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Abstract— This study introduces a method to obtain a neigh-
boring extremal optimal control (NEOC) solution for a broad
class of nonlinear systems with nonquadratic performance
indices by investigating the variation to a known closed-loop
optimal control law caused by small, known variations in
the system parameters or in the performance index. The
NEOC solution can formally be obtained by solving a linear
partial differential equation similar to those arising in an
iterative solution procedure for a nonlinear Hamilton-Jacobi
equation. Motivated by numerical procedures for solving such
an equation, we also propose a numerical algorithm based on
the Galerkin algorithm that uses basis functions to solve the
underlying Hamilton-Jacobi equation. This approach allows the
determination of the minimum performance index as a function
of both the system state and parameters and extends to allow
the determination of the adjustment to an optimal control law
given a small adjustment of parameters in the system or the
performance index, effectively by computing the derivative of
the law with respect to those parameters. The validity of the
claims and theory is supported by numerical simulations.

I. INTRODUCTION

Neighboring extremal optimal control (NEOC) is a term
referring to a systematic process for modifying an optimal
control strategy to accommodate small perturbations in pa-
rameters. Such parameters may be in the system itself or in
the performance index. Initially, they were typically associ-
ated with the initial or terminal conditions in the original
optimal control problem. See in particular Breakwell et al.’s
work in 1963, marking the initial contribution to the field of
neighboring-extremal optimization techniques [1]. The gen-
eral problem is to develop a neighboring-optimal feedback
control scheme, meaning an adjustment to an already known
optimal control, for an open-loop optimal control problem in
which the state variables are subject to initial and possibly
terminal constraints. The prevailing method has been to use
the second variation (linear-quadratic) theory to minimize
the second variation of the performance index; it requires
linearization of the system about a nominal trajectory and
a ‘quadraticization’ of the performance index. To this end,
a Riccati transformation is often employed, along with a
backward sweep method, to calculate linear feedback gains
that can handle state variations along the original optimal
control path [1]–[3]. In later work, [4], an extension of
the above ideas was used to address dynamic optimization
problems with variation in the system equation’s parameters
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or the performance index, in contrast to variable initial or
terminal states. This paper used a modified backward sweep
method to obtain linear feedback laws defining the control
variation as a function of the parameter variation, which had
to be small to secure the linearity of the laws. The problem
context gave rise to the NEOC terminology.

Previous research in this field has largely focused on
scenarios where the base optimal control problem generates
an open-loop optimal control (even when the adjustment
due to variation might be in closed-loop form). Closed-loop
feedback however offers a significant advantage over open-
loop control in dealing with the inevitable disturbances that
can compromise the optimal performance of the system. In
this work, we examine what might happen given a small
parameter variation when the original optimal control prob-
lem has a solution characterized using the Hamilton-Jacobi
equation for the optimal performance, and an associated
closed-loop feedback law for the optimal control, rather
than an open-loop time function dependent on the initial
state. We aim to provide a theoretical tool for determining a
change in the closed-loop control law resulting from a small
perturbation in the parameters. To the best of the authors’
knowledge, this is the first investigation in this area and is
applicable to a wide variety of problems.

The article is divided into 7 sections. Section II aims
to provide an overview of the problem formulation, by
explaining the problem and high-level aspects of the solution
using a Hamilton-Jacobi equation and optimal control law
formula associated with the original unperturbed problem.
Because the solution to the problem of interest can be
interpreted as a type of variation on a single iteration in one
particular approach to solving a Hamilton-Jacobi equation,
the solution of the unperturbed problem and its solution
via this approach is presented in Section III, while Section
IV covers the perturbed problem, with the previous section
providing some kind of a template for the solution to the
problem of interest. To this point, the solutions are all
analytic or contained in formulas such as integrals over a
semi-infinite time interval of trajectories of a known system.
An actual numerical approach to solving the problem of
interest using the Galerkin algorithm (which has earlier been
widely used for Hamilton-Jacobi solution, see e.g. [5]) is
detailed in Section V, with illustrative examples provided in
Section VI. Finally, the conclusions are provided in Section
VII.

