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Abstract— This article studies the circumnavigation problem
of a non-holonomic vehicle independent of the global coor-
dinate. Specifically, the vehicle circumnavigates an unknown
stationary target with anticipated distance and velocity. How-
ever, the position information (i.e., absolute position and positive
position) is not available to the vehicle. Instead, the vehicle can
just obtain the distance rate relative to the target. We propose
a generic continuous and bounded control algorithm based
on only the distance-rate measurement. It is demonstrated
using Poincaré-Bendixon Criterion that the proposed control
algorithm in this article ensures the asymptotically stable
circumnavigation. Simulation is finally given to verify the
effectiveness of the proposed control algorithm.

I. INTRODUCTION

Recent years have witnessed rapid development in robotic
technology [1]–[6]. As a special case, the circumnavigation
problem has been studied a lot owing to their applications in
space circumnavigation [7], [8], security and surveillance [9],
[10], and target capturing [11]. In a typical circumnavigation
scenario, one or more vehicles entrap/escort a given target
along a prescribed orbit, in order to keep supervising the
target or to protect the target from intrusion.

By postulating that the states of the target are accessible, a
Lyapunov guidance vector field method was adopted in [12],
[13] for the target tracking. However, in most unknown cir-
cumstances, it is impossible to obtain the target information
in advance. In such a case, it is a feasible manner to make
use of active relative measurements with respect to the target,
such as distance-related or bearing-related measurements.

As for bearing-related measurements, the main methodol-
ogy is to estimate the target position according to the knowl-
edge obtained by the measurement of the vehicle, and then
to design the control algorithm according to the estimated
target position. In [14], a localization algorithm using an
orthogonal projection method was studied, but the estimation
error can just converge to the neighborhood around the
origin. Next, the accurate target-state estimation was realized
in [15], [16], where the estimation error resulting from the
localization algorithm is asymptotically unbiased. However,
in these works, vehicles need to know their own absolute
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positions. For the case where any position information is
unavailable, an estimator was proposed in [17] to estimate
the relative position with respec to the target in its local
frame, and then a control algorithm was given to fulfill
the circumnavigation objective. The method in [17] was
further extended in [18]–[20] to multiagent systems with a
prescribed shape in a common circle.

For distance-related measurements (e.g., distance and dis-
tance rate), there is no need to locate the unknown target. For
a wheeled mobile vehicle, the algorithms with Equiangular
Navigation Guidance [21] and the sliding mode control
method [22], [23] were proposed, and then expanded to
multiple targets in [24]. However, In these works, only local
convergence can be guaranteed. To ensure the global conver-
gence, a switching algorithm based on distance and distance
rate measurement was proposed in [25], [26]. Nevertheless,
the inner zero control input proposed in the switching algo-
rithm for the sake of driving the vehicle outside the preset
circular trajectory may result in overshoot. [26] proposed an
unbounded algorithm based on the backstepping technique
with a switching form in order to avoid singularity of the
algorithm, which introduces complexity.

In this paper, we propose a simple bounded and continuous
circumnavigation control algorithm for a non-holonomic
vehicle based on just the distance rate measurement. The
stability analysis is carried out by Poincaré-Bendixon Cri-
terion. Specifically, we first show that the non-holonomic
vehicle will never collide with the target in the process
of approaching the target. Then, we show that the system
trajectory converges to a bounded set containing the equilib-
rium point of the controlled system in finite time. Further,
using Bendixson-Dulac Theorem, we show that there exists
no periodic orbit in the bounded set. Based on Poincaré-
Bendixon Criterion, this concludes that the trajectory asymp-
totically converges to the equilibrium, which indicates the
achievement of the circumnavigation objective.

The remaining sections of this article are arranged as
follows. Section II introduces the circumnavigation problem
to be solved. Section III proposes a circumnavigation control
algorithm with only the distance rate measurement, and also
conducts the stability analysis. In Section IV, the simulation
is given to verify the effectiveness of the proposed control
algorithm. Finally, Section V is given to conclude the paper.

