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Abstract— This paper aims to address the distributed learn-
ing control problem for irregular multi-agent systems subject to
switching topologies. The cooperative trackability property for
the desired reference is discussed, which ensures the existence of
the desired inputs for realizing the cooperative perfect tracking
objective. Then, a trackability-based distributed learning con-
trol algorithm is presented with the integration of the complete
experience information from the previous iteration. It is shown
that for the cooperatively trackable desired reference, all agents
learn to achieve the cooperative perfect tracking objective in the
presence of the developed distributed learning control algorithm
despite their irregular dynamics, provided that their associated
directed graphs jointly have a spanning tree. The simulation is
implemented to illustrate the validity of the trackability-based
distributed learning control algorithm.

Index Terms— Cooperative perfect tracking, cooperative
trackability property, distributed learning control, multi-agent
system, switching topology.

I. INTRODUCTION

Distributed learning control problems have become one of
the most popular topics for multi-agent systems, which adopt
the cooperative learning of agents from the past experiences
to effectively improve their transient performances (see, e.g.,
[1]–[3]). The distributed learning control mechanism merges
the advantages of the distributed control mechanism based on
the local information usage and the learning control mecha-
nism based on the experience information usage. As a result,
all agents can learn from the experiences of both themselves
and other agents iteration by iteration to establish the desired
transient performances over the finite time interval of interest
subject to the repetitive tasks. This may promote most steady-
state cooperative tracking results of multi-agent systems from
the perspective of the control precision (see, e.g., [4]). The
distributed learning control idea has been applied to solving
many practical engineering problems with the high-precision
collaborative requirements, such as the satellite formation [5]
and the quadrotor tracking [6].

For the design of distributed learning control algorithms,
the most widely adopted idea is to leverage the local neighbor
information for one time instant from the previous iteration
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to establish a class of the P-type distributed learning control
algorithms (see, e.g., [1], [2]). The P-type distributed learning
control algorithms may effectively work for the cooperative
perfect tracking task of multi-agent systems when the inputs
directly impact the outputs (see, e.g., [7]). Nonetheless, when
the inputs indirectly affect the outputs, the P-type distributed
learning control algorithms may apply to multi-agent systems
only having the quasi-regular dynamics with the first nonzero
Markov parameter matrices of full rank due to their limited
information utilization. For the implementation of distributed
learning control algorithms, the fixed topologies are generally
concerned in, e.g., [1]–[3]. But owing to the communication
limitations in some engineering applications, the interactions
among agents may not always be invariable. Therefore, some
affords have been made to exploit some distributed learning
control algorithms under switching topologies (see, e.g., [8]–
[10]), which, however, may have some specific connectivity
requirements at every iteration. These connectivity conditions
may be too strict. Besides, the selection on the gain matrices
for distributed learning control algorithms in, e.g., [8]–[10]
may rely heavily on the global information of their associated
graphs. This makes them not in the fully distributed manners
and hence constrains their applicability. Of particular note is
that in most of the existing distributed learning control re-
sults, the implementability of the cooperative perfect tracking
objective for multi-agent systems with respect to the desired
reference is generally assumed, which may not be reasonable.

Motivated by the above discussions, we intend to develop
some effective distributed learning control algorithm with the
wider applicability by focusing on the essential properties of
multi-agent systems. The cooperative trackability property of
the desired reference is first revealed, which ensures the im-
plementability of the cooperative perfect tracking objective
for multi-agent systems. Moreover, we develop a trackability-
based distributed learning control algorithm under the usage
of the complete local information from the previous iteration.
The cooperative perfect tracking objective can be established
for multi-agent systems subject to the cooperatively trackable
desired reference, provided the joint spanning tree condition
holds. Due to the introduction of the cooperative trackability
property, the proposed distributed learning control algorithm
applies to any linear multi-agent system in spite of whether
it is regular or not, which improves the applicability of those
in, e.g., [1]–[3]. Besides, it only imposes a joint connectivity
requirement without the utilization of the global information
for the gain matrix selection, which has more relaxed design
conditions than those in, e.g., [8]–[10].

