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Abstract— This paper focuses on two inverse problems of the
Kalman filter in which the process and measurement noises are
correlated. The unknown covariance matrix in a stochastic
system is reconstructed from observations of its posterior
beliefs. For the standard inverse Kalman filtering problem,
a novel duality-based formulation is proposed, where a well-
defined inverse optimal control (IOC) problem is solved instead.
Identifiability of the underlying model is proved, and a least
squares estimator is designed that is statistically consistent. The
time-invariant case using the steady-state Kalman gain is further
studied. Since this inverse problem is ill-posed, a canonical class
of covariance matrices is constructed, which can be uniquely
identified from the dataset with asymptotic convergence. Finally,
the performances of the proposed methods are illustrated by
numerical examples.

I. INTRODUCTION

In complex tasks, autonomous agents are required to
adaptively interact with the environment and understand the
world around them, where an effective estimator becomes
a vital component in autonomous decision-making [1], [2].
In forward filtering problems, given a stochastic process
observed in noise, an optimal estimator is designed for the
unknown signal, usually in the sense of minimum mean-
squared error (or its Bayes risk), maximum likelihood,
minimum conditional KL divergence, and so on. On the
contrary, the goal of inverse filtering is to reconstruct the
unknown parameters or likelihoods in a filtering model
from the observations of its posterior updates. For different
application purposes, quantities of interest may include the
transition kernel of the state, raw measurements, sensors’
capabilities, or posterior distributions of the filter [3], [4], [5].

Among variants of the inverse filtering problem, in this
paper we aim to recover the statistical characteristics of a
stochastic system from its posterior updates. Such problems
arise in the pressing need to interact with a filter-based
agent or remote sensor fusion, where the transition kernel is
unavailable due to security or communication reasons. Most
existing results on inverse filtering focus on Bayesian filters of
Markov models, such as [6] and a series of follow-up works.
Cognitive sensing systems are studied in [7], where remote
calibration of a cognitive sensor is achieved by analyzing its
sensing strategy in reaction to the probing signals. Similar
topics also arise in counter-adversarial scenarios [4]. However,

1 Yibei Li and Lihua Xie are with School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore. E-mail: {yibei.li,
elhxie}@ntu.edu.sg.

2 Xiaoming Hu is with Division of Optimization and Systems Theory,
Department of Mathematics, KTH Royal Institute of Technology, Sweden.
E-mail: hu@kth.se.

3 Bo Wahlberg is with Division of Decision and Control Systems, School
of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, Sweden. E-mail: bo@kth.se.

there are only limited results on continuous state space models.
An inverse filter is designed in [5] to estimate the filter’s
updates of a linear Gaussian model. For the specific issue of
reconstructing transition kernels, the single-output system is
studied in [8]. In our early work [9], the unknown parameters
and signals in an observed filter are reconstructed by solving
several inverse problems on multiple-output systems that are
driven by independent stochastic processes.

In this paper, we further study general multiple-output
systems in continuous state spaces, where the process and
measurement noises may be correlated. Such phenomenon
is observed in numerous applications such as multisensor
systems [10] and motion estimation of moving targets with
onboard sensors [2]. For example, in an aircraft’s navigation
system, random gusts of wind will influence both the aircraft
dynamics and wind speed measured by an anemometer, thus
leading to cross-correlation in process and observation noises.
However, by allowing a cross-term in the covariance matrix,
additional degrees of freedom are introduced in the inverse
problem, which leads to further difficulties in analyzing its
well-posedness and reconstructing the unknown parameters.
Moreover, in many applications such as nano-satellites and
portable devices, instead of updating the Kalman gains online,
a predetermined constant gain is usually preferred due to
the limited onboard computational power [11], [12]. This
is no exception for the case with correlated noises. As
for the corresponding inverse problem, different from the
standard optimal filter, its well-posedness can no longer
be guaranteed. How to parameterize the solution space and
design a well-defined estimator remains challenging. Among
various choices of the constant gain, in this paper we study
the case in which the steady-state Kalman gain is used.

