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Abstract— The kinematics of many control systems, especially
in the robotics field, naturally live on smooth manifolds. Most
classical state-estimation algorithms, including the extended
Kalman filter, are posed on Euclidean space. Although any filter
algorithm can be adapted to a manifold setting by implementing
it in local coordinates and ignoring the geometric structure,
it has always been clear that there would be advantages in
taking the geometric structure into consideration in developing
the algorithm. In this paper, we argue that the minimum
geometric structure required to adapt the extended Kalman
filter to a manifold is that of an affine connection. With this
structure, we show that a naive coordinate implementation
of the EKF fails to account for geometry of the manifold in
the update step and in the reset step. We provide geometric
modifications to the classical EKF based on parallel transport
of the measurement covariance (for the update) and a-posteriori
state covariance (for the reset) that address these limitations.
Preliminary results for attitude estimation with two directional
measurements demonstrate that the proposed modifications
significantly improve the transient behavior of the filter.

I. INTRODUCTION

Over the past sixty years, the extended Kalman filter
(EKF) has been the industry standard for state estimation
problems when the system dynamics are governed by non-
linear equations [1][2]. Although the classical formulation
of EKF is given in global Euclidean space, there have been
many papers that adapt the Kalman filter methodology to
systems that live on smooth manifolds. Although any choice
of local coordinates provides a representation in which the
classical extended Kalman filter can be implemented, from as
early as the 1970s, authors were demonstrating the advantage
of choosing local coordinate charts that encode geometric
structure, such as Riemannian metrics or homogeneous sym-
metries, in a natural manner [3][4]. Such charts have specific
structure that can lead to lower linearisation error for the filter
improving performance. The approach comes at the cost of
using a new chart for every iteration of the algorithm, since
the nice geometric properties of the chart usually only hold at
a single point, the origin or reference point of the chart. This
structure is also the foundation of the � (’boxplus’) and �
(’boxminus’) operators used for modelling state displacement
on manifold, introduced in [5]. Similar techniques were used
in [6] and [7]. One example of local coordinates centered
at a point are the normal coordinates comprising geodesics
in a star shaped neighbourhood associated with an affine
connection [4]. This is particularly of interest for Riemannian
manifolds where Levi-Civita connection is the unique torsion
free connection that preserves the metric [3][8][9]. However,
normal coordinates can be defined for an arbitrary affine
connection and do not require a Riemannian metric, for

example, one-parameter subgroups on a Lie-group state-
space.

A parallel, and closely related, research thread considers
geometric structure induced by global symmetry properties
of the system state-space. A key early problem that motivated
this perspective was the question of attitude estimation in
aerospace applications. The use of quaternions or rotation
matrices for orientation representation led to the multiplica-
tive extended Kalman filter (MEKF) [10]. This methodology
uses an extended Kalman filter based on a linearisation of a
global error defined using the group structure of the state-
space. Although the MEKF became an industry standard for
attitude estimation in aerospace [11] the approach was not
extended beyond the quaternion and rotation groups until
picked up again after the turn of the century. The advent
of remotely piloted aerial vehicle led to a revaluation of the
attitude filtering problem [12][13]. Bonnabel et al. proposed
a general theory for the Invariant Extended Kalman Filter
(IEKF) for systems on Lie-groups in a series of works
[14][15], motivated originally by attitude estimation. They
identified a class of ‘group affine’ systems for which they
showed that the IEKF provides an exact linearisation of the
prediction step of the EKF [16] leading to global convergence
and high performance. This observation is also seen in the
work by Long et al. [17]. Bourmaud et al. [18][19] pro-
posed the continuous-discrete EKF (CD-EKF) for systems
on connected unimodular Lie groups using concentrated
Gaussian distribution. Mahony et al. [20][21][22] proposed
the equivariant filter (EqF), a general Kalman filter design
methodology for systems on homogeneous spaces. This
design perspective has been widely adapted by modern filters
and applied to a range of real-world problems including
visual inertial odometry [23][24], inertial navigation systems
[25][26], homography tracking [27], etc. The design ap-
proach can be interpreted as using local coordinates induced
by one of the Cartan-Schouten affine connections on the
Lie-group. These are the affine connections for which the
geodesics are the one-parameter subgroups, or exponentials,
on the Lie-group (or their projections on the homogeneous
space). Although this insight draws a strong analogy with
the more general research theme discussed earlier, the Lie-
group and homogeneous space structure fundamental in this
approach (for common real-world problems) carries global
matrix algebraic structure that is core to the mathematical
formulations and efficiency of the filters.