We organize the rest of this paper as follows. In Section II,
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we introduce some preliminaries on graphs and then present
our concerned problem. In Section III, the cooperative track-
ability property is proposed, with which a distributed learning
control algorithm is exploited. We give a simulation example
in Section IV and make some conclusions in Section V.

Notations: We denote Z= {0,1, · · ·}, ZN = {0,1, · · · ,N},
In = {1,2, · · · ,n}, and 1n = [1,1, · · · ,1]T ∈Rn. Let In ∈Rn×n

and diag{d1,d2, · · · ,dn}∈Rn×n denote an identity matrix and
a diagonal matrix with its diagonal entries as d1,d2, · · · ,dn,
respectively. Given any matrix A = [ai j] ∈Rm×n, let span(A)
be its image space. Particularly for m = n, λi(A) represents
its eigenvalue having the ith maximum modulus. ⊗ describes
the Kronecker product of two matrices.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first discuss some necessary preliminar-
ies on directed graphs and then show our concerned problem.

A. Directed Graphs

A switching directed graph is represented by a triple Gk =
{V ,Ek,Ak}, where V = {vi : i ∈ In}, Ek = {(v j,vi) : i, j ∈
In}, and Ak =

[
αi j,k

]n×n ≥ 0 are the node set, the edge set,
and the adjacency matrix, respectively. If the node vi receives
the information from the node v j, then (v j,vi) ∈ Ek follows
with αi j,k > 0 and v j is called a neighbor of vi. The neighbor
set of vi is denoted as Ni,k =

{
v j : (v j,vi) ∈ Ek

}
. Let Gk have

no self-loops, that is, αii,k ≡ 0, ∀k∈Z, i∈In. A directed path
from the node v j to the node vi is an edge sequence composed
of some distinct nodes as

{
(v j,vk1),(vk1 ,vk2), · · · ,(vkl−1 ,vi)

}
.

If there exists a node vi with directed paths to all other nodes,
then Gk is said to have a spanning tree, for which vi is called
the root node of Gk. We assume that Gk switch among finite
directed graphs. If there exists an infinite iteration sequence
{ki : k0 = 0,0 < ki+1 − ki ≤ τ,∀i ∈ Z} for some finite integer
τ > 0 such that the union directed graph

⋃ki+1−1
p=ki

Gp, ∀i ∈ Z
has a spanning tree, then Gk is said to jointly have a spanning
tree, where the root node of

⋃ki+1−1
p=ki

Gp, ∀i ∈ Z is called the
union root node. The Laplacian matrix of Gk is defined as

Lk = [li j,k] ∈ Rn×n =

 ∑
v j∈Ni,k

αi j,k, i = j

−αi j,k, i ̸= j.

B. Problem Statement

We consider a multi-agent system consisting of n agents in
the presence of a switching directed graph Gk, which evolves
simultaneously along the time axis t ∈ ZN and the iteration
axis k ∈ Z. The dynamics of the ith agent are described by{

xi,k(t +1) = Axi,k(t)+Bui,k(t)

yi,k(t) =Cxi,k(t)
, ∀t ∈ ZN ,k ∈ Z, i ∈ In

(1)
where xi,k(t)∈Rs, ui,k(t)∈Rq, and yi,k(t)∈Rp are the state,
input, and output of the ith agent; and A, B, and C are some
system matrices with compatible dimensions. Without loss of
generality, let the relative degree of all agents be r = 1 such
that CB ̸= 0 is fulfilled and the initial states of all agents be
iteration-invariant as xi,k(0) = 0, ∀k ∈ Z, i ∈In (for the case

xi,k(0) = x0 ̸= 0, ∀k ∈Z, i∈In, the following analysis is still
effective by replacing yi,k(t) with yi,k(t)−CAtx0 instead).