Notations: We use the notation Rn and Rn×p to denote
the set of all n × 1 real vectors and n × p real matrices,
respectively. The transpose of a matrix or vector is denoted
by (·)⊤. The squared norm of a vector v with respect to
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metric R is denoted by ∥v∥2R, which is equal to v⊤Rv.
The gradient of a continuous differentiable scalar function
h̄(·) with respect to vector x ∈ Rn is defined as a column
vector denoted by ∇xh̄(·) ∈ Rn, while the derivative of a
continuous differentiable vector function h(·) ∈ Rn, with
respect to vector α ∈ Rq is defined using a Jacobian matrix
Jh,α(·) = [∂h(·)/∂α] ∈ Rn×q whose element in the ith row
and jth column is ∂h(·)i/∂αj . We use the notation {(·)l}vec
to denote a column vector whose lth entry is given by (·)l,
whereas we use {(·)l}mat to denote a matrix whose lth
column is given by vector (·)l. Lastly, for two any functions
ω1, ω2, assumed square-integrable on given set Ω, we define
the inner product as

⟨ω1, ω2⟩Ω =

∫
Ω

ω1(x)ω2(x)dx. (1)

II. PROBLEM FORMULATION

We set up our problem similar to that of [6], but with
a dependence on a set of parameters, call it α ∈ Rq .
We assume that perturbations in α are bounded. With this
parameter dependence, the underlying control affine system
dynamics is given as

ẋ(t, α) = f(x, α) + g(x, α)u x(0, α) = x0(α). (2)

where x ∈ Ω ⊂ Rn, f(x, α) : Ω × Rq → Rn, g(x, α) :
Ω × Rq → Rn×p, and u(x, α) : Ω × Rq → Rp. We assume
f(·) and g(·) are smooth, Lipschitz continuous on Ω that
contains origin as an interior point, and the equation has well-
defined solutions in Ω for any closed-loop feedback control
law u(x, α) of interest. We also assume f(0, α) = 0 for
any α ∈ Rq and that the system is completely controllable,
in the sense that given any (x(t0, α), t0) and (x(t1, α), t1)
there exists a smooth control u defined on [t0, t1] which
will move the first state to the second. We assume that the
set Ω is compact, and we restrict attention to trajectories
(and associated control laws) which ensure it is invariant,
i.e. x(0, α) ∈ Ω means x(t, α) ∈ Ω for all t.

The performance index we consider, and we are interested
in optimization for all initial conditions x(0, α) ∈ Ω through
a feedback law, is

V (x0, u(·), α) = lim
T→∞

∫ T

0

[∥u(x(t, α), α)∥2R +m(x(t, α), α)]dt

s.t. x(T, α) = 0,
(3)

where m(x, α) is a smooth, positive definite1, radially in-
creasing function and R is a positive definite matrix. As
shown in [5], it is not enough for a system with a control law
u to be stabilizing for the integral (3) to be finite. Therefore,
it is necessary to introduce the concept of an admissible
control law.

Definition 2.1: A control law u : Ω × Rq → Rm is
considered admissible with respect to the performance index
(3) for a given system dynamics (2) if it satisfies the

1Some relaxation of this assumption to permit some non-negative definite
functions is possible, but for convenience in the subsequent analysis, we stay
with the positive definiteness assumption.

following conditions: it is continuous on Ω, u(0, α) = 0,
it stabilizes the system (2), ensuring that x(t, α) ∈ Ω ∀t,
and it results in a finite integral in (3) for all x(0, α) in Ω.

We define the minimum performance index ϕ as the
minimum of the cost function at optimal u as2

ϕ(x, α) = min
u
V (x, u(·), α). (4)

From the (steady-state) Hamilton-Jacobi equation [7], for any
given α, we know that ϕ(x, α) satisfies

[∇xϕ(x, α)]
⊤f(x, α) +m(x, α)

−1

4
[∇xϕ(x, α)]

⊤g(x, α)R−1g(x, α)⊤∇xϕ(x, α) = 0,
(5)

and the optimal control law, which is provably stabilizing3

the system (2), i.e. ensures x(t, α) → 0 when t → ∞, is
given by

u∗ = −1

2
R−1g(x, α)⊤∇xϕ(x, α). (6)

Suppose that the above calculations are done for a specific
value, α = ᾱ say, of α, giving us unperturbed closed-loop
feedback. Our task is to say what happens to the optimal
performance index ϕ and the control law (6) when α is
changed to ᾱ+ δα for some small known δα. The problem
can be regarded as one of establishing what the derivatives
of ϕ and the optimal control law function are with respect
to α.