In this paper, we consider the nonlinear systems where
the state space and output space are both smooth manifolds
that admit an affine connection and present a general error-
state extended Kalman filter design methodology for such
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systems. An affine connection is the minimum geometric
structure that captures the key properties of geometry. We
argue that this is the minimum requirement on manifold
structure that is necessary to consider to develop EKF
algorithms that are not simply an implementation of the
classical Euclidean EKF in local coordinates. With an affine
connection, one can define the concepts of geodesic and
parallel transport that we show are fundamental in deriv-
ing high performance Kalman filter algorithms. We frame
the filter development in the context of using concentrated
Gaussian distributions [19][22] as local approximations of
the information state of the filter. Using this formalisation
we can define concepts of mean and covariance for the
approximate information state in normal coordinates on the
manifold without requiring these concepts to be well defined
for the full information state on the manifold. We go on to
show that the geometric structure of the manifold should
be taken into account explicitly in two places in a Kalman
filter update. The first in the Bayesian update step to parallel
transport the covariance of the generative noise measurement
model into coordinates adapted to the state. Then second
in the reset step to parallel transport the state covariance
estimate generated by the Bayesian update to the new filter
estimate coordinates. There are several prior works that
have considered geometric modification to the reset step for
EKF algorithms on manifolds [23][28][29][20][22], however,
the authors are not aware of any prior work in the EKF
algorithms for geometric modifications of the update step.
In addition, we believe the geometric insight in the present
paper to be novel. We provide simulations to demonstrate the
advantage of the proposed geometric modifications during
the transient response of the filter. This is the period of
the filter evolution when not taking account the geometry of
the manifold impacts most on the filter performance. Once
the filter has converged to steady-state tracking, the local
linearisation error is small and all EKF algorithms have
similar performance.

This paper includes seven sections alongside the intro-
duction and conclusion. In Section II notation is defined
and preliminary mathematics is discussed. In Section III the
system and its stochastic model are defined. In Section IV,
we present a conventional error-state EKF construction based
on normal coordinates on smooth manifolds. In Section
V, we propose novel geometric modifications in the filter
dynamics to compensate the coordinate transform during
the measurement update step and the error reset step. The
example of attitude estimation with directional measurements
is presented in Section VI.

II. PRELIMINARIES

A. Manifold and Affine Connection

Let M be a smooth manifold with dimension m. The
tangent space at a point ξ ∈M is denoted Tξ M . The tan-
gent bundle is denoted TM . Given a differentiable function
between smooth manifolds h : M → N , its derivative at ξ ◦

is written as

Dξ |ξ ◦h(ξ ) : Tξ ◦M → Th(ξ ◦)N .

The notation Dh(ξ ) : TM → TN denotes the differential of
h with an implicit base point.

Let X(M ) denote the space of differentiable vector fields
over M . Let C∞(M ) denote the class of infinitely differ-
entiable functions on M . An affine connection [30] is an
operator ∇ : X(M )×X(M )→X(M ) written (X ,Y ) 7→∇XY ,
that satisfies
• (Linear in X) ∇ f1X1+ f2X2Y = f1∇X1Y + f2∇X2Y ,
• (Linear in Y ) ∇X (a1Y1 +a2Y2) = a1∇XY1 +a2∇XY2,
• (Product rule) ∇X ( fY ) = f ∇XY +(X f )Y ,

for all f1, f2 ∈ C∞(M ), a1,a2 ∈ R and X ,Y ∈ X(M ). This
gives a notion of directional derivative of a vector field
defined on the manifold.

A curve γ : I→M is called geodesic [30] if

∇γ̇(t)γ̇(t) = 0 (1)

for any t ∈ I where I is a maximal open interval in R
containing 0. For any ξ̂ ∈M and v ∈ T

ξ̂
M , there exists a

unique maximal geodesic γ : [0, t(v, ξ̂ ))→M that satisfies
γv(0)= ξ̂ and γ̇v(0)= v [30, Collorary 4.28]. The exponential
mapping exp

ξ̂
: W

ξ̂
⊂ T

ξ̂
M →M is defined as mapping each

tangent vector v ∈ T
ξ̂

M to the value of its geodesic at time
1; that is,

exp
ξ̂
(v) = γv(1) (2)

where W
ξ̂

is the largest open subset of T
ξ̂

for which exp is
a diffeomorphism. Let U

ξ̂
= exp

ξ̂
(W

ξ̂
) and note that U

ξ̂
is

open by construction. Let ı
ξ̂

: T
ξ̂

M → Rm provide a linear

isomorphism between T
ξ̂

M and Rm for each ξ̂ . Then the
normal coordinates on M are defined by

ϑ
ξ̂

:= ı
ξ̂
◦ exp−1

ξ̂
: U

ξ̂
→ Rm. (3)

A vector field is an assignment ξ 7→ Xξ for every ξ ∈
M . A vector field X is parallel along γ with respect to the
connection ∇ if

∇γ̇(t)Xγ(t) = 0 (4)

for all t. Given any vector Xγ(0) ∈ Tγ(0)M and smooth curve
γ(t) then there is a unique family of vectors Xγ(t) that satisfy
(4) and this correspondence induces an invertible linear map
Pγ(t) : Tγ(0)M → Tγ(t)M between tangent spaces by

Pγ(t)Xγ(0) := Xγ(t)

for all Xγ(0) ∈ Tγ(0)M . For a fixed time T , the inverse of
the parallel transport Pγ(T ) along a curve γ(t) is equal to
the parallel transport Pγ ′(T ) along the reversed curve γ ′(t) :=
γ(T − t). Parallel transport of vector fields induces parallel
transport of tensor operators Σγ(0) : Tγ(0)M ×Tγ(0)M → R
by

Pγ(t)Σγ(0)(Xγ(t),Yγ(t)) := Σγ(0)(P−1
γ(t)Xγ(t),P−1

γ(t)Yγ(t)).
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B. The �/� Operators

Building on the established literature we will use the �
and � operator notation introduced in [31], [5] to model
small Rm ‘perturbations acting on M . Recalling the normal
coordinates (3), define the box plus � : M ×Rm →M and
box minus � : M ×M → Rm operators by

ξ �u = ϑ
−1
ξ

(u), (5)

ζ �ξ = ϑξ (ζ ), (6)

for all ξ ∈ M , ζ ∈ Wξ and u ∈ ı(Uξ ). Both the � and
� operators are associated with geodesic curves on the
manifold and in this sense are the natural generalisation
of straight lines on Euclidean space. We believe that this
is the most natural geometric definition of these operators.
Any other definition introduces local coordinates that are not
adapted in the natural sense to the geometry of the manifold.