II. PROBLEM STATEMENT
A. System model

We consider an autonomous kinematically controlled non-
holonomic vehicle. By fixing a constant linear velocity vr,
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Fig. 1: Circumnavigation example of non-holonomic vehicle.

the motion equation of the vehicle is given by

ẋ(t) = vr cosψ(t),

ẏ(t) = vr sinψ(t), (1)

ψ̇(t) = ω(t),

where p(t) = [x(t) y(t)]
T ∈ R2, ψ(t) ∈ R denote the

position and azimuth of its head within the global coordinate,
and ω(t) ∈ R denotes its angular velocity and serves as a sole
control input. Assume that the vehicle is not equipped with
a global positioning device such that it has no information
about the global coordinate. This thus leads to a plight where
the vehicle has no access to its position and azimuth.

B. Control Objective

In this paper, we propose a control algorithm based on the
distance rate information for the considered non-holonomic
vehicle (1) such that the vehicle is capable of circumnavigat-
ing a given stationary target T = [xT , yT ]

T with a desired
radius. See Fig. 1 for an example, in which d = ‖p − T‖
represents the relative distance between the vehicle and the
target, dr represents the desired circumnavigating radius, and
β ∈ [0, 2π) denotes the angle between the heading direction
of the vehicle and the direction to the target. Formally, the
circumnavigation objective is described as follows.

Definition 1: Consider the non-holonomic vehicle (1).
The circumnavigation objective is referred to be achieved
provided that

lim
t→∞

d(t) = dr, lim
t→∞

ḋ(t) = 0. (2)
Since only the distance rate information, is available, to

facilitate the subsequent analysis, we transform the motion
equation (1) into a polar coordinate centered at the vehicle,
i.e.,

ḋ(t) = −vr cosβ(t), (3a)

β̇(t) = −ω(t) + vr sinβ(t)

d(t)
. (3b)

Remark 1: Note from (3a) that β = 3π/2 is also suffi-
cient for ḋ = 0. However, as will be shown later, only β =
π/2 can be guaranteed by the proposed control algorithm.
This means that the vehicle finally moves along the direction
of the velocity vr.

III. CONTROL ALGORITHM DEVELOPMENT

We focus on the control algorithm development in this
section for achieving the circumnavigation objective of the
non-holonomic vehicle (1). The detailed stability analysis
associated with the resulting closed-loop system is then
carried out.

A. Control Algorithm

Rather than the control inputs in [25], [26] based on
distance and distance rate measurements that introduce a
switching mechanism, we propose a control algorithm with
just the distance rate measurement for the circumnavigation
objective in a generic continuous form:

ω(t) =
vr + ḋ(t)

dr
. (4)

By virtue of (3a), ḋ(t) is inherently bounded. This guarantees
the boundedness of the control input (4) without necessarily
introducing an additional saturation constraint. Specifically,
when ḋ(t) = 0, the anticipated angular velocity becomes
vr/dr. The vehicle will keep this angular velocity afterwards,
which, together with the fact that the circumnavigating radius
is dr, is exactly the circumnavigation in Definition 1.

B. Stability Analysis

Substituting (4) and (3), the closed-loop system can be
obtained as follows:

ḋ(t) = −vr cosβ(t), (5a)

β̇(t) = −vr
dr

+
vr cosβ(t)

dr
+
vr sinβ(t)

d(t)
, (5b)

which is in an interconnected form.
To begin with, we introduce a lemma to indicate that, if

initialized properly, β evolves within a single interval, and d
evolves away from 0.

Lemma 1: Consider the closed-loop system (5b). If
β(0) ∈ (0, 2π) and d(0) > 0 are chosen, then

(i) β(t) ∈ (0, 2π),∀t ≥ 0; and
(ii) d(t) > 0, ∀t ≥ 0.

Proof: (i) The proof is completed by first showing that
β(t) < 2π, ∀t ≥ 0 with contradiction argument. Suppose
that the result does not hold. Then, there exists a finite time
ta > 0 such that β(ta) = 2π and β(t) < 2π for t ∈ (0, ta).
This means that there exist a sufficiently small constant
ξ1 > 0 and a moment t′a ∈ (0, ta) with β(t) ∈ (2π− ξ1, 2π)
and β̇(t) > 0 for t ∈ (t′a, ta). On the other hand, in the case
of β(t) ∈ (2π − ξ1, 2π), it can be obtained from (5b) that

β̇(t) < −vr
dr

+
vr
dr

+
vr sinβ(t)

d(t)
< 0. (6)
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This leads to a contradiction. It therefore follows that β(t) <
2π, ∀t ≥ 0.