III. UNPERTURBED PROBLEM

In this section, we begin by recalling one approach to
solving the unperturbed problem where the parameter α is
set to a fixed constant ᾱ. Since the parameter is fixed, we
drop the α dependence for this section.

Approximate solutions of the Hamilton-Jacobi equation
can also be obtained, as suggested in [8], by solving an
iterative sequence of simpler equations, which in the limit
yield the actual solution. (The calculation at a single iteration
with the simpler equation serves to inspire our approach
to solving the closed-loop NEOC problem.) In a broader
sense, such approaches are known as policy iterations [9],
[10]. The word ‘policy’ refers to the control law in this
case. The architecture of such algorithms involves policy
evaluation and policy improvement. Starting with admissible
control input, in each iteration, one computes the associated
performance index corresponding to the current control law
(policy evaluation) and subsequently updates the control law
based on the performance index (policy improvement). In
greater detail and for the particular form of system and
performance index that we are working with, to start the
iteration, one supposes the existence of an admissible (but
not necessarily optimal) control u0 = − 1

2R
−1g⊤∇ϕ0(x)

for some ϕ0(x). Subsequently, the iterative process ensures

2We assume the existence condition to hold true, meaning that there exists
a control law u∗ that achieves the minimum of the performance index.

3By considering ϕ(x) as a Lyapunov function, one can demonstrate
that the optimal control obtained from the Hamilton-Jacobi equation is
stabilizing.
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that at step i, an admissible control law, in the form of
ui = − 1

2g
⊤∇ϕi(x), is known and obtains the next iterate in

a predefined manner. (The linear-quadratic version of this ap-
proach is actually known as the Kleinman algorithm, which
replaces the solution of a time-invariant Riccati equation by
the solution of a sequence of linear matrix equations, [11]).
More specifically, the algorithm defines ϕi+1(x) by the linear
partial differential equation

[∇xϕi+1(x)]
⊤[f(x)− 1

2
g(x)R−1g(x)⊤∇xϕi(x)] =

−1

4
[∇xϕi(x)]

⊤g(x)R−1g(x)⊤∇xϕi(x)−m(x)
(7)

Because of the admissibility assumption, this is equivalent
to setting

ϕi+1(x) =

∫ ∞

0

[
1

4
[∇yϕi(y)]

⊤g(y)R−1g(y)⊤∇yϕi(y)+m(y)

]
dt

(8)
where the integration is performed along the trajectory with
y(·) defined by

ẏ = f(y)− 1

2
g(y)R−1g(y)⊤∇yϕi(y) yi(0) = x. (9)

Evidently, ϕi+1(x) represents the value of the perfor-
mance index when the closed-loop control ui(y) =
− 1

2R
−1g⊤(y)∇yϕi(y) is used and the initial condition is

y(0) = x.
Additional insight is obtained by considering the change

from ∇xϕi(x) to ∇xϕi+1(x). For this purpose, define

ηi(x) = [∇xϕi(x)]
⊤f(x) +m(x)− 1

4

∥∥R−1g(x)⊤∇xϕi(x)
∥∥2
R

(10)
The function ηi can be interpreted as an error associated with
∇xϕi being an approximate rather than exact solution of the
steady state Hamilton-Jacobi equation. One straightforwardly
obtains

[∇xϕi+1(x)−∇xϕi(x)]
⊤[f(x)− 1

2
g(x)R−1g(x)⊤∇xϕi(x)]

= −ηi(x) (11)

which is equivalent to

ϕi+1(x)− ϕi(x) =

∫ ∞

0

ηi(y(s))ds (12)

with y(·) as in (9) above. It is possible to show that given
an admissible control input as an initial guess, the recursive
algorithm outlined in (7) maintains the admissible behavior
while also ensuring a monotonically decreasing minimum
performance index.