For the multi-agent system (1), this paper targets to design
some distributed learning control algorithm such that for the
given desired reference yd(t)∈Rp, t ∈ZN , which is available
only to a portion of agents, the cooperative perfect tracking
objective can be realized, namely,

lim
k→∞

yi,k(t) = yd(t), ∀t ∈ ZN \{0} , i ∈ In. (2)

Note that for most of the existing distributed learning control
results in, e.g., [1]–[3], the implementability of the coopera-
tive perfect tracking objective (2) subject to the given desired
reference is directly supposed, the reasonability of which is
doubtful. Besides, the full-row or full-column rank condition
on the first nonzero Markov parameter matrix CB is generally
required, which may limit the applicability of the distributed
learning control algorithms. To overcome the aforementioned
limitations, we first focus on exploring under what conditions
the multi-agent system (1) is able to achieve the cooperative
perfect tracking objective (2) for the given desired reference
and then develop some effective distributed learning control
algorithm to realize the cooperative tracking objective (2).

III. MAIN RESULTS

In this section, we first discuss the cooperative trackability
property of the desired reference for the multi-agent system
(1), which guarantees the implementability of the cooperative
perfect tracking objective (2). Given the cooperatively track-
able desired reference, we propose some distributed learning
control algorithm to achieve the cooperative perfect tracking
objective (2) for the multi-agent system (1).

A. Cooperative Trackability Property

We first show the definition of the cooperative trackability
property of the desired reference yd(t), t ∈ ZN for the multi-
agent system (1) as follows.

Definition 1: The desired reference yd(t), t ∈ZN is said to
be cooperatively trackable for the multi-agent system (1) if
for any agent, there exists some desired input ui,d(t), t ∈ZN ,
i ∈ In such that under the initial state xi,d(0) = 0, ∀i ∈ In,{

xi,d(t +1) = Axi,d(t)+Bui,d(t)

yd(t +1) =Cxi,d(t +1)
, ∀t ∈ ZN−1, i ∈ In. (3)

The cooperative trackability property implies the existence
of some desired input generating the desired reference for the
multi-agent system (1), which ensures the implementability
of the cooperative perfect tracking objective (2). Before we
explore the distributed learning control algorithm design for
the multi-agent system (1), it is necessary to validate whether
the desired reference is cooperatively trackable. Otherwise, it
is impossible to accomplish the cooperative perfect tracking
objective (2) despite any inputs.

For exploiting the cooperative trackability property of the
given desired reference, we may resort to the lifting form of
the multi-agent system (1). To be specific, we, respectively,
denote the supervectors of the input and the output for the ith
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agent as UUU i,k =
[
uT

i,k(0),u
T
i,k(1), · · · ,uT

i,k(N −1)
]T

and YYY i,k =[
yT

i,k(1),y
T
i,k(2), · · · ,yT

i,k(N)
]T

. Then, by leveraging the lifting
technique (see, e.g., [11], [12]), the dynamics of the ith agent
for the multi-agent system (1) can be transformed into

YYY i,k = GGGUUU i,k, ∀k ∈ Z, i ∈ In (4)

where GGG is the block Toeplitz matrix in the form of

GGG =


CB 0 · · · 0

CAB CB
. . .

...
...

...
. . . 0

CAN−1B CAN−2B · · · CB

 .

As a result, the cooperative perfect tracking objective (2) can
be correspondingly transformed into

lim
k→∞

YYY i,k = YYY d , ∀i ∈ In (5)

for YYY d =
[
yT

d (1),y
T
d (2), · · · ,yT

d (N)
]T. Clearly, (4) yields the

direct input-to-output relation for the ith agent of the multi-
agent system (1). It is obvious to validate from (4) that owing
to the homogeneity of all the agents, whether the cooperative
perfect tracking objective (5) (or (2)) can be achieved is only
dependent on the relation between the block Toeplitz matrix
GGG and the desired reference YYY d . Next, we present a criterion
to verify the cooperative trackability property of the desired
reference in the following theorem.