For the specific inverse filtering problem, we aim to
reconstruct the unknown covariance in a filtering-based agent
from noisy observations of its posterior beliefs. Regarding the
inverse problem, there exist a number of fundamental issues
that are widely acknowledged in the literature. In this paper,
several of such challenges, namely, the ill-posedness and
lack of guaranteed performances for data-driven algorithms,
are addressed for both the optimal filter and the Steady-
State Kalman Filter (SSKF) with correlated noises. The main
contributions of this paper include:

1) A novel duality-based formulation is proposed to
address the inverse Kalman filtering problem. An equiv-
alent well-posed inverse optimal control problem is
solved by designing a sequence of empirical estimators
with asymptotic convergence.

2) Ill-posedness of the inverse SSKF is shown. The
structure of the solution space is studied and an analytic
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expression is derived for each equivalence set.
3) A well-defined canonical class is designed for the

SSKF model, which can be uniquely identified by a
statistically consistent estimator.

Notations: Denote ei as the i-th standard basis vector of Rn.
Let Tr(·) be the trace of a square matrix and ⊗ denote the
Kronecker product. Denote col{x1, ..., xn} = [xT1 , ..., x

T
n]

T

as a stacked column vector. For a block matrix A, denote
[A]i as the i-th block column of A. Let Sn+ and Sn++ denote
the set of n× n positive semi-definite matrices and positive
definite matrices, respectively.

II. KALMAN FILTERING AND ITS INVERSE PROBLEMS

A. Kalman Filtering and Duality Principle
Consider a discrete-time linear time-invariant system

xk+1 = Axk + wk,

yk = Cxk + vk,
(1)

where Cov[x0] = P0 ⪰ 0 is given and we can assume
E[x0] = 0 without loss of generality [9]. At each time instant,
the process noise wk and measurement noise vk are zero-
mean random vectors with a correlated covariance

Σ := Cov([wT
k , v

T
k ]

T) =

[
Q S
ST R

]
⪰ 0, ∀k ≥ 0, (2)

where Q ∈ Sn+, R ∈ Sm++, S ∈ Rn×m is allowed to be
non-zero, and the distributions of the random variables are
unknown. The random vectors x0, wt, and vs are assumed
to be mutually independent for any t ̸= s.

In this paper, we have the following standing assumption
on the system matrices.

Assumption 1. Assume that A is nonsingular, C has full row
rank and (C,A) is observable.

Given measurements Yk = col{y0, y1, · · · , yk}, the
Kalman filter provides an optimal linear estimate of xk+1 by

x̂k+1 = Ax̂k +Kk(yk − Cx̂k), x̂0 = 0, (3)

where Kk = (APkC
T + S)Γ−1

k , Γk = CPkC
T +R and Pk

is derived by the difference Riccati equation (DRE)

Pk+1=APkA
T−(APkC

T+S)Γ−1
k (CPkA

T+ST)+Q. (4)

The duality theorem [13, Ch.7] provides an alternative
representation of the Kalman iterates by

aTx̂t = −
t−1∑
k=0

yTk u
∗
k+1, (5)

where {u∗k}tk=1 is the optimal control to the LQR in (6) and
a is an arbitrary boundary condition of the dual system.

min
u

zT0 P0z0 +

t∑
k=1

(zTk Qzk + uTkRuk + 2zTk Suk)

s.t. zk = ATzk+1 + CTuk+1, zt = a.

(6)

One can show that the estimator obtained by (5) is
equivalent to the Kalman iterates [13]. Such duality in optimal
control and filtering will be further developed in the next part
to address the corresponding inverse problems.

B. Inverse Kalman Filtering

In this paper, we aim to reconstruct the unknown covariance
of an observed filtering system. Given the measurement
sequence of a known sensor, we consider general scenarios
where only noisy observations of the posterior estimates

x̃k = x̂k + νk,

are available, for example, due to quantization errors and
measurement errors. The zero-mean random vector νk is
assumed to be independent with x0, {wt}t≥0 and {vt}t≥0,
and has a bounded covariance.