IV. PERTURBATION PROBLEM

The results obtained in section III give us a nominal
closed-loop optimal feedback law, and they rely on re-
peatedly solving equations like (7), which has a solution
obtainable using (8) and (9). For the perturbation problem, a
single calculation parallel to (7), (8), and (9) can be used. To

study the consequence of small perturbation in the parameter,
we define a vector function ξ(x, α) ∈ Rq by

ξ(x, α) = ∇αϕ(x, α), (13)

which means also that

Jξ,x(x, α) = J∇αϕ,x(x, α). (14)

with the Jacobian matrix Jξ,x(x, α) = [∂ξ(x, α)/∂x] ∈
Rq×n.

Now simple differentiation of the parameterized steady-
state Hamilton-Jacobi equation (5) yields

Jξ,x(x, α)

[
f(x, α)− 1

2
g(x, α)R−1g(x, α)⊤∇xϕ(x, α)

]
= −Jf,α(x, α)⊤∇xϕ(x, α)−∇αm(x, α)

+
1

2

{
∇xϕ(x, α)

⊤ ∂g(x, α)

∂αl
R−1g(x, α)⊤∇xϕ(x, α)

}
vec

,

(15)

where {(·)}vec denotes a column vector whose lth entry is
given by (·) ∀ l = 1, . . . , q. This means that formally there
holds

ξ(x, α) =

∫ ∞

0

(
Jf,α(y, α)

⊤∇yϕ(y, α) +∇αm(y, α)

−1

2

{
∇yϕ(y, α)

⊤ ∂g(y, α)

∂αl
R−1g(y, α)⊤∇yϕ(y, α)

}
vec

)
dt,

(16)

with y(·) defined by

ẏ = f(y, α)−1

2
g(y, α)R−1g(y, α)⊤∇yϕ(y, α); y(0, α) = x.

The change in optimum performance due to a small change
δα away from an initial value ᾱ is evidently given by
ξ(x, ᾱ)⊤δα and the change in optimal control law is given
by adding to the original feedback law the adjustment term

δu = −1

2
R−1

(
g(x, ᾱ)⊤Jξ,x(x, ᾱ)

⊤+{[
∂g(x, ᾱ)

∂αl

]⊤
∇xϕ(x, ᾱ)

}
mat

)
δα.

(17)

where {(·)}mat denote a matrix whose lth column is given
by (·) ∀ l = 1, . . . , q.

V. NUMERICAL ALGORITHM

Although we have a solution in the form of equation
(16) and (17) that allows us to determine the sensitivity
of the optimal performance index and optimal control law
to a parameter change, obtaining an analytical or numerical
solution can be challenging because it involves solving a
linear partial differential equation. Due to the resemblance
between the equations encountered in our problem and those
encountered during the iterative solution of the HJ equation,
we have employed a numerical approach commonly utilized
for solving HJ equations in our problem. Successful policy
iteration methods for optimal control problems have been
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implemented to solve HJ equations, including offline neural
networks [12], sequential actor-critic neural networks [13],
and online actor-critic algorithms [14]. In [5], researchers in-
troduced an iterative algorithm based on the Galerkin spectral
approximation method to solve the generalized Hamilton-
Jacobi-Bellman equation. This method offers a simple yet
powerful approach to obtain the performance index in a
functional form using basis functions. In this work, we
extend and implement the Galerkin spectral approximation
method to obtain the solution to the NEOC problem.

We explain first the original use of the method for an
iterative Hamilton-Jacobi equation solution. It is assumed
that in the iterative algorithm presented, the ith approximant
of the minimum performance index, denoted as ϕi(x, α), can
be represented as a sum of an infinite series of smoothly dif-
ferentiable linearly independent basis functions {ψj(x)}∞j=1

along with their respective coefficients {wij(α)}∞j=1 that
depend on the parameter α. We select the basis function such
that ϕi(x, α) is in the Hilbert space L2(Ω), ensuring square
integrable properties.4 To make the computation feasible, we
limit the summation of the infinite series to a finite number
of terms which allows us to approximate ϕi(x, α) to any
desired degree of precision, giving us

ϕi(x, α) ≈
N∑
j=1

wij(α)ψj(x).