Theorem 1: The desired reference yd(t), t ∈ ZN is coop-
eratively trackable for the multi-agent system (1) if and only
if its related linear algebraic equation

YYY d = GGGUUUd (6)

is solvable.
Proof: We consider the lifting form of the multi-agent

system (1) as (4). By Definition 1, the desired reference yd(t),
t ∈ ZN is cooperatively trackable if and only if some desired

input supervectors UUU i,d =
[
uT

i,d(0),u
T
i,d(1), · · · ,uT

i,d(N −1)
]T

,
i ∈ In exist to ensure

YYY d = GGGUUU i,d , ∀i ∈ In

which is equivalent to the solvability of the linear algebraic
equation (6). The proof of this theorem is complete.

Remark 1: Thanks to the homogeneous dynamics and the
same initial states of all agents in the multi-agent system (1),
the criterion on the cooperative trackability property of the
desired reference is similar to the trackability criterion for a
learning control system in, e.g., [13], [14] regardless of the
existence of multiple interactive systems. Based on Theorem
1, we only need to check whether YYY d ∈ span(GGG) is satisfied
to verify whether the given desired reference is cooperatively
trackable for the multi-agent system (1). Once YYY d ∈ span(GGG)
holds, we proceed to develop the distributed learning control
algorithm to reach the cooperative perfect tracking objective
(2). Otherwise, the cooperative perfect tracking objective (2)
can never be established in spite of any inputs. In particular,
if GGG is of full-row rank, the cooperative trackability property
of any desired reference can always be ensured.

B. Cooperative Perfect Tracking
When the desired reference is validated to be cooperatively

trackable with Theorem 1, some distributed learning control
algorithms can be established for the multi-agent system (1)
to achieve the cooperative perfect tracking objective (2). It is
worth noticing that for the design of most distributed learning
control algorithms, the full-row or full-column rank property
on the block Toeplitz matrix GGG is generally needed, i.e., the
dynamics of agents have to be quasi-regular (see, e.g., [1]–
[3]). As a benefit, the partial information from the previous
iteration is only required at every time instant to exploit the
P-type distributed learning control algorithms. But if GGG does
not have full-row rank nor have full-column rank, the P-type
distributed learning control algorithms may not be applicable
anymore. Thus, we adopt the complete information collected
from the previous iteration to develop the distributed learning
control algorithm as

ui,k+1(t) = ui,k(t)+ γi,k

N

∑
l=1

Kt+1,l

{
∑

v j∈Ni,k

αi j,k
[
y j,k(l)− yi,k(l)

]
+di,k

[
yd(l)− yi,k(l)

]}
,∀t ∈ ZN−1,k ∈ Z, i ∈ In

(7)
where Kt,l ∈Rq×p and γi,k > 0 denote the gain matrix and the
gain parameter to be designed, respectively; and αi j,k ≥ 0 and
di,k ≥ 0 denote the adjacency weight in Gk and the interaction
for the desired reference and the ith agent, respectively. Let
Γk ≜ diag

{
γ1,k,γ2,k, · · · ,γn,k

}
and Dk ≜

[
d1,k,d2,k, · · · ,dn,k

]T.
We construct an enlarged directed graph G̃k =

{
Ṽ , Ẽk,Ãk

}
with the desired reference involved as a virtual node v0 such
that it follows Ṽ = {v0 ∪V }, Ẽk =

{
E 0

k ∪Ek
}

with E 0
k in the

form of E 0
k =

{
(v0,vi) : di,k ̸= 0

}
, and

Ãk =
[
α̃i j,k

]
=

[
0 0
Dk Ak

]
.