It is straightforward to verify that these proposed operators
satisfy

ξ �0 = ξ , (7a)
ξ � (ζ �ξ ) = ζ , (7b)
(ξ �u)�ξ = u, (7c)

the first three of the four requirements of the original
definition proposed in [5, Def. 1]. The fourth axiom in [5,
Def. 1] requires that

|(ξ̂ �δ1)� (ξ̂ �δ2)|2 ≤ |δ1−δ2|2. (8)

However, in the normal coordinates (on a Riemannian man-
ifold) one has

|(ξ̂ �δ1)� (ξ̂ �δ2)|2 = |δ1−δ2|2−
1
3

Ric(δ1,δ2)+O(|δ |3),

where Ric is the Ricci curvature tensor. For manifolds with
non-negative curvature; that is, Ric ≥ 0 is positive semi-
definite, then (8) holds. For any manifold with negative
curvature, however, axiom 4 from [5, Def. 1] will fail locally.
This axiom was used in [5] to prove properties of the mean
of the true information state on the manifold M associated
with properties of the mean of distributions defined in the Rm

coordinates. In general manifolds the concept of mean and
covariance are unclear and instead we will work entirely with
concentrated Gaussian distribution approximations (§ III-A)
of the true information state. These approximations do have
well-defined mean and covariance parametrisation that can
be used in the filter algorithm. The results developed in this
paper are general and not restricted to manifolds with non-
negative curvature.

III. PROBLEM FORMULATION

A. Stochastic model

It is always possible to define a volume measure on a
general manifold using a partition of unity construction. The
class of probability distributions for the information state
considered will be those that are integrable with respect to
such a measure. Even with a well-defined concept of prob-
ability distribution, concepts such as mean and covariance

are not well defined on a general manifold. There are many
works that use geometric structure of the manifold such as a
Riemannian metric [3][4], or Lie-group structures [19][32] to
define equivalent concepts. These constructions, however, are
not necessary for the formulation of Kalman filter algorithms.
Rather such algorithms need only a definition of a class
of approximating distributions that can be parameterised by
mean and covariance parameters. In particular, it is not
necessary that the mean and covariance parameters used
as state in the filter correspond to statistics of the true
distribution or even of the approximate distribution, only that
the distribution generated by the filter parameterisations is
close in some sense to the true distribution.

In the remainder of the paper we assume that both the
systems state-space M and the output space N admit affine
connections and that we work with normal coordinates

ϑ
ξ̂

: M → Rm (9)

ϕŷ : N → Rn (10)

We approximate a general distribution p : M → R+ around
ξ̂ ∈M by a concentrated Gaussian distribution [32]

N
ξ̂
(ξ |µ,Σ) := α exp(−1

2
(ϑ

ξ̂
(ξ )−µ)>Σ

−1(ϑ
ξ̂
(ξ )−µ)),

(11)

where

α :=

∣∣∣∣∣
∫

U
ξ̂

exp(−1
2
(ϑ

ξ̂
(ξ )−µ)>Σ

−1(ϑ
ξ̂
(ξ )−µ))dξ

∣∣∣∣∣
−1

.

is a normalizing factor, µ ∈ Rm is a mean vector parame-
ter and Σ ∈ S+(m) is a positive-definite symmetric m×m
covariance matrix parameter. Note that the support for the
distribution N

ξ̂
(ξ |µ,Σ) is contained in the open set U

ξ̂
⊂M .

Within this set, the distribution in local coordinates x =
ϑ

ξ̂
(ξ ) looks like a trimmed Gaussian and the first and second

order statistics µ and Σ are well defined. Although the mean
and covariance have natural interpretations as parameters
in the concentrated Gaussian, they do not correspond to
the statistical mean and variance of the distribution on M ,
or even in Rm coordinates due to the trimmed nature of
the distribution. This does not prevent them being used
to parameterise the approximate distribution and derive an
extended Kalman filter. The filter formulation is now done
within the class of concentrated Gaussian distribution and
its validity will depend on the validity of the approximation
p(ξ )≈N

ξ̂
(ξ |µ,Σ). Clearly for a large range of engineering

applications where the a-posteriori state distribution is lo-
cally Gaussian in the normal coordinates this approximation
will work extremely well.