= wi(α)
⊤Ψ(x),

(18)

where wi(α) = [wi1(α), ..., wiN (α)]⊤ ∈ RN and Ψ(x) =
[ψ1(x), ..., ψN (x)]⊤ ∈ RN .

The associated optimal control law approximation is

ui(x, α) = −1

2
R−1g(x, α)⊤JΨ,x(x)

⊤wi(α) (19)

where JΨ,x(x) = [∂Ψ(x)/∂x] ∈ RN×n.
The Galerkin projection method which we now describe

constitutes a variant of the earlier iterative procedure; more
precisely, assume that one has an expansion wi(α)

⊤Ψ(x)
after i steps as an approximation to the optimal performance
index; one uses it to define the associated optimal control
law approximation (19). Instead of then pursuing directly
the calculation of ϕi+1(x, α) as the associated performance
index, one determines (with different calculations) an ap-
proximation wi+1(α)

⊤Ψ(x) to the index, which through
appropriate choice of the coefficient vector wi+1(α) is a least
squares approximation over the whole set Ω to that index.
Since ϕi+1(x, α) in the normal iterative procedure is defined
by

∇xϕi+1(x)
⊤[f(x, α)+g(x, α)ui(x, α)] = −∥ui(x, α)∥2R−m(x, α)

this means that JΨ,x(x)
⊤wi+1(α) must be an approximate

solution of

wi+1(α)
⊤JΨ,x(x)[f(x, α) + g(x, α)ui(x, α)] (20)

≈ −∥ui(x, α∥2R −m(x, α)

4For more details refer [5].

The best least square approximate solution is obtained by
choosing the coefficient vector wi+1(α) to ensure that the
error between the left side and the right side is orthogonal
to the basis functions, i.e. for each j = 1, 2, . . . , N , there
holds〈
wi+1(α)

⊤JΨ,x(x)[f(x, α) + g(x, α)ui(x, α)], ψj(x)
〉
Ω

= −⟨∥ui(x, α∥2R +m(x, α), ψj(x)⟩Ω,

where the inner product is defined as per (1). There are N
linear equations in N unknowns, viz. the entries of wi+1(α).
It is established in [5] that the equation set is nonsingular,
so that wi+1(α) is well defined.

The algorithm’s convergence results as N → ∞ and i→
∞ are presented in [5]. In particular, one can assume that the
sequence of iterations for some sufficiently large but fixed N
and some α = ᾱ will converge in practical terms once the
iteration number i reaches a value k. Then we can re-write
the last equation as〈

wk(α)
⊤JΨ,x(x)f(x, α), ψj(x)

〉
Ω
+ ⟨m(x, α), ψj(x)⟩Ω

+
1

4

〈∥∥g(x, α)⊤JΨ,x(x)
⊤wk(α)

∥∥2
R
, ψj(x)

〉
Ω
= 0, (21)

for each j = 1, 2, . . . , N . These N scalar equations
will be the basis for determining the sensitivity of the
optimal performance index and associated control law
(or more precisely, their approximations wk(α)

⊤Ψ(x) and
− 1

2R
−1g(x, α)⊤JΨ,x(x)

⊤wk(α)) to variation in the param-
eter α. In particular, by utilizing a calculation akin to that of
(15), we differentiate equation (21) with respect to α ∈ Rq

to involve derivatives of the weighting coefficients with
respect to the parameters. The following equation for each
j = 1, 2, . . . , N , is to be understood as shorthand for q
scalar equations obtained by setting J(·),αī

in place of J(·),α
for each ī = 1, 2, . . . , q. The first term of (21) can be
differentiated as follows:〈

Jwk,α(α)
⊤JΨ,x(x)f(x, α), ψj(x)

〉
Ω

+
〈
Jf,α(x, α)

⊤JΨ,x(x)
⊤wk(α), ψj(x)

〉
Ω
.

For the second term of (21), we have

⟨∇αm(x, α), ψj(x)⟩Ω .