Problem 1. Consider the stochastic system (1) with known
{A,C,R} and its Kalman filter on time interval [0, t]. Given
the measurement sequence {yk}t−1

k=0 and noisy observa-
tions on the posterior estimates {x̃k}tk=1 (without knowing
{Pk}tk=1), the goal is to recover the unknown parameters Q
and S in the covariance matrix.

Solving the above problem from the Kalman iterations (3)
and (4) directly is not easy. One key novelty of our work lies
in a duality-based formulation, where an equivalent inverse
optimal control problem is to be solved.

Problem 2. Consider the LQR in (6) with known system
matrices (A,C) and penalty matrix R. Given an implicit
observation equation (5) on the optimal solution where
{x̃k}tk=1 and {yk}t−1

k=0 are available, the goal is to reconstruct
the unknown penalty matrices Q and S in the cost function.

Different from the classic IOC problem where exact values
of the optimal solution {z∗k, u∗k}tk=1 are available, the key
challenge of Problem 2 lies in the implicit and nonlinear
observation equation (5). Its well-posedness and solvability
will be studied in the next section.

In this paper, we further study the inverse problem of
SSKF with a non-zero cross-covariance. Since the SSKF is a
sub-optimal filter, the duality principle no longer holds. In
that case, the posterior estimates are updated by

x̂k+1 = Ax̂k +K(yk − Cx̂k), x̂0 = 0, (7)

where K = (APCT +S)Γ−1, Γ =CPCT +R and P is the
unique stabilizing solution to the algebraic Riccati equation
(ARE)

P = APAT − (APCT + S)Γ−1(CPAT + ST) +Q. (8)

Problem 3. Suppose the system parameters {A,C,R} are
known. Given a SSKF on time interval [0, t], the goal is to
reconstruct the unknown covariance matrices Q and S from
noisy observations on the posterior estimates {x̃k}tk=1 and
the measurement sequence {yk}t−1

k=0.

III. DUALITY-BASED INVERSE KALMAN FILTERING

Following the duality-based formulation, the problem of
inverse Kalman filtering is addressed by solving the inverse
LQR in Problem 2. The identifiability and solvability of the
filtering model are studied. An empirical least squares esti-
mator is proposed that is shown to be statistically consistent.
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A. Identifiablity of the Inverse Filtering Model

The fundamental issue of well-posedness is first stud-
ied, namely, whether there exists a unique parameter that
characterizes the model underlying the observed dataset.
By formulating the inverse problem as a system identifi-
cation problem, its well-posedness is closely related to the
identifiability of the underlying model structure. For each
measurement Yk−1 driven by the random process ηk−1 =
col{x0, w0, · · · .wk−2, v0, · · · , vk−1}, the posterior updates
x̂k can be considered as the output of the filtering model

x̂k = Mk(Q,S)Yk−1, (9)

where Mk(Q,S) is defined by (3) and (4). The model struc-
ture Mk(Q,S) is said to be strictly globally identifiable [14]
if it is uniquely characterized by the unknown parameter
(Q,S) for any k ≥ 0.

Definition 1. For any k = 1, · · · , t, the model structure
Mk(Q,S) : Rkm → Rn is a 1× k block matrix, where the
i-th block column takes the form

[Mk(Q,S)]i =
( k−1∏

j=i

(A−KjC)
)
Ki−1, (10)

for i = 1, · · · , k − 1 and [Mk(Q,S)]k = Kk−1.

We look into more details on the Kalman gains.

Theorem 1. Under Assumption 1, suppose t ≥ n + 1.
Consider two covariance matrices Σ1,Σ2 ∈ J with given R.
Let {K1

k}
t−1
k=0 and {K2

k}
t−1
k=0 be the corresponding sequence

of Kalman gains, respectively. Then K1
k = K2

k for k =
0, · · · , t− 1 if and only if Σ1 = Σ2.