Next, we show that β(t) > 0, ∀t ≥ 0 by contradiction
argument. Suppose that the result is invalid. Then, there
exists a finite time tb > 0 with β(tb) = 0 and β(t) > 0 for
t ∈ (0, tb). This means that there exist a sufficiently small
constant ξ2 and an instant t′b ∈ (0, tb) such that β(t) ∈ (0, ξ2)
and β̇(t) < 0 for t ∈ (t′b, tb). This implies that β(t) is
strictly decreasing for t ∈ (t′b, tb) and reaches 0 at tb. On
the other hand, by virtue of (5a), we have that ḋ(t) ≤ |vr|.
This implies that d(t) < d(0) + |vr|tb for t ∈ (0, tb).
Moreover, since β(t) is strictly decreasing for t ∈ (t′b, tb),
there exists another instant t′′b ∈ (t′b, tb) such that β(t′′b ) = ξ′2,
where ξ′2 ∈ (0, ξ2) is a sufficiently small constant such that
dr/ tan(ξ

′
2/2) > d(0) + |vr|tb. This thus implies that

d(t) <
dr

tan(ξ′2/2)
<

dr
tan(β(t)/2)

, (7)

for t ∈ (t′′b , tb). In such a case, it follows from (5b) that

β̇(t) > −vr
dr

+
vr cosβ(t)

dr
+

vr sinβ(t)

dr/ tan(β(t)/2)

=
vr
(
− 1 + 1− 2 sin2(β(t)/2) + 2 sin2(β(t)/2)

)
dr

= 0, (8)

for t ∈ (t′′b , tb), which also results in a contradiction.
Therefore, it can be obtained that β(t) > 0, ∀t ≥ 0.

With the above arguments, we can conclude that β(t) ∈
(0, 2π), ∀t ≥ 0.

(ii) Still, we show that d(t) > 0, ∀t ≥ 0 using con-
tradiction argument. Suppose that the result does not hold.
Then, there exists a limited time tc > 0 with d(tc) = 0
and d(t) > 0 for t ∈ (0, tc). This indicates that there exist
a sufficiently small constant σ1 ∈ (0, dr) and an instant
t′c ∈ (0, tc) with d(t) ∈ (0, σ1) and ḋ(t) < 0 for t ∈ (t′c, tc).
In such a case, β(t) ∈ (0, π/2) or β(t) ∈ (3π/2, 2π) for
t ∈ (t′c, tc). We next continue our discussions according to
two cases.

Case I: β(t) ∈ (0, π/2), t ∈ (t′c, tc). In such a case, it
follows from (5b) that

β̇(t) > −vr
dr

+
vr cosβ(t)

dr
+
vr sinβ(t)

dr
> 0. (9)

This implies that β(t) is strictly increasing for t ∈ (t′c, tc).
Also, by virtue of (5), we have that

β̇(t) >− vr
dr

+
vr sinβ(t)

d(t)

=− vr
dr
− tanβ(t)

ḋ(t)

d(t)

>− vr
dr
− tanβ(t′c)

ḋ(t)

d(t)
, (10)

for t ∈ (t′c, tc). By integrating this inequality on both sides

over interval (t′c, tc), it can be obtained that

β(tc)− β(t′c) >
∫ tc

t′c

(
− vr
dr
− tanβ(t′c)

ḋ(µ)

d(µ)

)
dµ

= −vr
dr

(tc − t′c)− tanβ(t′c) ln
d(tc)

d(t′c)

= +∞, (11)

given the fact that d(tc) = 0. This implies that β(tc) = +∞,
contradicting with the fact β(t) ∈ (0, 2π), ∀t ≥ 0 that has
been proven before.