Lastly, the derivative of the third term of (21) requires the
formation of a tensor and can be simplified to

− 1

2

〈
Jwk,α(α)

⊤JΨ,x(x)gR
−1g⊤JΨ,x(x)

⊤wk(α), ψj

〉
Ω

− 1

2

{〈
wk(α)

⊤JΨ,x(x)
∂g

∂αl
R−1g⊤JΨ,x(x)

⊤wk(α), ψj

〉
Ω

}
vec

.

We observe that this differentiation of (21) yields a linear
equation set, and it can be solved for the entries of Jwk,α =
[∂wk(α)/∂α] ∈ RN×q . These linear equations are provably
solvable, as shown in Lemma 14 of [5].

The variation in optimal control law can be obtained using
(17) under small perturbation δα from a constant value ᾱ,
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which yields

δu = −1

2
R−1

(
g(x, ᾱ)⊤JΨ,x(x)

⊤Jwk,α(ᾱ)

+

{[
∂g(x, ᾱ)

∂αl

]⊤
JΨ,x(x)

⊤wk(α)

}
mat

)
δα.

(22)

VI. ILLUSTRATIVE EXAMPLES
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Fig. 1: Example 1- Comparison of the analytical and nu-
merical results for nominal, recalculated, and NEOC optimal
control law for δα = 0.2.

Example 6.1: First, we consider a general class of single-
input single-output (i.e. scalar state) systems used in [8] with
dynamics

ẋ(t, α) = f(x, α) + u

and a non-quadratic cost function-

V = lim
T→∞

∫ T

0

[u2(x(t), α) +m(x(t), α)]dt s.t. x(T, α) = 0,

where m is positive definite and radially increasing.5

In this case, the derivative ∇xϕ(x) is a scalar, and the
Hamilton Jacobi equation (5) is simply a quadratic equation
for ∇xϕ(x). One of the two solutions is easily seen to define
a stabilizing control law. In particular, we find that

∇xϕ∞(x, α) = 2f(x, α) + 2
√
f(x, α)2 +m(x, α),

and the optimal control law is given using u∞(x, α) =
− 1

2∇xϕ∞(x, α) as

u∞(x, α) = −f(x, α)−
√
f(x, α)2 +m(x, α).

This provides us with the analytical closed-loop optimal
control law, which is the function of the parameters. In
case of the presence of perturbation δα from the nominal
value ᾱ, the optimal solution can be obtained by evaluating
u∞(x, ᾱ+ δα).

5Our results are concerned with closed-loop laws, so we can simply regard
the initial state as fixed but arbitrary.

Using the NEOC approach, given that u∞(x, ᾱ) has al-
ready been calculated, in the presence of known perturbation
δα we add the adjustment term given by (17), which gives
us

δu∞(x, ᾱ, δα) = −
(
∂f

∂α
+

2 ∂f
∂α + ∂m

∂α

2
√
f(x, α)2 +m(x, α)

)∣∣∣∣
α=ᾱ

δα.

This provides the analytical NEOC solution for the pertur-
bation case as

uNEOC(x, ᾱ+ δα) = u∞(x, ᾱ) + δu∞(x, ᾱ, δα).

To assess the effectiveness of the numerical algorithm
outlined in Section V, we examine the performance of the
algorithm for specific functions f and m, where f is defined
as −αx and m is defined as (1 + α)x2 + x4 and the value
of α is centered at 1. The corresponding analytical solution
is given by

u∞(x, α) = αx− x
√

1 + α+ α2 + x2,

and the variation in the optimal control law around the
nominal value of α = ᾱ can be expressed as

δu∞(x, ᾱ, δα) =

(
x− (1 + 2ᾱ)x

2
√
1 + ᾱ+ ᾱ2 + x2

)
δα.

For the numerical algorithm, to approximate the minimum
performance index, we utilize the basis function given by

{ψj} = {x2, x4, x6, x8, x10}.