Proof. Sufficiency is straightforward and we show the neces-
sity as follows. Denote

Σ1 =

[
Q1 S1

ST
1 R

]
, Σ2 =

[
Q2 S2

ST
2 R

]
,

and let {P i
k}

t−1
k=0 with i = 1, 2 solve the corresponding DRE.

Rewriting Ki
k(CP

i
kC

T +R) = (AP i
kC

T + Si) gives

Ki
kR = (A−Ki

kC)P
i
kC

T + Si, i = 1, 2. (11)

Evaluating (11) at k = 0 together with P i
0 = P0 implies

S1 = S2. Based on Sylvester’s determinant theorem, one can
show that the closed-loop matrix A−Ki

kC is nonsingular if
A is nonsingular. Hence, K1

k = K2
k implies P 1

kC
T = P 2

kC
T

for any k = 0, · · · , t− 1. Substituting it into the DRE yields{
∆PkC

T = 0,

A∆PkA
T −∆Pk+1 +∆Q = 0,

(12)

where ∆Pk = P 1
k −P 2

k and ∆Q = Q1−Q2. Using ∆P0 = 0
and applying recursions to (12) for k = 0, · · · , n then gives

∆Q
[
CT ATCT · · · (An−1)TCT

]
= 0. (13)

Thus ∆Q = 0 if (C,A) is observable, namely, Σ1 = Σ2.

Proposition 1. Under Assumption 1, suppose t ≥ n + 1.
The model structure in (10) is strictly globally identifiable,
namely, for any (Q,S) ∈ Sn+ × Rn×m,

Mk(Q,S) = Mk(Q̄, S̄), k = 0, · · · , t− 1,

implies (Q,S) = (Q̄, S̄).

Proof. Based on the structure of Mk(Q,S) in (10), the claim
follows directly from Theorem 1. Details are omitted.

B. Design of Consistent Estimators

With a strictly globally identifiable model structure, it is
then possible to develop data-driven algorithms to uniquely
reconstruct the unknown parameter, where a condition of
persistent excitation is required on the random process ηk.

Assumption 2. Denote Yk|ηk as the random variable driven
by ηk according to the dynamics (1). For any k ≥ 1 and ξ ∈
R(k+1)m, there exists some β(ξ) ̸= 0 such that P(Yk|ηk ∈
Bϵ(βξ)) > 0,∀ϵ > 0, where Bϵ(βξ) is the open ϵ-ball
centered at βξ.

For brevity, in the sequel we identify each parameter pair
(Q,S) with Σ as in (2), where R is given. Let {zk}t−1

k=0 be
the optimal state sequence to (6), then there exists {λk}tk=0

such that the Pontryagin’s Maximum Principle (PMP) is
satisfied [15], which can be rewritten in the compact form
E −F

. . . . . .
E −F

F̃ Ẽ


︸ ︷︷ ︸

F(Σ)

 ψ0

...
ψt−1


︸ ︷︷ ︸

Ψ

=


0
...
0

AT − CTR−1ST

0


︸ ︷︷ ︸

H (Σ)

zt,

(14)
where ψk = [zTk , λ

T
k ]

T and

E =

[
I CTR−1C
0 A− SR−1C

]
, F =

[
AT − CTR−1ST 0
SR−1ST −Q I

]
,

Ẽ =

[
I CTR−1C
0 0

]
, F̃ =

[
0 0
P0 −I

]
.