Case II: β(t) ∈ (3π/2,2π), t ∈ (t′c, tc). In such a
case, it can be obtained from (5b) that

β̇(t) <
vr sinβ(t)

d(t)
< 0. (12)

This implies that β(t) is strictly decreasing for t ∈ (t′c, tc).
From (5a) and (12), we next have that

β̇(t) < − tanβ(t)
ḋ(t)

d(t)

< − tanβ(t′c)
ḋ(t)

d(t)
, (13)

for t ∈ (t′c, tc). It can be obtained that β(tc) = −∞,
contradicting with the proven fact β(t) ∈ (0, 2π), ∀t ≥ 0.

It follows from the above two cases that d(t) > 0, ∀t ≥ 0.

Note that β(0) ∈ (0, 2π) and d(0) > 0 require that the
vehicle is initialized not towards the target and also not in
coincidence with the target. Under such an initial condition,
Lemma 1 manifests that the vehicle will never collide with
the target. Besides, using Lemma 1, the boundedness of the
closed-loop system (5) is guaranteed. This is sufficient for
the uniform continuity of β(t) and d(t). Additionally, from
Lemma 1 we can obtain that β(t) always evolves within
(0, 2π). In such a case, the equilibrium of the closed-loop
system (5) is a singleton, i.e., M = (dr, π/2), which is
exactly the target state of the circumnavigation.

Next, a theorem is presented to sum up the main result of
this paper, which indicates the achievement of the circum-
navigation objective using the proposed control algorithm.

Theorem 1: Consider the non-holonomic vehicle system
(1). If β(0) ∈ (0, 2π) and d(0) > 0 are chosen, the pro-
posed control input (4) guarantees that the circumnavigation
objective claimed in Definition 1 is achieved.

To prove Theorem 1, we just need to analyze the stabi-
lization of the closed-loop system (5). For this purpose, we
first specify a bounded set as follows:

S =
{
(d, β) | d ∈

(
0,
(
1 +

π

2

)
dr

]
, β ∈ (0, π]

}
. (14)

It is trivial that the equilibrium M is within the set S.
According to Poincaré-Bendixon Criterion in [27], if i) the
state trajectory of (d, β) enters the set S within a finite time
and does not leave it afterwards, and ii) there is no periodic
orbit within the set S, then the state trajectory of (d, β)
asymptotically converges to the equilibrium M . Motivated
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by this observation, it is thus divided into three parts for
the proof of Theorem 1. In the first place, it is shown that
β enters the set (0, π] within a finite time and does not
escape. Upon this basis, it is next shown that d enters the
set (0, (1+π/2)dr] within a finite time and does not escape.
Finally, it is shown that there exists no periodic orbit within
the set S. We next introduce three Propositions to shed light
upon these three facts, respectively.

Proposition 1: Consider the closed-loop system (5). If
β(0) ∈ (0, 2π) and d(0) > 0 are chosen, there exists a finite
time µ1 such that β(t) ∈ (0, π], ∀t > µ1.
Proof: Lemma 1 has shown that β(t) ∈ (0, 2π), ∀t ≥ 0
given β(0) ∈ (0, 2π). Accordingly, we next discuss two cases
depending on the initialization of β.

Case I: β(0) ∈ (0, π]. In such a case, we show that
β(t) ∈ (0, π], ∀t ≥ 0 by contradiction argument. Suppose
that the result is invalid. Then, there is a finite time µa with
β(µa) = π and β̇(µa) > 0. However, in the case of β(µa) =
π, it follows from (5b) that β̇(µa) = −2vr/dr < 0, leading
to a contradiction. Therefore, it follows that β(t) ∈ (0, π],
∀t ≥ 0.

Case II: β(0) ∈ (π,2π). In such a case, we show
that β will enter (0, π] within a finite time and not leave
it afterwards. To show this, we make discussions in terms of
three subcases, i.e., β(0) ∈ (π, 3π/2], β(0) ∈ (3π/2, 3π/2+
σ], and β(0) ∈ (3π/2 + σ, 2π), where σ > 0 is a constant
such that sinσ < π/(2 + π).

Subcase I: β(0) ∈ (π,3π/2]. We assume that β is
always within (π, 3π/2]. If so, it can be obtained from
(5b) that β̇(t) < −vr/dr. This indicates that β(t) ≤ π,
∀t ≥ µb1 = (β(0)−π)dr/vr , which leads to a contradiction.
We thus have that β(t) will get away from (π, 3π/2] and
enter (0, π] within the finite time µb1 . Next, by following
the analysis in Case I, it further follows that β(t) ∈ (0, π],
∀t ≥ µb1 .