Due to the unsatisfaction of the full rank condition on the
block Toeplitz matrix GGG, there exist some static (redundant)
input-to-output channels. Thus, it may not be easy to directly
explore the selection condition on the gain matrix based on
the Markov parameter matrix CB. Instead, we may resort to
the decomposition of the multi-agent system (1) and dig out
the active input-to-output channels to investigate the selection
condition on the gain matrix. Towards this end, we assume
m ≜ rank(GGG)≤ min{N p,Nq} without loss of any generality.
Then, we can construct some matrices PPP1 ∈RN p×m and PPP2 ∈
RN p×(N p−m) such that PPP ≜ [PPP1,PPP2] ∈RN p×N p is nonsingular
and span(PPP1) = span(GGG) is fulfilled, with which denote the
inverse of PPP as FFF ≜

[
FFFT

1 ,FFF
T
2
]T

for FFF1 ∈ Rm×N p and FFF2 ∈
R(N p−m)×N p. Thanks to the introduction of PPP and FFF , we can
provide the cooperative perfect tracking result for the multi-
agent system (1) in the following theorem.

Theorem 2: Let the distributed learning control algorithm
(7) be applied to the multi-agent system (1), where the gain
matrix KKK ≜ [Ki j] ∈ RNq×N p is selected to fulfill{

0 < λi(FFF1GGGKKKPPP1)≤ 1, ∀i ∈ Im

FFF1GGGKKKPPP1 = (FFF1GGGKKKPPP1)
T (8)
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and the gain parameter γi,k is selected to fulfill

γi,k

 ∑
v j∈Ni,k

αi j,k +di,k

< 1, ∀k ∈ Z, i ∈ In. (9)

Given the cooperatively trackable desired reference yd(t), t ∈
ZN , the cooperative perfect tracking objective (2) is achieved
if G̃k jointly has a spanning tree.

Proof: We consider the supervector UUU i,k and can obtain
from (7) that

UUU i,k+1 =UUU i,k + γi,kKKK
[

∑
v j∈Ni,k

αi j,k
(
YYY j,k −YYY i,k

)
+di,k

(
YYY d −YYY i,k

)]
, ∀k ∈ Z, i ∈ In.

For UUUk =
[
UUUT

1,k,UUU
T
2,k, · · · ,UUUT

n,k

]T
, we can further arrive at

UUUk+1 =UUUk +(Hk ⊗KKK)(1n ⊗YYY d −YYY k) , ∀k ∈ Z (10)

where Hk = ΓkLk+Γkdiag
{

d1,k,d2,k, · · · ,dn,k
}

with Lk as the

Laplacian matrix of Gk and YYY k =
[
YYY T

1,k,YYY
T
2,k, · · · ,YYY T

n,k

]T
. By

noting (4), it is easy to derive from (10) that

YYY k+1 = YYY k +(Hk ⊗GGGKKK)(1n ⊗YYY d −YYY k) , ∀k ∈ Z.

We denote the tracking error supervector as EEEk = 1n ⊗YYY d −
YYY k and then can obtain

EEEk+1 = (IN pn −Hk ⊗GGGKKK)EEEk, ∀k ∈ Z. (11)

We perform a linear transformation for the system (11) such
that EEEk = (In ⊗FFF)EEEk with EEE1

k = (In ⊗FFF1)EEEk and EEE2
k = (In ⊗

FFF2)EEEk. It is clear to see from (4) that

EEE2
k = (In ⊗FFF2)(1n ⊗YYY d −YYY k)

= (In ⊗FFF2) [1n ⊗YYY d − (In ⊗GGG)UUUk] .

With Theorem 1, there exists some desired input UUUd ∈ RNq

to ensure (6) for the cooperatively trackable desired reference
YYY d . Consequently, it further follows

EEE2
k = (In ⊗FFF2) [1n ⊗GGGUUUd − (In ⊗GGG)UUUk] = 0, ∀k ∈ Z (12)

where FFF2GGG = 0 is inserted thanks to span(PPP1) = span(GGG)
and FFF2PPP1 = 0. Based on (11) and (12), we can obtain

EEE1
k+1 = EEE1

k − (Hk ⊗FFF1GGGKKK)EEEk

= EEE1
k − (Hk ⊗FFF1GGGKKK)

×
[
(In ⊗PPP1)EEE1

k +(In ⊗PPP2)EEE2
k

]
= [Imn − (Hk ⊗FFF1GGGKKKPPP1)]EEE

1
k , ∀k ∈ Z.