B. System definition

In this work, we consider a nonlinear discrete-time system
living on a smooth manifold M . The system function is given
by

ξk+1 = F(ξk,uk+1 +κ
I
k+1)�κ

P
k+1,

κ
I
k+1 ∼ N(0,RI

k+1), κ
P
k+1 ∼ N(0,RP

k+1), (12)
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where ξ ∈ M and u ∈ L are the system state and input,
respectively. These systems usually admit two types of noise,
the input noise κ I

k+1 and the processing noise κP
k+1, modelled

as Gaussian processes on the linear input space L and the
tangent space Tξk+1

M . In this work, we combine these noise
terms through linearisation,

ξk+1 = F(ξk,uk+1)� (κP
k+1 +Bk+1κ

I
k+1), (13)

where Bk+1 =Du|uk+1
F(ξk,u) is the differential of the system

function with respect to the input signal. The resulting
simplified noise model is

ξk+1 = F(ξk,uk+1)�κk+1, κk+1 ∼ N(0,Rk+1), (14)

where the total covariance Rk+1 = RP
k+1 + Bk+1RI

k+1B>k+1
captures the combined effect of processing noise and input
noise.

The configuration output

yk+1 = h(ξk+1)�νk+1, νk+1 ∼ N(0,Qk+1), (15)

is given by a function h : M → N , where N is a smooth
manifold termed the output space. The disturbance νk+1 is
modelled as a Gaussian process in the normal coordinate
around h(ξk+1) on N .

IV. EXTENDED KALMAN FILTER ON MANIFOLD
In this section, we provide an overview of the EKF design

methodology on smooth manifolds and indicate points at
which the geometric structure of the manifold is not taken
into account in classical treatments. We derive the filter
in the error-state formulation, since this allows for a more
geometric analysis. The error-state Kalman filter considers
propagating the information state of an error εk between true
ξk and nominal ξ̂ [33] and reconstructs the filter state ξ̂ from
the error update.

1) Error state: The local error in normal coordinates εk ∈
T

ξ̂k
M is given by

εk = ξk � ξ̂k, (16)

where ξk, ξ̂k ∈M are the true and estimated system state,
respectively. In general, on systems with symmetry the error
state is often defined globally using a group structure and the
local error state is the local linearisation of this construction
[16][21].

2) Stochastic approximation: The information state for
the filter at time k, that approximates the true a-posteriori
distribution of the information state, is a concentrated Gaus-
sian

ξk|k ∼ N
ξ̂k|k

(ξ |0,Σk|k)

where k|k indicates the state at time k conditioned on
information (inputs and measurements) up to and including
time k. This construction corresponds to

ξk|k � ξ̂k|k ∼ Ntrim(0,Σk|k)

as a random variable in Rm, where Ntrim denotes the trimmed
Gaussian associated with the domain of definition of the
normal coordinates.

3) Prediction: The reference point ξ̂k|k is updated using
the full nonlinear model of the system

ξ̂k+1|k = F(ξ̂k|k,u).

The predicted error is defined as

εk+1|k := ξk+1 � ξ̂k+1|k. (17)

We use the linearisation of the state dynamics to compute
an update equation for εk+1|k .

Lemma 4.1: The linearised dynamics of εk+1|k is given by

εk+1|k = Ak+1εk|k +κk+1 +O(|εk|k,κk+1|2), (18)

where κk+1 ∼ N(0,Rk+1) and Ak+1 is given by

Ak+1 := Dϑ
ξ̂k+1|k

(ξ̂k+1|k) ·DFuk+1(ξ̂k|k) ·Dϑ
−1
ξ̂k|k

(0). (19)

Proof: The predicted error can be written

εk+1|k = ξk+1 � ξ̂k+1|k,

= (F(ξk,uk+1)�κk+1)�F(ξ̂k,uk+1),

= (F(ξ̂k � εk|k,uk+1)�κk+1)�F(ξ̂k,uk+1), (20)

Discarding O(|εk|k| |κk+1|) quadratic terms one has

εk+1|k = ϑ
ξ̂k+1|k

(Fuk+1(ϑ
−1
ξ̂k|k

(εk|k)))+κk+1. (21)

The formula for Ak+1 follows by applying the chain rule of
differentiation and evaluating at εk|k = 0.

The predicted state error is distributed according to a
Gaussian with mean zero and covariance [1]

ξk+1|k ∼ N
ξ̂k+1|k

(ξ |0,Σk+1|k).

where

Σk+1|k = Ak+1Σk|kA>k+1 +Rk+1. (22)

This covariance update (22) hides two changes of co-
ordinates. Firstly, the covariance parameter Σk|k is defined
in normal coordinates at ξ̂k|k while Σk+1|k is defined in
normal coordinates at ξ̂k+1|k. Fortunately, the state update
intrinsically captures this change, and Ak+1Σk|kA>k+1 is the
correct covariance transformation up to linearisation error.
The second change of coordinates is associated with the
noise process κk+1 in (20) defined around the propagation
of the true state F(ξk,u). However, in (22) the covariance
Rk+1 is applied directly in coordinates centered at ξ̂k+1|k.
This implicit change of coordinates is further discussed in
Section V-A.