Subcase II: β(0) ∈ (3π/2,3π/2+σ]. Similar to Sub-
case I, we assume that β is always within (3π/2, 3π/2+σ].
If so, it follows from (5b) that

β̇(t) <− vr
dr

+
vr cos(3π/2 + σ)

dr

=− vr
dr

+
vr sinσ

dr
< 0. (15)

This implies that β(t) ≤ 3π/2, ∀t ≥ µb2 = (β(0) −
3π/2)dr/(vr(1 − sinσ)), which results in a contradiction.
Hence, we have that β(t) will escape from (3π/2, 3π/2+σ]
and enter (π, 3π/2] within the finite time µb2 . In addition,
by following the analysis in Subcase I and Case I, it further
follows that β(t) ∈ (0, π], ∀t ≥ µ′

b2
= µb2 + πdr/(2vr).

Subcase III: β(0) ∈ (3π/2 + σ,2π). Likewise, we
assume that β is always within (3π/2 + σ, 2π). If so, it
follows from (5a) that ḋ(t) < −vr sinσ, which implies that
d(t) will decay to zero within a finite time d(0)/(vr sinσ).
This contradicts with the result d(t) > 0, ∀t ≥ 0 given in
Lemma 1. On the premise of Lemma 1, it thus follows that
β(t) will escape from (3π/2+σ, 2π) and enter (3π/2, 3π/2+
σ) within a finite time µb3 < d(0)/(vr sinσ). Additionally,

by following the analysis in Subcase II, Subcase I, and
Case I, it further follows that β(t) ∈ (0, π], ∀t ≥ µ′

b3
=

µb3 + (π/2 + σ/(1− sinσ))dr/vr.
By combining the results in the above two cases, it can

be concluded that β(t) ∈ (0, π], ∀t ≥ µ1 with µ1 ≥ µ′
b3

.
Proposition 2: Consider the closed-loop system (5). If

β(0) ∈ (0, 2π) and d(0) > 0 are chosen, there exists a finite
time µ2 ≥ µ1 with d(t) ∈ (0, (1 + π/2)dr], ∀t ≥ µ2.
Proof: According to Lemma 1, we have that d(t) > 0,
∀t ≥ 0. We next analyze the behavior of d(t) for t ≥ µ1 in
terms of two cases depending on the value of d(µ1).

Case I: d(µ1) > (1 + π/2)dr. In such a case, we
show that d(t) will enter (0, (1 + π/2)dr] within a finite
time and not escape from it afterwards. For this purpose, we
first show that d will decrease below (1 + π/2)dr within a
finite time by contradiction argument. Suppose that the result
is invalid. This means that d(t) > (1 + π/2)dr, ∀t ≥ µ1.
We continue our discussions based on three subcases, i.e.,
β(µ1) ∈ (0, π/2−σ], β(µ1) ∈ (π/2−σ, π/2), and β(µ1) ∈
[π/2, π), where the constant σ is defined identically with that
in the proof of Proposition 1.

Subcase I: β(µ1) ∈ (0, π/2 − σ]. First, we illustrate
that β(t) ∈ (0, π/2−σ], ∀t ≥ µ1 by contradiction argument.
Assume that the result is ineffective. Then, there exists a
limited instant ζa > µ1 with β(ζa) = π/2−σ and β̇(ζa) > 0.
However, in the case of β(ζa) = π/2 − σ, it follows from
(5b) that

β̇(ζa) = −
vr
dr

+
vr sinσ

dr
+
vr cosσ

d

< − vr
(1 + π/2)dr

+
vr cosσ

(1 + π/2)dr
< 0, (16)

given sinσ < π/(2 + π). This brings in a contradiction.
It therefore follows that β(t) ∈ (0, π/2 − σ], ∀t ≥ µ1.
Using this result and by virtue of (5a), it next follows
that ḋ(t) ≤ −vr sinσ < 0 for t ≥ µ1. This implies that
d(t) < (1 + π/2)dr, ∀t ≥ ζ ′a + µ1 with ζ ′a = (d(µ1) −
(1 + π/2)dr)/(vr sinσ), which introduces a contradiction
with the fact that d(t) > (1 + π/2)dr, ∀t ≥ µ1.