Based on Bellman’s principle of optimality [16], the duality-
based formulation (5) can also be evaluated at any time instant
in the interval [0, t]. Substituting the PMP further gives

zk
Tx̂k=−

k−1∑
i=0

yTi u
∗
i+1=

k−1∑
i=0

(zTi+1SR
−1yi + λTi C

TR−1yi),

for k = 1, . . . , t. We consider n optimal trajectories corre-
sponding to linearly independent terminal states zit = ei,
where the superscript “i” is used to distinguish related
quantities for the LQR with terminal constraint zit. Taking
into account all the time instants for the LQRs then yields

Z(Σ, k)x̂k =
[
Z(Σ, 1) · · · Z(Σ, k)

]
(Ik ⊗ (SR−1))Yk−1

+ Λ(Σ, k)C̄Yk−1,
(15)
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where k = 1, 2, · · · , t, C̄ = Ik ⊗ (CTR−1) and

Z(Σ, k) =

(z
1
k)

T

...
(znk )

T

, Λ(Σ, k) =

 λ10 · · · λn0
...

...
λ1k−1 · · · λnk−1


T

.

By minimizing the residual of (15), a least squares estimator
of the covariance matrix is designed for Problem 2 via

min
Σ,{Ψi}n

i=1

L(Σ) = Eη,ν [
1

t

t∑
k=1

∥r(Σ, k;Y |η, ν)∥2]

s.t. F (Σ)
[
Ψ1 · · · Ψn

]
= H (Σ)

Q ∈ Sn+, ∥Q∥ ≤ α1, ∥S∥ ≤ α2

(16)

where we assume that the true value of (Q,S) is contained
in a compact set (with known α1 and α2) to avoid ill-
conditioning, and the residual function is defined as

r(Σ, k;Y |η, ν) = x̃k − Z(Σ, k)−1Λ(Σ, k)C̄Yk−1

−Z(Σ, k)−1
[
Z(Σ, 1) · · · Z(Σ, k)

]
(Ik ⊗ (SR−1))Yk−1.

As the PMP provides a necessary and sufficient condition
for the optimal solution to an LQR, F (Σ) must be nonsingu-
lar for any Σ. For brevity, we denote the cost in (16) only as
a function of Σ, where {Ψi}ni=1 can be uniquely determined
by the first constraint for each candidate Σ.

Without prior knowledge on the distributions of η and
ν, in practice L(Σ) can only be computed by Monte Carlo
approximations. An empirical estimator is further designed,
whose asymptotic convergence is guaranteed.

Theorem 2. Let Σ̄ (with Q̄ and S̄) be the true covariance
matrix based on which the observations {x̃i1:t, Y i

t−1}Ni=1 are
generated. Suppose t ≥ n+1 and Σ∗

N is the local minimizer
to the following least squares estimation problem,

Σ∗
N = argmin

Σ

1

tN

N∑
i=1

t∑
k=1

∥∥r(Σ, k;Y i|ηi, νi)
∥∥2

s.t. Q ∈ Sn+, ∥Q∥ ≤ α1, ∥S∥ ≤ α2,

(17)

where Ψ1, · · · ,Ψn in r(Σ, k;Y i|ηi, νi) are computed via
(14) as a function of Σ. Then the least squares estimator is
statistically consistent, namely, Σ∗

N

w.p.1−→ Σ̄ as N → ∞.

Proof. See Appendix A.

IV. IDENTIFICATION OF THE CANONICAL CLASS IN
INVERSE SSKFS

In this section, the inverse SSKF in Problem 3 is studied.
By showing the ill-posedness of such a problem, a canonical
class of the covariance matrix is constructed, based on which
a well-posed inverse problem is solved instead.

In the sequel, we assume that the covariance matrix lies in
the parameter space of (18). Here the detectability condition
is widely used to guarantee the stability of Kalman filters and
the existence of SSKF [17], namely, the closed-loop matrix
A+ = A−KC is stable.

J =
{
Σ =

[
Q S
ST R

]
: Q ⪰ 0, Q− SR−1ST ⪰ 0

(Ã, Q̃
1
2 ) detectable

}
,

(18)

where Ã = AT − CTR−1ST and Q̃ = Q− SR−1ST.
Firstly, the equivalence of covariance matrices is studied.

