φ̃T . We recall that T0 is chosen such that a sufficient progress
is obtained from initial value Φ0. Now using the facts that
T ≥ T0 + 1, ρ ∈ (0, 1), (6) reduces to

E[Φ̃T ] ≤ Cmax(ϵ0Φ0 +
Veρ

T

ϵ0
) +

C1ρ
T

ϵ0
. (7)

Interestingly, the expected value of Φ̃T in (7) is upper bounded
by an ϵ0-dependent quantity which attains its minimum value
at ϵ⋆0 =

√
(CmaxVe+C1)ρT

CmaxΦ0
, where T is the total number of

iterations used in Algorithm 3. One natural way is to set T
to be the total number of iterations T (ϵ) required to achieve
an ϵ-accurate saddle point solution.

Computing T (ϵ): By substituting ϵ0 = ϵ⋆0 in (7), we get
E[Φ̃T ] ≤ 2

√
CmaxΦ0(CmaxVe + C1)ρT . As a consequence,

after T (ϵ) = 2
− log ρ log(

2
√

CmaxΦ0(CmaxVe+C1)

ϵ ) iterations,
Algorithm 3 returns an ϵ-accurate saddle point solution in
expectation. Therefore, we get ϵ⋆0 = ϵ

2CmaxΦ0
, and hence

T0 = ⌈ 1
log ρ0

log( ϵ
2CmaxΦ0

)⌉. We see that the value of T0

depends on
Φ0 = Mx,0∥x0 − (1⊗ Idx

)x⋆∥2 +My,0∥y0 − (1⊗ Idy
)y⋆∥2

+
2s20
γx,0
∥((I − J)⊗ Idx)∇xF (z⋆)∥2(I−W )†

+
2s20
γy,0
∥((I − J)⊗ Idy

)∇yF (z⋆)∥2(I−W )†

+
√
δ∥x0 − (1⊗ Idx)x

⋆ +
s0
m

(1⊗ Idx)∇xf(z
⋆)∥2

+
√
δ∥y0 − (1⊗ Idy )y

⋆ − s0
m

(1⊗ Idy
)∇yf(z

⋆)∥2.
(8)

It is clear that computing Φ0 requires knowledge of the saddle
point solution z⋆ which is not available in practice. We also

1316



emphasize that Φ0 is a global quantity as it depends on the
full gradient information of f(x, y) which is inaccessible to
the nodes. We address this issue by proposing a practical
version of Algorithm 3 which approximates Φ0 using local
information and without the knowledge of z⋆.

B. Practical Approach for Determining Switching Point

To determine the switching point in Algorithm 3, we
discuss a practical scheme whose broad idea is illustrated in
Figure 2. This scheme consists of the following steps. We
first allow IPDHG with GSGO to perform T

′

0 = ⌈ log 2
− log ρ0

⌉
iterations to obtain primal iterate xT

′
0

and dual iterate yT
′
0
.

These primal dual iterates might saturate to a point in T
′

0

iterations due to the nature of GSGO. To detect this behavior,
each node i computes the distance between the last two
successive iterates and gets an approximation of the average
quantity m−1

∑m
i=1 ∥ziT ′

0

− zi
T

′
0−1
∥2 using the accelerated

gossip scheme [18]. If the average distance is less than a
suitable small threshold for atleast one node, then each node
i switches to SVRGO. If a fraction of nodes find the average
distance to be within the threshold value, then this information
can be spread to the entire network in maximum number
of hops of order O(m). On the other hand, if the average
distance is above threshold value, then we consider zT ′

0
as

a proxy of z⋆ to compute approximation of Φ0. Using this
procedure, the last two terms of Φ0 depend on global gradients
1
m

∑m
i=1∇xfi(x

i
T

′
0

, yi
T

′
0

) and 1
m

∑m
i=1∇yfi(x

i
T

′
0

, yi
T

′
0

). Each
node can now run accelerated gossip scheme on local
gradients ∇xfi(x

i
T

′
0

, yi
T

′
0

) and ∇yfi(x
i
T

′
0

, yi
T

′
0

) to achieve

approximations G̃i,x
T

′
0

and G̃i,y
T

′
0

of the global gradients. Finally,

each node i approximates Φ0 by average quantity Φ̄i
0(T

′
0)

where {Φ̄i
0(T

′
0)}mi=1 are obtained using accelerated gossip

scheme on local scalar values Φi
0(T

′
0) given by:

Φi
0(T

′
0) = Mx,0∥x0 − xi

T
′
0

∥2 +My,0∥y0 − yi
T

′
0

∥2

+
2s20
γx,0
∥∇xfi(z

i
T

′
0

)− G̃i,x
T

′
0

∥2λmax(I −W )†

+
2s20
γy,0
∥∇yfi(z

i
T

′
0

)− G̃i,y
T

′
0

∥2λmax(I −W )†

+
√
δ∥x0 − xi

T
′
0

+ s0G̃i,xT
′
0

∥2 +
√
δ∥y0 − yi

T
′
0

− s0G̃i,yT
′
0

∥2.
Finally, the above process yields the approximated value of
switching point as T i

0 = ⌈ log ϵ̄i0
log ρ0

⌉ = ⌈ 1
log ρ0

log( ϵ
2CmaxΦ̄i

0(T
′
0)
)⌉.