Subcase II: β(µ1) ∈ (π/2− σ,π/2]. We assume that
β is always within (π/2− σ, π/2] after µ1. If so, it follows
from (5b) and (16) that

β̇(t) < −vr
dr

+
vr sinσ

dr
+
vr cosσ

d
< 0, (17)

for t ≥ µ1. This indicates that β(t) ∈ (0, π/2 − σ], ∀t ≥
ζb+µ1 with ζb < drσ(1+π/2)/(vr(1−cosσ)), which leads
to a contradiction. We thus have that β(t) will escape from
(π/2− σ, π/2] and enter (0, π/2− σ] within the finite time
ζb + µ1. In addition, by following the analysis in Subcase
I, it further follows that d(t) < (1 + π/2)dr, ∀t ≥ ζ ′b + µ1

with ζ ′b = max{(d(ζb +µ1)− (1+π/2)dr)/(vr sinσ), 0}+
ζb, which also introduces a contradiction with the fact that
d(t) > (1 + π/2)dr, ∀t ≥ µ1.

Subcase III: β(µ1) ∈ (π/2, π). We assume that β is
always within (π/2, π) after µ1. If so, from (5b), it follows
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that

β̇(t) ≤ −vr
dr

+
vr
d
< −vr

dr
+

vr
(1 + π/2)dr

< 0, (18)

for t ≥ µ1. This implies that β(t) < π/2, ∀t ≥ ζc + µ1

with ζc < (1 + π/2)dr/vr, which results in a contradiction.
We thus have that β(t) will escape from (π/2, π) and enter
(π/2−σ, π/2] within the finite time ζc+µ1. By following the
analysis in Subcase I and Subcase II, it further follows that
d(t) < (1+π/2)dr, ∀t ≥ ζ ′c+µ1 with ζ ′c = max{(d(ζb+ζc+
µ1)−(1+π/2)dr)/(vr sinσ), 0}+ζb, which also brings in a
contradiction with the fact that d(t) > (1+π/2)dr, ∀t ≥ µ1.

By combining the results in the above three subcases, it
can be concluded that there exists a finite time µ′

2 ≥ ζ ′c+µ1

such that d(µ′
2) ∈ (0, (1+ π/2)dr]. Besides, from the above

arguments, we also obtain that β(µ′
2) ∈ (0, π/2).

Next, we focus on showing that d(t) ∈ (0, (1 + π/2)dr],
∀t ≥ µ′

2. By contradiction argument, we assume that the
result is ineffective. It implies that there exists a finite time
ζd > µ′

2 such that d(ζd) = (1 + π/2)dr, ḋ(ζd) > 0, and
d(t) ∈ (0, (1 + π/2)dr) for t ∈ (µ′

2, ζd). According to (5a),
this implies that β(ζd) ∈ (π/2, π]. It then follows that there
exists an instant ζ ′d ∈ (µ′

2, ζd) such that β(ζ ′d) = π/2,
β̇(ζ ′d) > 0, and β(t) ∈ (π/2, π] for t ∈ (ζ ′d, ζd]. This,
from (5a), implies that ḋ(t) > 0 for t ∈ (ζ ′d, ζd]. Besides,
in the case of β(ζ ′d) = π/2, it follows from (5b) that
β̇(ζ ′d) = −vr/dr+vr/d(ζ ′d) > 0 and further that d(ζ ′d) < dr.
It thus follows that there exists another instant ζ ′′d ∈ (ζ ′d, ζd)
such that d(ζ ′′d ) = dr, and further that d(t) > dr for
t ∈ (ζ ′′d , ζd].