Definition 2. Two covariance matrices Σ1,Σ2 ∈ J are
defined as equivalent (denoted by Σ1 ∼ Σ2) if the same
steady-state Kalman gain K can be generated. In another
word, for any given sensor measurements, the same posterior
estimates in (7) are obtained.

In the following, we will show that the problem of
recovering (Q,S) is ill-posed, where the equivalence set
of Σ always consists of nonunique elements.

Proposition 2. For any Σ ∈ J, let K be the corresponding
steady-state Kalman gain. Then the following matrix

Σ̄ =

[
KRKT KR
RKT R

]
, (19)

is equivalent to Σ, namely, Σ̄ ∈ J and Σ̄ ∼ Σ.

Proof. Denote Q̄ = KRKT and S̄ = KR. It is obvious
that Q̄ ⪰ 0 and Q̄ − S̄R−1S̄T = 0 ⪰ 0. As Ã = AT −
CTR−1S̄T = AT − CTKT = AT

+ is stable, it holds that
(Ã, Q̃

1
2 ) is detectable and Σ̄ ∈ J. Let P̄ be the unique positive

semi-definite solution to the ARE associated with Σ̄, i.e.,

P̄ = AP̄+A
T − (AP̄CT + S̄)Γ̄−1(CP̄AT + S̄T) + Q̄,

= A+P̄A
T
+ −A+P̄C

T(R+ CP̄CT)−1CP̄AT
+.

Since A+ is stable, P̄ = 0 is the unique stabilizing solution,
which yields the corresponding steady-state Kalman gain as
K̄ = (AP̄CT + S̄)(CP̄CT +R)−1 = K, thus Σ̄ ∼ Σ.

To formulate a well-defined inverse problem, it is neces-
sary to identify each equivalence class of solutions with a
unique representative covariance matrix. Inspired by results
on continuous-time IOC [18], one possible rationale is to
construct a canonical class of Σ that is parametrized by K:

Jc=
{
ΣK :=

[
KRKT KR
RKT R

]
: A−KC is stable

}
. (20)

Proposition 2 indicates that each covariance matrix
pair (Q,S) can be parametrized by a canonical form
(KRKT,KR) as in (20). By identifying parameters in the
canonical class Jc instead of in the original parameter space
J, a well-posed inverse filtering problem can be formulated.

Problem 4. Consider a Kalman filter with covariance matrix
Σ. Given sensor measurements Yt−1 and the corresponding
noisy observations of the posterior estimates, the task is to
reconstruct a canonical form ΣK ∈ Jc such that ΣK ∼ Σ.

We further consider the space of stabilizing K as the
parameter space and re-define the corresponding identification
model Mt(K), where the covariance matrix is constructed
according to (20). In the sequel we will show that the
parameter space in (18) can be partitioned into disjoint
equivalence sets, each of which characterizes a filtering model
and can be identified with a unique canonical form in Jc.
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Proposition 3. For any Σ ∈ J, there exists a unique canonical
form ΣK ∈ Jc such that Σ ∼ ΣK . Furthermore, the model
structure Mt(K) is strictly globally identifiable.

Proof. The existence and uniqueness of the canonical form
follow by Proposition 2. Strictly global identifiability of the
model structure can be obtained by observing that Mk(K)
has the same structure as (10) by replacing Ki with K.

Next, we further look into more details on the equivalence
sets in J.

Theorem 3. For each canonical form ΣK ∈ Jc with
parameter K. Denote J (K) as the equivalence set in J that
is identified by ΣK , namely, J (K) = {Σ ∈ J : Σ ∼ ΣK}.
For any ∆P ∈ Sn+, denote

QK(∆P ) = KRKT +∆P −A∆PAT +KC∆PCTKT,

SK(∆P ) = KR− (A−KC)∆PCT.

Then the following statements hold:

1) J (K) is equivalent to

J (K) =
{
Σ(∆P ) =

[
QK(∆P ) SK(∆P )
SK(∆P )T R

]
:

∆P ∈ Sn+ satisfies Σ(∆P ) ∈ J
}
.