4) Update: The update step involves Bayesian fusion of
the prior ξk+1 ∼ N

ξ̂k+1|k
(ξ |0,Σk+1|k) with a measurement

yk+1 ∈ N associated with a generative noise model yk+1 ∼
Nh(ξk+1)

(y|0,Qk+1) (15).
Let ŷk+1|k = h(ξ̂k+1|k). Define the innovation as ỹk+1 :=

yk+1� ŷk+1|k. The estimated measurement ŷk+1 is considered
as an independent signal and h(ξk+1) is considered a function
of the error state εk+1|k. The update equation uses the
linearisation of the innovation with respect to εk+1|k at zero.
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Lemma 4.2: The linearisation of the innovation is given
by

ỹk+1 =Ck+1εk+1|k +νk+1 +O(|εk+1|k,νk+1|2), (23)

where νk+1∼N(0,Qk+1) and Ck+1, termed the output matrix,
is given by

Ck+1 = Dϕŷk+1(ŷk+1) ·Dh(ξ̂k+1|k) ·Dϑ
−1
ξ̂k+1|k

(0). (24)

Proof: One has

ỹk+1 := yk+1 � ŷk+1|k
= (h(ξk+1)�νk+1)� ŷk+1|k

= (h(ξ̂k+1|k � (ξk+1 � ξ̂k+1|k))�νk+1)� ŷk+1|k

= (h(ξ̂k+1|k � εk+1|k)�νk+1)� ŷk+1|k, (25)

Discarding O(|εk+1|k| |νk+1|) quadratic terms yields

ỹk+1 = ϕh(ξ̂k+1|k)
(h(ϑ−1

ξ̂k+1|k
εk+1|k))+νk+1. (26)

Linearising at εk+1|k = 0 and applying the chain rule yields
Ck+1

The Kalman update [1] for the a-posteriori distribution is
given by

ξk+1|k+1 ∼ N
ξ̂k+1|k

(ξ |µk+1,Σk+1|k+1) (27)

where

Kk+1 = Σk+1|k C>k+1 (Ck+1Σk+1|kC
>
k+1 +Qk+1)

−1, (28)

µk+1 = Kk+1ỹk+1, (29)
Σk+1|k+1 = (I−Kk+1Ck+1)Σk+1|k. (30)

Similarly to the prediction step, this update step hides
an additional change of coordinate. The generative noise
process is defined around the true output yk+1 = h(ξk+1),
but it is applied around the estimated output ŷk+1 = h(ξ̂k+1).
We discuss how one can address this using parallel transport
in Section V-B.

5) Reset: The reset step in an extended Kalman filter is
geometrically a change of coordinates. One sets

ξ̂k+1|k+1 = ξ̂k+1|k �µk+1.

The resulting posteriori distribution is taken to be

ξk+1|k+1 = N
ξ̂k+1|k+1

(ξ |0,Σk+1|k+1).

However, since the covariance Σk+1|k+1 was defined in coor-
dinates centered at ξ̂k+1|k it is clear that this second statement
does not follow directly. We address this in Section V-C

V. GEOMETRIC INSIGHT

In this section, we integrate the geometric perspective into
the EKF design methodology presented in Section IV, and
propose novel geometric modifications in the filter dynamics.

A. Geometric Prediction

In the prediction step (20), linearisation of the error
dynamics implicitly relocates the noise process κk+1 from
the true state prediction F(ξk,uk+1) to the estimated state
prediction F(ξ̂k|k,uk+1). To correct this, the covariance pre-
diction (22) should be modified to

Σk+1|k = Ak+1Σk|kA>k+1 +R+
k+1,

where R+
k+1 is a solution to the distribution transformation

NF(ξk,u)(ξ |0,Rk+1)≈ NF(ξ̂k|k,u)
(ξ |F(ξk,u)�F(ξ̂k|k,u),R

+
k+1).

However, solving for R+
k+1 requires knowledge of F(ξk,u),

and by extension ξk, which is unavailable in practice. We do
not address this issue in the present paper.

B. Geometric Update

Fig. 1. Demonstration of prior and measurement likelihood in normal
coordinates. The prior p(ξk+1) is defined on the normal coordinate around
ξ̂k+1|k , shown in blue. The measurement likelihood p(yk+1|ξk+1) is defined
on the normal coordinate h(ξk+1), shown in red.

As stated in Section IV-.4, the measurement fusion prob-
lem is solved by linearising the innovation yk+1 � ŷk+1|k in
terms of εk+1|k around zero. The covariance Ck+1Σk+1|kC>k+1
associated with the filter state estimate correctly captures
the change of coordinates from those centered at ξ̂k+1|k to
those centered at ŷk+1|k = h(ξ̂k+1|k), up to linearisation error.
However, the linearisation (25) also implicitly changes the
base point of the noise process νk+1 from the true output
h(ξk+1) to the estimated output h(ξ̂k+1), introducing error
into the Kalman gain computation (28). To address this, we
propose a novel geometric update step in the filter design,
which translates the likelihood distribution from Th(ξk+1)

N
to Tŷk+1N in a manner compatible with the affine connection
of N . Our goal is to approximate

yk+1 ∼ Nh(ξk+1)
(y|0,Q)≈ Nŷk+1(y|h(ξk+1)� ŷk+1,Q+),

(31)
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where Q+ denotes the transformation of the original mea-
surement covariance Q to Tŷk+1N . By modelling Q as a
(2,0)-tensor on Th(ξk+1)

N , it follows that

Q+ = Pγ(1)Q, (32)

where γ(t) = h(ξk+1)� t(ŷk+1|k � h(ξk+1)) is the geodesic
from the true output h(ξk+1) to the estimated output ŷk+1.
With this new covariance Q+, the standard filter update step
can be applied.

The parallel transport (32) requires knowledge of the true
output h(ξk+1) which is not available in practice. Here we
propose two choices of approximation.