(13)

Since KKK is selected to satisfy (8), there exists some transfor-
mation matrix TTT ∈ Rm×m to render

TTT (FFF1GGGKKKPPP1)TTT−1 = diag{λ1,λ2, · · · ,λm} (14)

for λi ≜ λi(FFF1GGGKKKPPP1), ∀i∈Im. Then, we implement a linear

transformation for the system (13) with ÊEE
1

k = QQQ(In ⊗TTT )EEE1
k ,

where QQQ = [eee1,eee2, · · · ,eeem] for eeei =
[
ei,em+i, · · · ,e(n−1)m+i

]
,

∀i ∈ Im with e j ∈Rmn as the jth column of Imn. It is direct
to deduce from (13) and (14) that

ÊEE
1

k+1 =

Imn −


λ1Hk 0 · · · 0

0 λ2Hk
. . .

...
...

. . . . . . 0
0 · · · 0 λmHk


 ÊEE

1

k , ∀k ∈ Z.

We denote ÊEE
1

k =

[(
ÊEE

1

1,k

)T

,

(
ÊEE

1

2,k

)T

, · · · ,
(

ÊEE
1

m,k

)T
]T

with

ÊEE
1

i,k ∈ Rn, ∀i ∈ Im. As a result, we further have

ÊEE
1

i,k+1 = (In −λiHk) ÊEE
1

i,k, ∀k ∈ Z, i ∈ Im. (15)

By resorting to (8) and (9), it is obvious that In+1 −λiΓ̃kL̃k
is a stochastic matrix for any k ∈ Z and i ∈ Im, where Γ̃k =
diag{1,Γk} and L̃k is the Laplacian matrix of G̃k. Since G̃k
jointly has a spanning tree, it follows from [15] that

lim
k→∞

(
In+1 −λiΓ̃kL̃k

)k
= 1n+1 f T

i , ∀i ∈ Im

for some fi ∈ Rn+1. In addition, owing to the specific form
of Γ̃kL̃k as

Γ̃kL̃k =

[
0 0

−ΓkDk Hk

]
we can deduce(

In+1 −λiΓ̃kL̃k

)k
=

[
1 0
(∗) (In −λiHk)

k

]
, ∀k ∈ Z, i ∈ Im

with (∗) as some unknown matrix, which leads to

lim
k→∞

(In −λiHk)
k = 0, ∀i ∈ Im.

Together with (15), it directly yields

lim
k→∞

ÊEE
1

i,k = lim
k→∞

(In −λiHk)
k ÊEE

1

i,0 = 0, ∀i ∈ Im

and thus, we have

lim
k→∞

ÊEE
1

k = 0.

As a consequence, we can conclude

lim
k→∞

EEEk = (In ⊗PPP1) lim
k→∞

EEE1
k +(In ⊗PPP2) lim

k→∞
EEE2

k

= (In ⊗PPP1TTT−1)QQQ−1 lim
k→∞

ÊEE
1

k

= 0

which implies that the cooperative perfect tracking objective
(5) is achieved. Equivalently, the cooperative perfect tracking
objective (2) is accomplished for the multi-agent system (1).
The proof of this theorem is complete.

Remark 2: From Theorem 2, it shows that the cooperative
perfect tracking objective (2) can be achieved for the multi-
agent system (1) under the distributed learning control algo-
rithm (7) only with the joint spanning tree requirement on its
related directed graph G̃k, provided the gain matrix KKK and the
gain parameter γi,k are properly selected. Note that the gain
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matrix KKK is selected identically for all the agents thanks to
the homogeneity of them. Because FFF1GGG is of full-row rank,
there always exists some gain matrix KKK to fulfill the selection
condition (8). By contrast, the gain parameter γi,k is selected
differently, which only relies on the local information of each
agent. It is applied to ensuring that In+1−λiΓ̃kL̃k, ∀i ∈Im is
a stochastic matrix. Owing to the fact that the virtual node
v0 can not receive information from any other nodes, it is the
only union root of G̃k under the joint spanning tree condition,
which indicates that all the agents can directly or indirectly
receive the information of the desired reference.