(21)

2) J =
⋃

K:ΣK∈Jc J (K) and Jc contains exactly one
element in each equivalence set.

Proof. See Appendix B.

Similar to the results in Section III-B, Problem 4 can also
be formulated as a system identification problem. A sequence
of consistent least squares estimators can be designed, where
the requirement on the number of observations is relaxed.

Proposition 4. Let Σ̄ be the true covariance matrix of an
SSKF, based on which the observations {x̃i1:t, Y i

t−1}Ni=1 are
generated under Assumption 2. Denote K̄ as the parameter
matrix in the canonical form such that ΣK̄ ∼ Σ̄. Suppose
K∗

N is the local minimizer to the following least squares
estimation problem,

K∗
N = argmin

K

1

tN

N∑
i=1

t∑
k=1

∥∥x̃k −Mk(K)Y i
k−1

∥∥2
s.t. ρ(A−KC) ≤ 1, ∥K∥ ≤ α3,

(22)

where α3 is given. Then the empirical estimate of the
canonical form is obtained as[

K∗
NR(K

∗
N )T K∗

NR
R(K∗

N )T R

]
⪰ 0,

whose statistical consistency is guaranteed by K∗
N

w.p.1−→ K̄
as N → ∞.

Proof. Following Theorem 2, the statement can be proved in
a similar way, which is omitted due to page limitation.

101 102 103

N

10-2

10-1

a
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

empirical error

log-linear regression

Fig. 1: Convergence of relative errors.

V. NUMERICAL SIMULATIONS

In this section, numerical simulations are provided to
demonstrate the performances of the proposed empirical
estimator in (17). Results in Section IV can be tested in a
similar way and are omitted due to page limitation. Random
system matrices are generated as follows

A =

[
1 0.1

−0.1034 1.0492

]
, P0 =

[
0.0070 0

0 0.1593

]
,

C =
[
1.1182 1.5792

]
.

Asymptotic convergence of the proposed estimator is shown
via Monte Carlo studies. Let N = 20, 40, 100, 200, 500, 1000,
respectively. For each choice of N , independent experiments
are carried out on time interval [0, 30] for 200 times. In
each experiment, the true parameter Σ̄ is chosen randomly
with α1 = α2 = 5, and the covariances of vk and νk are
chosen as random positive definite matrices with a spectral
radius less than 1. Driven by zero-mean random processes
x0, wk, vk, and νk, N posterior sequences of the Kalman
filter are generated. The empirical estimate Σ∗

N is computed
by solving (17), and the average relative error is shown by
the log–log plot in Fig. 1. In all the scenarios, the unknown
covariance matrix is reconstructed with rather small relative
errors. A linear regression model is adopted to fit the relative
errors in the logarithmic scale. We observe that

∥∥Σ∗
N − Σ̄

∥∥ ≈
op(N

−0.51), which is consistent with many least squares
estimators where

√
N

∥∥Σ∗
N − Σ̄

∥∥ = op(1).

VI. CONCLUSION

In this paper, the inverse Kalman filtering problem is
studied based on a novel duality-based approach, where
correlated noises are involved. The unknown covariance
matrix is reconstructed by solving a sequence of well-
posed least squares estimation problems, whose solutions
converge almost surely to the true parameter. Furthermore,
a canonical class underlying the filtering model is proposed
for sub-optimal filters with the steady-state Kalman gain.
An empirical estimator is also designed that is statistically
consistent. Finally, the performances of the proposed methods
are demonstrated by Monte Carlo simulations.
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APPENDIX

A. Proof of Theorem 2
Firstly, we show that Σ̄ is the unique minimizer to L(Σ).

Note that the risk function can be rewritten as

L(Σ) = 1

t

t∑
k=1

Eη[∥r̃(Σ, k;Y |η)∥2]︸ ︷︷ ︸
V(Σ)