Moreover, by virtue of (5), it follows that

β̇(t) < −vr
dr

+
vr cosβ(t)

dr
+
vr
dr

= − ḋ(t)
dr

, (19)

for t ∈ (ζ ′′d , ζd]. Integrating both sides of this inequality over
interval (ζ ′′d , ζd] yields

β(ζd)− β(ζ ′′d ) < −
(dr(ζd)− dr)

dr
. (20)

given the fact that d(ζ ′′d ) = dr. This thus implies that

d(ζd) <dr + dr(β(ζ
′′
d )− β(ζd))

<(1 + π/2)dr, (21)

which contradicts with the fact that d(ζd) = (1 + π/2)dr.
Therefore, it can be concluded that d(t) ∈ (0, (1 + π/2)dr],
∀t ≥ µ′

2.
Case II: d(µ1) ∈ (0, (1+π/2)dr]. We show that d(t) ∈

(0, (1 + π/2)dr] after a finite time and the result is always
valid. For one thing, if d(t) ∈ (0, (1 + π/2)dr], ∀t ≥ µ1,
then the result holds naturally. For another thing, if d(t) >
(1+π/2)dr within a finite time ξa > µ1, it can follows from
Case I that d(t) ∈ (0, (1 + π/2)dr], ∀t > µ′′

2 > ξa.
By combining the results given in Cases I and Case II,

it can be concluded that d(t) ∈ (0, (1 + π/2)dr],∀t > µ2 =
max{µ′

2, µ
′′
2}.

Proposition 3: Consider the closed-loop (5). There is no
periodic orbit within the bounded set S.
Proof: It is trivial to examine that the set S is a simply con-
nected region. Accordingly, we can choose a continuously
differentiable function D(d β) = d such that

∂(Dḋ)

∂d
+
∂(Dβ̇)

∂β
=
−vrd sinβ

dr
≤ 0, (22)

along the closed-loop system (5) within the set S. Note that
the equality in (22) holds if and only if β = π. However, if
β = π, by virtue of (5b), β̇(t) = −2vr/dr < 0. This implies
that there exists no sub-region within S such that (22) is
identical to zero therein. Therefore, according to Bendixson-
Dulac Theorem [27], there is no periodic orbit within the set
S.

Proof of Theorem 1. According to Propositions 1-3, we
know that the state trajectory of (d, β) enters the bounded
set S within a finite time and does not escape afterwards,
while there is no periodic orbit within S. Therefore, based
upon Poincaré-Bendixon Criterion, it can be concluded that
the state trajectory of (d, β) asymptotically converges to
the equilibrium M . That is, the circumnavigation objective
claimed in Definition 1 is achieved.

IV. SIMULATION

In this section, we make a comparison among the proposed
control algorithm (4) and those in [25], [26] to highlight
the advantages of the proposed one. Given a target T =
[0, 0]T m, the desired circumnavigating radius dr = 2m and
the constant linear velocity vr = 0.1m/s. Further, the vehicle
is initially placed at p(0) = [0.5,−0.5]T m, ψ(0) = π/3 rad.

The simulation results are shown in Fig.2 and Fig.3. It can
be observed from Fig.2 that under the proposed control algo-
rithm (4) and those in [25] and [26], the vehicle converges
to the desired circle. However, compared with the control
algorithms in [25] and [26], our proposed one shows better
performance in the process of convergence, and generates
a smoother trajectory. It is shown in Fig.3 that the state
d asymptotically converge to dr and the angular velocity,
serving as the input, asymptotically converges to the desired
one. However, there are some differences in the process of
convergence. We can observe that the proposed algorithm
(4) can ensure the state d converges with a faster rate and
there is no overshoot. However, the control input with the
switching algorithm proposed in [25] remains zero at the
beginning, which results in discontinuity and unsmoothness.
Further, in [26], the control input is large at around 2
second. That is because the control algorithm is not saturated.
In contrast, the proposed control algorithm (4) is bounded
and continuous. According to the above comparison, it is
confirmed that the control algorithm proposed in this paper
has better convergence performance.

V. CONCLUSION

In this paper, we design a generic bounded and continuous
control algorithm to drive a non-holonomic vehicle to cir-
cumnavigate the stationary target with only the distance rate
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Fig. 2: Trajectory comparison using methods in this paper,
[25], and [26].
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Fig. 3: Distance and angular velocity comparison using
methods in this paper, [25], and [26].

measurement. Under a mild initial condition, the proposed
control algorithm can ensure the asymptotic convergence
without colliding with the target. Resorting to Poincaré-
Bendixon Criterion, we analyze the stability in detail. The
effectiveness of the proposed control algorithm is finally
verified by simulation.
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