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Abstract— In this paper, the generalized Nash equilibrium
(GNE) seeking problem for continuous games with coupled
affine inequality constraints is investigated in a partial-decision
information scenario, where each player can only access its
neighbors’ information through local communication although
its cost function possibly depends on all other players’ strate-
gies. To this end, a novel decentralized primal-dual algorithm
based on consensus and dual diffusion methods is devised for
seeking the variational GNE of the studied games. This paper
also provides theoretical analysis to show that the designed algo-
rithm converges linearly for the last-iterate, which, to our best
knowledge, is the first to propose a linearly convergent GNE
seeking algorithm under coupled affine inequality constraints.
Finally, a numerical example is presented to demonstrate the
efficiency of the obtained theoretical results.

I. INTRODUCTION

Game theory, which is the study of mathematical models
of strategic interactions among rational agents, has been
commonly applied in artificial intelligence (AI) [1], including
multi-agent AI systems [2], imitation and reinforcement
learning [3], and adversarial training in generative adver-
sarial networks [4]. A principal concept in noncooperative
games is Nash equilibrium (NE), representing a stable state
from which no one has incentive to deviate. The types
of convergence involved in existing NE seeking algorithms
can be classified into the empirical distribution (i.e., time-
average) of no-regret play and day-to-day play (i.e., last-
iterate convergence) [5]. In general, a no-regret learning
algorithm can achieve sublinear regret bounds and generally
ensure the convergence in the sense of empirical distribution,
while may often fail to guarantee the last-iterate convergence,
except for quite a few scenarios, such as two-player zero-sum
games [6]. As such, this paper focuses on the last-iterate
convergence because of its significance in many practical
applications, such as generative adversarial networks [4].

On the other hand, decentralized Nash equilibrium (NE)
and generalized NE (GNE) seeking problems have received
considerable attention owing to the advantages of decentral-
ized algorithms such as in scalability, reliability, robustness
and efficiency. Roughly speaking, the existing decentralized
algorithms for seeking NEs of noncooperative games can
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be divided into three categories according to the types of
constraints on the players’ strategy sets. Specifically, the first
class is for unconstrained games [7]–[9], i.e., each player can
take actions from the whole set of real numbers or vectors.
The second category is for games with local and uncoupled
strategy set constraints [10]–[15], while the third type is
for games with coupled constraints including affine/nonlinear
equality/inequality constraints [16]–[19]. Most of these ex-
isting works focus on the design and the asymptotic con-
vergence analysis of decentralized NE seeking algorithms,
yet the convergence rate of the proposed algorithms is less
discussed.

In fact, the convergence rate of an algorithm is extremely
important in providing useful insights into how quickly the
generated sequence approaches the target point or (general-
ized) NEs. Therefore, proposing a decentralized NE seeking
algorithm with a faster convergence rate is necessary.

Our Contribution. In this paper, we consider the GNE
seeking problem for continuous games with coupled affine
inequality constraints, where individual players aim to pri-
vately minimize their own cost functions by selecting a
strategy profile satisfying the coupled inequality. It is noted
that the cost function of each player may depend on all
other players’ strategies, and it is possibly impractical for
all information sharing especially in large-scale networks.
Hence, a partial-decision information scenario, i.e., each
player can only access its own strategy and cost function,
as well as neighbors’ strategies through communicating via
a connected graph, is considered as done in some existing
works [12], [15]–[23]. In such setting, a novel decentral-
ized primal-dual algorithm, where each player is equipped
with additional variables to estimate all the other players’
actions and the global dual variable, is proposed to learn
the unique variational GNE of the considered game and
is also rigorously proved to be linearly convergent for the
last-iterate. Finally, a numerical example on a Nash-Cournot
game is presented to illustrate the effectiveness of theoretical
results. The main contributions of this paper are summarized
as follows.

1) To the best of our knowledge, this paper is the first to
propose a linearly last-iterate convergent decentralized
GNE seeking algorithm for continuous games with
general cost functions and coupled affine inequality
constraints. It can also be seen from simulations that our
designed algorithm outperforms the forward-backward
(FB) algorithm in [16] in terms of the convergence rate.
Furthermore, the upper bounds for required stepsizes
are explicitly provided, which depend on the number
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of players, the communication structure, and the affine
inequality along with the Lipschitz and monotonicity
constants of the pseudo-gradient function.

2) The linearly convergent algorithm is creatively designed
by modifying the typical primal-dual algorithm and
drawing into a positive semi-definite matrix related to
the communication topology, and simultaneously fol-
lowing the consensus and dual diffusion methods.

Related Work. To date, it has been proven that decentral-
ized gradient-based algorithms to seek NEs for continuous
games without constraints converge linearly [8], [9], [24].
For continuous games with local strategy set constraints, an
inexact-ADMM algorithm was proposed in [15] for finding
NEs, which was proved to converge relatively fast with a
sublinear convergence rate O( 1k ), where k is the iteration
time. Then, decentralized algorithms based on gradient-play
method were devised for games with local set constraints in
[20], [21], [25] and were shown to possess a linear conver-
gence rate. Nevertheless, there are few works on linearly
convergent GNE seeking algorithms for games with cou-
pled constraints. A recent study [22] proposed a proximal-
point algorithm by designing a novel preconditioning matrix
for learning GNE of games with strategy set constraints
and affine inequality constraints, which can improve the
convergence speed compared with gradient-play methods,
yet the linear convergence is not established. In [23], a
continuous-time GNE learning algorithm in continuous-time
for continuous games with strategy set constraints and affine
equality constraints was studied and theoretically shown to
have an exponential convergence rate when no local strategy
set constraints are involved. Recently, in [26], the method
of singular perturbations analysis was leveraged to establish
linear convergence of the designed fully distributed iterative
GNE seeking algorithm for aggregative games with affine
coupled constraints. Our paper is the first to design a linearly
convergent GNE seeking algorithm for games under coupled
constraints with general cost functions, while the authors in
[26] studied aggregative games although set constraints were
considered.