1) Measurement yk+1: The measurement yk+1 can be used
as an approximation of h(ξk+1). As shown in Fig 1, the
likelihood distribution is centred at h(ξk+1). When the state
estimate is poor relative to the measurement, one may take
the likelihood to be centred at yk+1, and thus approximate
the parallel transport from h(ξk+1) to ŷk+1 by the one from
yk+1 to ŷk+1.

2) Naive posteriori: Another alternative is given by the
posterior estimated by the original filter update; that is,
without geometric update. Following the process in Section
IV-.4, one can compute an estimate of the posterior ξ̂k+1|k+1.
This new estimate can be used to approximate the true output
yk+1 and repeat the update step to perform the geometric
update. This process of estimating a more accurate posterior
can be iterated to achieve better performance, at a higher
computational cost. Algorithm 1 provides pseudocode for
this iterated update.

Remark 5.1: Some existing filter designs, such as the iter-
ated Kalman filter [34] and the iterated EKF on Lie groups
[35], use an iterative scheme to generate a more accurate
estimation of the output matrix Ck+1 than can be obtained
through a single linearisation step. In contrast, Algorithm 1
uses iteration to better approximate the measurement noise
covariance Qk+1 in the correct coordinates, while the output
matrix is computed in a single step.

C. Geometric Reset

There have been several works on the covariance reset
in error-state Kalman filters. It was first mentioned by
Markley [36] in the context of multiplicative EKF, recently
generalised by Muller et al. [28][29]. The authors proposed
the covariance reset step using parallel transport in [20][22]
for filtering on homogeneous spaces. The same concept can
be extended onto a smooth manifold.

At the end of the update step, the posterior distribution
(27) is a concentrated Gaussian about the predicted state
ξ̂k+1|k, but with a non-zero mean µk+1 and updated co-
variance Σk+1|k+1. However, the next filter iteration requires
that the state estimate is expressed in coordinate centred at
ξ̂k+1|k+1 = ξ̂k+1|k �µk+1 so that the mean of the distribution
is zero. The goal of the reset step is to identify Σ

+
k+1|k+1 such

that

ξk+1 ∼ N
ξ̂k+1|k

(ξ |µk+1,Σk+1|k+1)≈ N
ξ̂k+1|k+1

(ξ |0,Σ+
k+1|k+1).

(33)

Algorithm 1: Iterated geometric update in the pro-
posed EKF

Input: prior (ξ̂k+1|k,Σk+1|k), likelihood Qk+1
Input: measurement yk+1
Q0

k+1← Qk+1,
for i in range (num of iter) do

K′k+1 = Σk+1|k C>k+1 (Ck+1Σk+1|kC
>
k+1 +Qi

k+1)
−1,

µ
′
k+1 = K′k+1ỹk+1,

ξ̂
′
k+1|k+1 = ξ̂k+1|k �µ

′
k+1,

ȳ′k+1 = h(ξ̂ ′k+1|k+1),

Qi+1
k+1 = Pγ(t)Qk+1 where γ(t) = ȳ′k+1 � t(ŷk+1 � ȳ′k+1),

end
Update:

Kk+1 = Σk+1|k C>k+1 (Ck+1Σk+1|kC
>
k+1 +Qi+1

k+1)
−1,

µk+1 = Kk+1ỹk+1,

Σk+1|k+1 = (I−Kk+1Ck+1)Σk+1|k.

Similarly to the geometric update, this may be solved using
parallel transport on M . The covariance Σ is modelled as a
(2,0)-tensor on TM . Then the reset covariance Σ

+
k+1|k+1 is

found to be

Σ
+
k+1|k+1 = Pγ(1)Σk+1|k+1, (34)

where γ(t) is the geodesic curve γ(t)= ξ̂k+1|k�tµk+1. Unlike
the geometric update step, all the information required to
solve (34) exactly is available in practice.

VI. SIMULATION

In this section, we use an example of attitude estima-
tion from two directional measurements to demonstrate the
algorithm performance. The results of different choices of
reference are compared.

A. System Formulation

We consider an attitude estimation problem with gyro-
scope input and measurements of two known directions. Let
{G} and {I} denote the global reference frame and the body-
fixed reference frame, respectively. Let GR ∈ SO(3) denote
the rigid body orientation of a moving rigid platform. The
onboard gyroscope, which has the same orientation as the
platform, returns the bias-free angular velocity Iω ∈R3. With
non-rotating, flat earth assumption, the deterministic system
kinematics is given by

RG
k+1 = RG

k exp
(

ω
I ∧

δ t
)
. (35)

For the estimation problem, we consider the measurements
of two known directions d1,d2. The output space is then
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defined to be N := S2 × S2. The configuration output is
written

h(GR) = (GR>d1,
GR>d2), (36)

where d1 and d2 satisfy d1×d2 6= 0; i.e. the state is always
observable.

B. Implementation

We simulate an oscillatory trajectory for attitude esti-
mation (35). The state GR is initialized with identity ro-
tation matrix. The angular velocity input is defined to
be Iω = (0.1× cos(τ),0.1× sin(τ),0.1× sin(τ)) rad/s. The
trajectory is realized using Euler integration at time step
δ t = 0.02s. The estimator has an onboard gyroscope which
reads the angular velocity but is corrupted by piecewise
constant zero-mean white Gaussian noise with variance
0.02 (rad/s)2 per axis. Additionally, there are sensors that
provide measurements of two known directions d1 = (0,1,0)
and d2 = (1/

√
2,0,1/

√
2). The directional measurement (36)

are corrupted by Gaussian noise with zero-mean and non-
homogeneous covariance diag(0.01,0.03,0.05) rad2.