We note that values Φ̄i
0(T

′
0) are close to each other because

they are the outputs of gossip scheme and hence values T i
0

are also similar for all nodes. A concise form of this entire
procedure is formally demonstrated in Algorithm 4. It is worth
noting that the above practical approach to detect switching
point invokes gossip scheme thrice out of which two gossips
are performed only on scalar values.

Approximation quality of T0: From previous discussion,
we have the approximated value T i

0 = ⌈ log ϵ̄i0
log ρ0

⌉. Whenever
ϵ̄i0 ≈ ϵ⋆0, T i

0 is a good approximation of T0. We observe in
our empirical study that the values of ϵ̄i0 and ϵ⋆0 are close
to each other which in turn implies that T i

0 and T0 are also
close (see Table I in Section VII).

Algorithm 4 Practical way of determining switching point
1: Implement T ′

0 = ⌈ log 2
− log ρ0

⌉ iterations of IPDHG with GSGO and obtain
z
T

′
0

, z
T

′
0−1

2: Each node i gets approximated value ẑi
T ′
0

of m−1∥z
T

′
0
− z

T
′
0−1

∥2 by

invoking accelerated gossip [18] on {∥zi
T ′
0
− zi

T ′
0−1

∥2}mi=1

3: if ẑi
T ′
0
> threshold for every node i then

4: Each node i obtains approximation Φ̄i
0(T

′
0) of global quantity Φ0

by invoking accelerated gossip on {Φi
0(T

′
0)}mi=1 and computes T i

0
5: Each node i continues with GSGO for remaining T i

0 − T ′
0 iterations

6: else
7: Switch to SVRGO and continue using SVRGO
8: end if

C. Complexity of Algorithm 3

We present the iteration complexity of Algorithm 3 in
Theorem 1 below.

Theorem 1. Let {xt}t, {yt}t be the sequences generated by
Algorithm 3. Suppose Assumptions 1-9 hold. Then iteration
complexity of Algorithm 3 for achieving ϵ-accurate saddle
point solution in expectation is

O(max{
√
δ(1 + δ)κgκ

2
f

npmin
, (1 + δ)κg,

(1 + δ)κ2
f

npmin
,
2

p
}

× log(
2
√
CmaxΦ0(CmaxVe + C1)

ϵ
)). (9)

The proof of Theorem 1 requires significant technical
background to be developed. Unfortunately, due to space
constraints, we are unable to discuss relevant background
details here and hence provide the proof in Appendix XVI of
technical report [27]. Theorem 1 indicates that Algorithm 3
converges to ϵ-accurate saddle point solution with linear
rate. Further, the complexity in Theorem 1 depends on
compression factor as O(max{

√
δ(1 + δ), 1 + δ}). Without

compression (δ = 0), the iteration complexity reduces

to O(max{κg,
κ2
f

npmin
, 2
p} log(

2
√

CmaxΦ0(CmaxVe+C1)

ϵ )). The
communication complexity of Algorithm 3 has a term similar
to iteration complexity along with an additional number of
communications required in gossip scheme at T

′

0-th iteration.
In terms of gradient computations, Algorithm 3 requires
(2B + pNℓ)T (ϵ)− (B + pNℓ)T0 gradient computations.

VI. RELATED WORK

A distributed saddle point algorithm with Laplacian aver-
aging (DSPAwLA) is proposed in [21] to solve non-smooth
convex-concave saddle point problems. An extragradient
method with gradient tracking (GT-EG) [23] is shown
to converge with linear rates for strongly convex-strongly

Fig. 2. Broad illustration of proposed practical method to determine
switching point. Average difference = m−1∥z

T
′
0
− z

T
′
0−1

∥2
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concave problems, under a positive lower bound assumption
on the gradient difference norm. A distributed Min-Max data
similarity (MMDS) algorithm under a suitable data similarity
assumption is proposed in [4] which requires solving an inner
saddle point problem at every iteration. Another work [25]
has designed algorithms for smooth saddle point problems
with bilinear structure. We emphasize that [21], [23], [4],
[25] are based on non-compressed communications and full
batch gradient computations which limit their applicability
to large scale problems.

Multiple works [19], [3], [30], [12], [6], [8] have devel-
oped algorithms using stochastic gradients, albeit without
compression for solving decentralized saddle point problems.
Note that [28] has designed two different compression based
algorithms using GSGO’s variant and SVRGO respectively
for general stochastic setting and finite sum setting. Figure
3 below helps positioning our work in context of existing
methods.