For both, the analytical and numerical approaches we com-
pare three optimal control laws: the nominal control law
which is obtained for α = ᾱ; the recalculated optimal control
law for the perturbed scenario where we re-run the complete
algorithm using α = ᾱ+ δα; and the NEOC law where the
nominal control law calculated for α = ᾱ is updated using
a single calculation. To numerically obtain the nominal and
recalculated control laws, we execute the Galerkin algorithm
for 100 iterations with an initial admissible control input
u0 = −5x. The results obtained for the current examples
are shown in Fig. 1 for δα = 0.2. The approximate
optimal control laws obtained using NEOC are found to
closely match the recalculated optimal control laws for both
analytical and numerical cases. In this case, the analytical and
numerical results cannot be visually distinguished because
we are dealing with a simple example. However, in general,
the accuracy of the results depends on the number of basis
functions and iterations used to approximate ϕ.

Example 6.2: We next consider a simplified class of bi-
linear systems used in [15], given by

ẋ(t, α) = g(x, α)u

and a non-quadratic cost function-

V = lim
T→∞

∫ T

0

[u2(x(t), α) +m(x(t), α)]dt s.t. x(T, α) = 0,

where m is positive definite and radially increasing.
Similarly to the previous case, the Hamilton-Jacobi equa-

tion can be analytically solved, leading to the optimal solu-
tion given by
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Fig. 2: Example 2- Comparison of the analytical and nu-
merical results for nominal, recalculated, and NEOC optimal
control law for δα = 0.2.

∇xϕ∞(x, α) =
2
√
m(x, α)

|g(x, α)|
.

can be observed using equation (7). The optimal control law
is given using u∞(x, α) = − 1

2g(x, α)∇xϕ∞(x, α) as-

u∞(x, α) = − sgn(g(x, α))
√
m(x, α),

providing us with the analytical closed-loop optimal law.
Using the NEOC approach, in the presence of a known

perturbation δα, we add the adjustment term given by (17)
giving us

δu∞(x, ᾱ, δα) = − sgn(g(x, ᾱ))

( ∂m(x,α)
∂α

2
√
m(x, α)

)∣∣∣∣
α=ᾱ

δα.

To examine the performance numerically, we consider
g(x, α) = αx2 and m(x, α) = αx2 + α2x4, where the
nominal value of α is set to 1. The analytical solution is
given by

u∞(x, α) = −
√
αx2 + α2x4,

and the variation in the optimal control around the nominal
value of α is given by

δu∞(x, ᾱ, δα) = −|x|(1 + 2ᾱx2)

2
√
ᾱ+ ᾱ2x2

δα.

For the numerical algorithm using the Galerkin method,
the identical set of basis functions used in Example 1 is
employed. An initial admissible control input of u0 =
−x2 is chosen. The numerical algorithm is run for 100
iterations, and the optimal controls achieved using analytical
and numerical methods are compared shown in Fig. 2 for
δα = 0.2. Similar to the previous example, the NEOC
solution matches well with the recalculated solution for both
analytical and numerical cases, with the latter case being
visually indistinguishable. The analytical solution reveals
that the optimal control law has a non-smooth point at x = 0.
Due to this non-smoothness, when the numerical solution is
approximated using polynomial basis functions, significant
errors are observed around x = 0.

VII. CONCLUSIONS

The problem of neighboring extremal optimal control
(NEOC) is significant in various applications. This study
aims to solve the NEOC problem in situations where the
nominal solution is a closed-loop feedback law, rather than
an open-loop control associated with a particular initial state.
Our approach entails analyzing how the perturbation of a
parameter affects the optimal control law by studying the
variations in the optimal performance index. We obtain a
closed-loop adjustment term added to the nominal closed-
loop feedback law to achieve neighboring extremal solutions
and enhance system performance in the presence of small
known parameter variations or perturbations. For numerical
implementation on general dynamics, we propose an algo-
rithm that utilizes the Galerkin iterative approach to solve
the HJ equations. Various examples are presented to illustrate
the algorithm’s effectiveness and its ability to handle various
scenarios. Our future efforts will focus on: 1) designing
efficient online algorithms to solve the NEOC for closed-
loop control, and 2) developing a NEOC solution based
on a closed-loop feedback law for differential games with
performance indices that are not necessarily quadratic.
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