Remark 3: The distributed learning control algorithm (7)
may have more general applicability than most of the existing
distributed learning control algorithms. By comparison with
the distributed learning control results for linear multi-agent
systems in, e.g., [1]–[3], the full rank condition on GGG (or CB)
is relaxed such that the distributed learning control algorithm
applies to agents with the irregular dynamics. This attributes
to the integration of the cooperative trackability property for
the desired reference, which can be determined by Theorem
1. In contrast with the distributed learning control results for
multi-agent systems subject to switching topologies in, e.g.,
[8]–[10], not only is the joint connectivity condition adopted,
but also the selection on the gain matrix/parameter only relies
on the local information instead of the global information of
multi-agent systems.

The selection condition (8) may not be easy to validate for
the selection of the gain matrix KKK. In the following corollary,
some feasible candidates for the gain matrix KKK are provided
to ensure the realization of the cooperative perfect tracking.

Corollary 1: Let the distributed learning control algorithm
(7) be applied to the multi-agent system (1), where the gain
matrix is selected as

KKK = κ (FFF1GGG)T
[
FFF1GGG(FFF1GGG)T

]−1 (
PPPT

1 PPP1
)−1

PPPT
1 (16)

for some 0 < κ ≤ 1 and the gain parameter γi,k is selected to
fulfill (9). Given the cooperatively trackable desired reference
yd(t), t ∈ ZN , the cooperative perfect tracking objective (2)
is achieved if G̃k jointly has a spanning tree.

Proof: Because FFF1GGG has full-row rank and PPP1 has full-
column rank, the selection of KKK in (16) makes sense. Under
(16), we can validate FFF1GGGKKKPPP1 = κIm, which, combined with
0 < κ ≤ 1, ensures the satisfaction of (8). Then, the result in
this corollary follows directly from Theorem 2.

If the full rank property on GGG (or CB) is satisfied, we can
simplify the design manner of the distributed learning control
algorithm for the multi-agent system (1), which is disclosed
in the following corollary.

Corollary 2: Let the distributed learning control algorithm

ui,k+1(t) = ui,k(t)+ γi,kK
{

∑
v j∈Ni,k

αi j,k
[
y j,k(t +1)− yi,k(t +1)

]
+di,k

[
yd(t +1)− yi,k(t +1)

]}
,∀t ∈ ZN−1,k ∈ Z, i ∈ In

be applied to the multi-agent system (1) with its associated
directed graph G̃k jointly having a spanning tree, where the
gain parameter γi,k fulfills (9). Then, given the cooperatively

Fig. 1. Three candidate directed graphs
{
G̃ 1, G̃ 2, G̃ 3

}
for the switching

of the directed graph G̃k .

trackable desired reference, the cooperative perfect tracking
objective (2) is reached if any of the conditions below holds:

1) CB is of full-row rank with the gain matrix K ∈ Rq×p

being selected to fulfill{
0 < λi(CBK)≤ 1, ∀i ∈ Ip

CBK = (CBK)T ;

2) CB is of full-column rank with the gain matrix K ∈
Rq×p being selected to fulfill{

0 < λi(KCB)≤ 1, ∀i ∈ Iq

KCB = (KCB)T .
Proof: The results in this corollary can be obtained by

adopting the induction analysis method in, e.g., [7], together
with the analysis ideas in the proof of Theorem 2.

Under the full rank condition on CB, the partial informa-
tion from the previous iteration only needs to be leveraged for
the development of the distributed learning control algorithm.
According to Theorem 1, the full-row rank condition on CB
ensures that any desired reference is cooperatively trackable.
But for the case that CB has full-column rank, we still need
to check whether the given desired reference is cooperatively
trackable, which leads to a unique desired input.