Decentralized Saddle Point Problem

With Central Server Without Central Server

Compressed Communication

No Gossip

SC–SC

C-DPSVRG
C-DPSSG†

(this work)

Non-compressed Communication

No Gossip

SC–SC

GT-EG

C-DPSVRG
C-DPSSG†

(this work)

C–C

DSPAwLA

NC–SC

DM-HSGD

Full Gossip

SC–SC

MMDS DES DOA

NC–NC

DPOSG

Fig. 3. Our work in comparison to existing art. GT-EG: [23], DSPAwLA:
[21], DMHSGD: [30], MMDS: [4], DES: [3], DOA: [12], DPOSG: [19]. C-C,
SC-SC, NC-NC, NC-SC denote respectively convex-concave, strongly convex-
strongly concave, nonconvex-nonconcave, nonconvex-strongly concave. †:
C-DPSSG uses gossip only for deciding switching point, not for iterate
updates.

VII. NUMERICAL EXPERIMENTS

We investigate1 the performance of proposed algo-
rithms on robust logistic regression and AUC maxi-
mization. We rely on binary classification datasets a4a
and ijcnn1 from https://www.csie.ntu.edu.tw/

˜cjlin/libsvmtools/datasets/. We consider a 2d
torus topology of 20 nodes in all our experiments. Additional
experiments for ijcnn1, phishing and sido data are presented
in our technical report [27] (see Appendices XIX- XX).
The performance of proposed algorithms on ring topology,
convergence behavior with number of nodes and bits used for
compression are also presented in [27]. We use an unbiased
b-bits quantization operator Q∞(·) [20] in all the experiments.

A. Robust Logistic Regression
We consider robust logistic regression problem

min
x∈X

max
y∈Y

1

N

N∑
i=1

log(1 + exp(−bix
⊤(ai + y))) +

λ

2
∥x∥22 −

β

2
∥y∥22,

(10)

over a binary classification data set D = {(ai, bi)}Ni=1. The
constraint sets X and Y are ℓ2 balls of radius 100 and 1

1All codes are available at https://github.com/
chhavisharma123/C-DPSSG-CDC2023

respectively. We set number of bits b = 4 in quantization
operator Q∞(x) and λ = β = 10.

Switching Point: For C-DPSSG, we take threshold value
to be 10−8 and implement 20 iterations of accelerated gossip
to decide the switch to SVRGO. It turns out that C-DPSSG
switches to SVRGO after performing T

′

0 iterations with
GSGO because the gap between two consecutive iterates
gets saturated in these many iterations.

Observations: Switching method C-DPSSG converges
faster than C-DPSVRG and other baseline methods as
demonstrated in Figure 4. DPOSG and DM-HSGD converge
only to a neighborhood of the saddle point solution and start
oscillating after a number of iterations. Note that MMDS has
poor performance because it is based on full batch gradient
computations and multiple calls of gossip scheme at every
iterate.

B. AUC maximization

We evaluate the effectiveness of proposed algorithms on
area under receiver operating characteristic curve (AUC)
maximization [33] formulated as:

min
x,u,v

max
y

1

N

N∑
i=1

F (x, u, v, y; ai, bi) +
λ

2
∥x∥22 , (11)

where F (x, u, v, y; ai, bi)=(1 − q)(a⊤i x − u)2δ[bi=1] +
q(a⊤i x − v)2δ[bi=−1] − q(1 − q)y2+2(1 +
y)
(
qa⊤i xδ[bi=−1] − (1− q)a⊤i xδ[bi=1]

)
, the fraction of

positive samples is given by q. We set λ = 10−5 in (11) and
consider constraint sets as ℓ2 ball of radius 100 and 200
respectively on primal and dual variables.

Observations: We observe that C-DPSSG switches to
SVRGO after T i

0 iterations. The AUC plots on training set
in Figure 4 show that C-DPSSG achieves higher AUC value
faster in terms of gradient computations, communications and
bits transmitted. These observations suggest that switching
scheme is beneficial over purely SVRGO based scheme for
obtaining high AUC value as it saves time and gradient
computations in the crucial early stage.

Data Φ0 Φ̄i
0(T

′
0) ϵ⋆0 ϵ̄i0 T0 T i

0 T
′
0

a4a 47.4 8.6 5.3× 10−11 2.9× 10−10 195315 181248 5720
ijcnn1 23.8 3.9 10−10 6.3× 10−10 50947 46960 1536

TABLE I
VALUES OF Φ̄i

0(T
′
0), ϵ̄i0 T i

0 (OBSERVED SAME FOR ALL NODES) OBTAINED

FROM ALGORITHM (4) AND ϵ⋆0, T0, T ′
0 ON AUC MAXIMIZATION.

Table I reports the true values Φ0, ϵ
⋆
0, T0 and the approxi-

mate values Φ̄i
0(T

′
0), ϵ̄

i
0, T

i
0 in AUC maximization. We notice

that ϵ⋆0 and ϵ̄i0 are close to each other and hence the difference
between T0 and T i

0 is also small.
VIII. CONCLUSION

This work presents C-DPSSG, a technique that leverages
the best phases of GSGO and SVRGO in a decentralized
setting with compression, by performing a switch between
them. The proposed algorithm offers practical advantages
for efficiently obtaining low, medium and highly accurate
solutions. Adapting the algorithm to cases where some
constants are unknown in the problem setup would be an
interesting direction to explore in future.
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Fig. 4. Left panel: Convergence behavior of iterates to saddle point for
robust logistic regression. Right panel: AUC value on training set for AUC
maximization problem.
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