We implement the geometric extended Kalman filter de-
scribed in Section IV, where the manifold SO(3) is equipped
with the Cartan-Schouten 0-connection [37]. Consequently,
the normal coordinates are exactly the Lie group exponential
coordinates, and the extended Kalman filter is equivalent to
the Equivariant filter described in [38]. The parallel transport
on the state space SO(3) is solved using the Cartan-Shouten
0-connection on Lie groups. On the output space S2×S2, we
use the canonical affine connection induced by the Cartan-
Shouten 0-connection on the Symmetry Lie group SO(3)
[37]. For comparison, we study the proposed filter with
and without our proposed geometric update and covariance
reset. All filters are initialized by sampling the concentrated
Gaussian distribution R̂0 ∼ NI3(0,1.5

2I3).

C. Simulation Results

To compare their performance, we plot the error in the
attitude estimate as well as the filter energy. The filter energy
is 1

m ε>Σ−1ε with m being the dimension of the system state
and follows a χ2 distribution. The expected value of filter
energy is 1, while a smaller or larger value indicates the
filter is under-confident or over-confident in its estimation,
respectively.

Figure 2 shows the performance of the filter with and
without the proposed geometric modifications. Due to the
large initial error in the state estimate, relative to the mea-
surements, the proposed geometric update is seen to make a
significant improvement to the convergence of the filter in the
transient period. The black trajectory is obtained by using the
true output for parallel transport in the geometric update, and
is presented only as a reference since this is not possible in
practice. It has the best performance over all four implemen-
tations. The green and purple trajectories, which are using
the naive posterior and measurement for parallel transport,
respectively, perform similarly in the transient period, and
both outperform the conventional EKF implementation (in
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Fig. 2. The rotation estimation error and filter energy are shown for various
EKF implementations. The original EKF implementation (—) discussed in
Section IV is compared with the EKF with covariance reset and geometric
update obtained from the true output (—), the measured output (—), and
the naive posterior (—). The yellow horizontal line in the second subplot
is for filter energy 1.

red). In terms of the asymptotic behavior, however, the EKF
using measurements for parallel transport generally performs
worse than all alternatives. The reason is that once the filter
is converged, the state estimate tends to be more accurate
than the measurement in approximating the true output. In
this case, using the measurement as an approximation of the
true output will only decrease filter performance.
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Fig. 3. Comparison of the performance of EKF implementations with
geometric update using 0 (—), 5 (—), 10 (—), and 15 (—) iterations. An
EKF using the true output for the geometric update (—) is included as a
reference for comparison.

Figure 3 shows the results of EKF implementations with
iterated geometric updates discussed in Algorithm 1. We
implement the EKF with 0, 5, 10, and 15 iterations in the
geometric update. As in Figure 2, an EKF where the true
output is used for the geometric update is provided as a
reference for comparison. One observes that the performance
of the EKF with iterated update improves as more iterations
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are used, and approaches that of the EKF with true output
update. Each iteration requires additional computation and
this must be balanced with improved accuracy; however,
these results clearly demonstrate the advantage of including
the proposed geometric update in an EKF design.

VII. CONCLUSIONS

This paper presents an error-state extended Kalman fil-
ter design methodology for smooth manifolds with affine
connections. The proposed algorithm includes additional
geometric modifications in the filter update and error reset
steps by applying parallel transport to the state and mea-
surement covariance matrices. The theory is applied to an
example problem of attitude estimation with two directional
measurements. The simulation results demonstrate the con-
vergence of the proposed EKF, and show the improvements
in performance gained from applying the proposed geometric
modifications.
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generic sensor fusion algorithms with sound state representations
through encapsulation of manifolds,” Information Fusion, vol. 14,
no. 1, pp. 57–77, 2013.

[6] J. Clemens and K. Schill, “Extended kalman filter with manifold state
representation for navigating a maneuverable melting probe,” in 2016
19Th International Conference On Information Fusion (FUSION).
IEEE, 2016, pp. 1789–1796.

[7] M. Brossard, A. Barrau, and S. Bonnabel, “A code for unscented
kalman filtering on manifolds (ukf-m),” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
5701–5708.

[8] S. Hauberg, F. Lauze, and K. S. Pedersen, “Unscented kalman filtering
on riemannian manifolds,” Journal of mathematical imaging and
vision, vol. 46, pp. 103–120, 2013.

[9] S. Said and J. H. Manton, “On filtering with observation in a manifold:
Reduction to a classical filtering problem,” SIAM Journal on Control
and Optimization, vol. 51, no. 1, pp. 767–783, 2013.

[10] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman filtering
for spacecraft attitude estimation,” Journal of Guidance, Control, and
Dynamics, vol. 5, no. 5, pp. 417–429, 1982.

[11] F. L. Markley and J. L. Crassidis, Fundamentals of spacecraft attitude
determination and control. Springer, 2014, vol. 1286.

[12] J. Thienel and R. Sanner, “A coupled nonlinear spacecraft attitude
controller and observer with an unknown constant gyro bias and gyro
noise,” IEEE Transactions on Automatic Control, vol. 48, no. 11, pp.
2011–2015, 2003.