+
1

t

t∑
k=1

Eν [∥νk∥2],

where r̃(Σ, k;Y |η) = r(Σ, k;Y |η, ν)− νk. Since Eν [∥νk∥2]
is independent of Σ, it suffices to show that Σ̄ is the unique
minimizer to V(Σ). By (15) we know that V(Σ̄) = 0. Let Σ
(with parameters Q and S) and {Ψi}ni=1 be arbitrary matrices
satisfying the constraints in (16). It indicates that Ψi is the
adjoint solution to (6) with penalty matrices (Q,S) and
terminal state ei, namely,

zji = ΦΣ(t, i)
Tzjt , j = 1, · · · , n and i = 0, · · · , t,

where ΦΣ(t + 1, s) = (A − Kt(Σ)C)ΦΣ(t, s) for any t, s,
and ΦΣ(t, t) = I . Under Assumption 2, Proposition 1 implies
that there exists some time instant t′ and Yt′−1 such that

r̃(Σ, t′;Y |η) =
[
∆Φ(Σ, 1) · · · ∆Φ(Σ, t′)

]
Yt′−1 ̸= 0,

where ∆Φ(Σ, j) = ΦΣ̄(t
′, j)Kj−1(Σ̄) − ΦΣ(t

′, j)Kj−1(Σ)
for j = 1, 2, · · · , t′. Moreover, r̃(Σ, t′;Y |η) ̸= 0 indicates
that there must exist some t̃ ≤ t′ such that ∆Φ(Σ, t̃) ̸= 0.
Recall that R ≻ 0, we then have

V(Σ) ≥ 1

t
Eη[∥r̃(Σ, t′;Y |η)∥2],

≥ 1

t
Tr

(
∆Φ(Σ, t̃)R∆Φ(Σ, t̃)T

)
> 0.

Hence, Σ̄ is the unique minimizer to V(Σ). Following our
early work [9], we can also show that the sample mean of
f(Σ;Y |η, ν) = 1

t

∑t
k=1 ∥r(Σ, k;Y |η, ν)∥2 converges almost

surely to its expectation, which happens uniformly at Σ within
the considered compact parameter space. Together with the
fact that Σ̄ is the unique minimizer to L(Σ), consistency of
Σ∗

N is guaranteed [19].

B. Proof of Theorem 3
To begin with, we show the analytic expression of J (K)

in (21). Firstly we prove the necessity. Recall that ΣK is
defined by the triple (Q̄, R, S̄) := (KRKT, R,KR) and
P̄ = 0 is the unique stabilizing solution to ARE. Let Σ be an
arbitrary element in J (K) defined by matrix triple (Q,R, S)
and ∆P be the corresponding positive semi-definite solution
to ARE. By Proposition 3, Σ ∼ ΣK if and only if the same
steady-state Kalman gain can be obtained, namely,

K = (A∆PCT + S)(C∆PCT +R)−1,

=⇒ KR = (A−KC)∆PCT + S =⇒ S = SK(∆P ).

Denote ∆Q := Q − Q̄ and ∆S := SK(∆P ) − S̄.
Substituting ∆S = −(A−KC)∆PCT, the ARE associated
with Σ can be rewritten as

∆P = A∆PAT − (A∆PCT +∆S)KT +∆Q,

= A∆PAT −KC∆PCTKT +∆Q,

which implies Q = QK(∆P ). In addition, the conditions in
(21) are naturally satisfied since J ∈ J.

Next, the sufficiency will be proved. For any ∆P satisfying
the condition in (21), straightforward computations show that
∆P is the unique positive semi-definite solution to the ARE
associated with weighting matrix (QK(∆P ), R, SK(∆P )).
Substituting the expression of SK(∆P ), the corresponding
Kalman gain is computed by

K(∆P ) = (A∆PCT + SK(∆P ))(C∆PCT +R)−1 = K,

which implies that Σ ∼ ΣK and the first statement is proved.
Moreover, the second statement follows directly from

Proposition 3.
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