IV. SIMULATION EXAMPLE

In this section, we perform a simulation example to show
how to design the distributed learning control algorithm (7)
for the multi-agent system (1).

We consider the multi-agent system (1) consisting of five
agents, where the interactions among agents are described by
a directed graph Gk switching among three candidate directed
graphs

{
G 1,G 2,G 3

}
in Fig. 1. Let the system matrices of

all agents be the same as

A =

1 0 0
0 1 0
0 0 1

 , B =

1 −1
2 −2
0 0

 , C =

[
1 0 1
0 1 −1

]
and the time interval of interest be N = 100. It is easy to see
rank(CB) = 1 such that the full rank condition on CB is not
satisfied. Let the desired reference be

yd(t) = [sin(0.06t)+1,2sin(0.06t)+2]T , ∀t ∈ Z100.

Under the zero initial states, we can validate that the desired
reference is cooperatively trackable according to Theorem 1.
Let the related directed graph G̃k of the multi-agent system
(1) switch among three candidates in Fig. 1 to make G̃k = G̃ 1,
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Fig. 2. The evolution of the tracking error norm maxi∈I5 ∥YYY d −YYY i,k∥2
along the iteration axis.

Fig. 3. The output evolutions of five agents at the 93rd iteration.

∀k = 3 j; G̃k = G̃ 2, ∀k = 3 j+1; and G̃k = G̃ 3, ∀k = 3 j+2 for
any j ∈Z. Thus, G̃k jointly has a spanning tree. For designing
the distributed learning control algorithm (7), we choose the
odd columns of GGG to construct PPP1 ∈ R200×100, under which
we take the even columns of I200 to construct PPP2 ∈R200×100.
Then, according to Corollary 1, we can select the gain matrix

as KKK = (FFF1GGG)T
[
FFF1GGG(FFF1GGG)T

]−1 (
PPPT

1 PPP1
)−1

PPPT
1 and the gain

parameter as γi,k = 0.4, ∀i∈I5 for G̃k ∈
{
G̃ 1, G̃ 2

}
and γi,k =

0.25, ∀i ∈I5 for G̃k ∈
{
G̃ 3

}
, which ensure both (8) and (9).

We perform the simulation for the multi-agent system (1)
under the distributed learning control algorithm (7) with the
zero initial inputs for all agents, where the tolerance is chosen
as 10−5 with regard to the tracking error norm maxi∈I5 ∥YYY d −
YYY i,k∥2. We depict the evolution of the tracking error norm in
Fig. 2, which indicates that the tracking error norm decreases
into the tolerance at the 93rd iteration. Note that in Fig. 2, the
tracking error norm is unchanged for some iterations owing
to the nonpersistent interactions among agents. Thanks to the
joint connectivity property of G̃k, all agents can still achieve
the cooperative perfect tracking objective (2). We also show
the output evolutions of all five agents at the 93rd iteration
in Fig. 3. From Fig. 3, it is clear that the cooperative perfect
tracking objective (2) is accomplished in the presence of the
distributed learning control algorithm (7). Hence, the validity
of the results in Theorem 2 and Corollary 1 is illustrated.

V. CONCLUSIONS

In this paper, the distributed learning control problem has
been considered for multi-agent systems subject to switching
topologies. We have investigated the cooperative trackability

property for the desired reference, which guarantees the im-
plementability of the cooperative perfect tracking objective in
the presence of some desired inputs. Given the cooperatively
trackable desired reference, the full experience information
from the previous iteration has been leveraged to develop a
trackability-based distributed learning control algorithm. The
cooperative perfect tracking objective is achieved for multi-
agent systems under the proposed distributed learning control
algorithm, provided that the joint spanning tree condition is
fulfilled for their related directed graphs, where the ill effects
from the irregular dynamics of agents can be overcome via
the proper selection on the gain matrix. We have performed
a simulation example to show the validity of the trackability-
based distributed learning control algorithm.
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