[13] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary
filters on the special orthogonal group,” IEEE Transactions on Auto-
matic Control, vol. 53, no. 5, pp. 1203–1218, 2008.

[14] S. Bonnabel, “Left-invariant extended kalman filter and attitude es-
timation,” in 2007 46th IEEE Conference on Decision and Control,
2007, pp. 1027–1032.

[15] S. Bonnable, P. Martin, and E. Salaün, “Invariant extended kalman
filter: theory and application to a velocity-aided attitude estimation
problem,” in Proceedings of the 48h IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese Control
Conference, 2009, pp. 1297–1304.

[16] A. Barrau and S. Bonnabel, “The invariant extended kalman filter as
a stable observer,” IEEE Transactions on Automatic Control, vol. 62,
no. 4, pp. 1797–1812, 2017.

[17] A. W. Long, K. C. Wolfe, M. J. Mashner, G. S. Chirikjian et al., “The
banana distribution is gaussian: A localization study with exponential
coordinates,” Robotics: Science and Systems VIII, vol. 265, 2013.

[18] G. Bourmaud, R. Mégret, A. Giremus, and Y. Berthoumieu, “Discrete
extended kalman filter on lie groups,” in 21st European Signal
Processing Conference (EUSIPCO 2013). IEEE, 2013, pp. 1–5.

[19] G. Bourmaud, R. Mégret, M. Arnaudon, and A. Giremus,
“Continuous-discrete extended kalman filter on matrix lie groups using
concentrated gaussian distributions,” Journal of Mathematical Imaging
and Vision, vol. 51, no. 1, pp. 209–228, Jan 2015.

[20] R. Mahony, P. van Goor, and T. Hamel, “Observer design for nonlinear
systems with equivariance,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 5, no. 1, p. null, 2022. [Online]. Available:
https://doi.org/10.1146/annurev-control-061520-010324

[21] P. van Goor, T. Hamel, and R. Mahony, “Equivariant filter (eqf),” IEEE
Transactions on Automatic Control, 2022.

[22] Y. Ge, P. van Goor, and R. Mahony, “Equivariant filter design for
discrete-time systems,” in 2022 IEEE 61st Conference on Decision
and Control (CDC). IEEE, 2022, pp. 1243–1250.

[23] G. Loianno, M. Watterson, and V. Kumar, “Visual inertial odometry
for quadrotors on se (3),” in 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 1544–1551.

[24] P. van Goor and R. Mahony, “Eqvio: An equivariant filter for visual
inertial odometry,” arXiv preprint arXiv:2205.01980, 2022.

[25] H. A. Hashim, M. Abouheaf, and M. A. Abido, “Geometric stochastic
filter with guaranteed performance for autonomous navigation based
on imu and feature sensor fusion,” Control Engineering Practice, vol.
116, p. 104926, 2021.

[26] A. Fornasier, Y. Ng, R. Mahony, and S. Weiss, “Equivariant filter
design for inertial navigation systems with input measurement biases,”
in 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 4333–4339.

[27] T. Hamel, R. Mahony, J. Trumpf, P. Morin, and M.-D. Hua, “Homog-
raphy estimation on the special linear group based on direct point
correspondence,” in 2011 50th IEEE Conference on Decision and
Control and European Control Conference. IEEE, 2011, pp. 7902–
7908.

[28] M. W. Mueller, M. Hehn, and R. D’Andrea, “Covariance correction
step for kalman filtering with an attitude,” Journal of Guidance,
Control, and Dynamics, vol. 40, no. 9, pp. 2301–2306, 2017.

[29] R. Gill, M. W. Mueller, and R. D’Andrea, “Full-order solution to
the attitude reset problem for kalman filtering of attitudes,” Journal
of Guidance, Control, and Dynamics, vol. 43, no. 7, pp. 1232–1246,
2020.

[30] J. M. Lee, Introduction to Riemannian manifolds. Springer, 2018,
vol. 2.

[31] A. auf Mannigfaltigkeiten and C. Hertzberg, “A framework for sparse,
non-linear least squares problems on manifolds.”

[32] Y. Wang and G. S. Chirikjian, “Error propagation on the euclidean
group with applications to manipulator kinematics,” IEEE Transac-
tions on Robotics, vol. 22, no. 4, pp. 591–602, 2006.

[33] J. Sola, “Quaternion kinematics for the error-state kalman filter,” arXiv
preprint arXiv:1711.02508, 2017.

[34] H. W. Sorenson, “Kalman filtering techniques,” in Advances in control
systems. Elsevier, 1966, vol. 3, pp. 219–292.

[35] G. Bourmaud, R. Mégret, A. Giremus, and Y. Berthoumieu, “From
intrinsic optimization to iterated extended kalman filtering on lie
groups,” Journal of Mathematical Imaging and Vision, vol. 55, pp.
284–303, 2016.

[36] F. L. Markley, “Attitude error representations for kalman filtering,”
Journal of guidance, control, and dynamics, vol. 26, no. 2, pp. 311–
317, 2003.

[37] K. Nomizu, “Invariant affine connections on homogeneous spaces,”
American Journal of Mathematics, vol. 76, no. 1, pp. 33–65, 1954.

[38] A. Fornasier, Y. Ng, C. Brommer, C. Böhm, R. Mahony, and S. Weiss,
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