Notations. Denote by R, Rn and Rm×n the sets of real
numbers, real n-dimensional column vectors and real n×n-
matrices, respectively. Let Rn

+ be the set of nonnegative real
vectors. The symbol [m] for an integer m > 0 represents
the set {1, 2, . . . ,m}. 1n ∈ Rn (resp. 0n ∈ Rn) is a
vector with all elements being 1 (resp. 0). For a vector or
matrix A, its transpose is denoted as A⊤. col(x1, . . . , xn) :=
(x⊤

1 , . . . , x
⊤
n )

⊤. The Kronecker product of matrices A and B
is denoted as A⊗B. PΩ[x] := argminy∈Ω ∥y− x∥ denotes
the projection of the vector x ∈ Rn onto the closed convex
set Ω and NΩ(x) := {v|v⊤(y − x) ≤ 0, ∀y ∈ Ω} is the
normal cone to Ω at x ∈ Ω. diag{a1, a2, . . . , an} represents
a diagonal matrix with ai, i ∈ [n], on its diagonal. Denote
by λmin(A), λmax(A) and ρ(A) the smallest eigenvalue,
largest eigenvalue and spectral radius of a square matrix A,
respectively. σ(A) is the smallest nonzero singular value of
A. For a positive semi-definite matrix M ∈ Rn×n, denote

∥x∥M :=
√
x⊤Mx with x ∈ Rn.

II. PROBLEM FORMULATION

Consider a normal-form continuous game with N play-
ers, where each player takes its strategy (decision, action)
xi ∈ Rni . Denote by x = col(x1, . . . , xN ) and x−i :=
col(x1, . . . , xi−1, xi+1, . . . , xN ) the joint action of all the
players and the joint action of all the players except i, respec-
tively. The private cost function of player i is fi(xi, x−i), de-
pending on both local variable xi and other players’ decisions
x−i. The objective of player i is to selfishly minimize its
own cost function fi(xi, x−i) subject to a coupled constraint
Ω := {x ∈ Rn|Ax ≤ b}, where A := [A1, A2, . . . , AN ],
b :=

∑N
i=1 bi, n :=

∑N
i=1 ni, Ai ∈ Rm×ni and bi ∈ Rm.

Here, Ai and bi can only be privately accessible to player i.
In this setting, a strategy profile x∗ = (x∗

i , x
∗
−i) is called a

GNE if for each i ∈ [N ], the following inequality holds:

fi(x
∗
i , x

∗
−i) ≤ fi(xi, x

∗
−i), ∀xi ∈ Xi(x

∗
−i), (1)

where Xi(x
∗
−i) := {xi ∈ Rni |Aixi ≤ b−

∑
j ̸=i Ajx

∗
j}.

Some standard assumptions on this game are listed below.

Assumption 1: For each i ∈ [N ], the function fi(xi, x−i)
is continuously differentiable and convex with respect to
xi given any x−i. For each i ∈ [N ], ∇ifi(xi, x−i) :=
∂fi(xi,x−i)

∂xi
is L-Lipschitz continuous for some L > 0, i.e.,

∥∇ifi(x)−∇ifi(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

Moreover, the constraint set Ω is nonempty and satisfies
Slater’s constraint qualification.

Define the pseudo-gradient F : Rn → Rn of game (1) as

F (x) := col(∇1f1(x1, x−1), . . . ,∇NfN (xN , x−N )) (2)

for x = col(x1, . . . , xN ) with xi ∈ Rni , i ∈ [N ].
Assumption 2: The pseudo-gradient F defined in (2) is

µ-strongly monotone for some µ > 0, that is, there holds

(F (x)− F (y))⊤(x− y) ≥ µ∥x− y∥2, ∀x, y ∈ Rn.
From the definition of GNE in (1), the strategy profile

x∗ = (x∗
i , x

∗
−i) is a GNE, if and only if x∗

i is an optimal
solution to the following optimization problem

min
xi∈Rni

fi(xi, x
∗
−i)

s.t. Aixi ≤ b−
∑
j ̸=i

Ajx
∗
j .

For this optimization problem, the Lagrangian function for
each player i ∈ [N ] is given as

Li(xi, λi;x−i) := fi(xi, x−i) + λ⊤
i (Ax− b), (3)

where λi ∈ Rm
+ is the dual variable. If the profile x∗ =

(x∗
i , x

∗
−i) is a GNE, then by Karush-Kuhn-Tucker (KKT)

conditions of this optimization problem, there exist dual
variables λ∗

i ∈ Rm
+ , i ∈ [N ], such that

0ni
= ∇ifi(x

∗
i , x

∗
−i) +A⊤

i λ
∗
i , (4)

0m ∈ −(Ax∗ − b) +NRm
+
(λ∗

i ), i ∈ [N ]. (5)
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If λ∗
1 = λ∗

2 = · · · = λ∗
N = λ∗, then the GNE with

dual variable λ∗ is called a variational GNE, as discussed in
many existing references [16]–[19], which is economically
justifiable. Here, it is assumed that a variational GNE of
the considered game exists as we focus on the design and
linear convergence analysis of the GNE seeking algorithm
rather than the existence of GNEs. From the variational
inequality perspective, a variational GNE x∗ is a solution
to the following variational inequality:

F⊤(x∗)(x− x∗) ≥ 0, ∀x ∈ Ω.

Then, under Assumption 2, the variational GNE of game (1)
is unique [27].

Note that there is no central node that bidirectly com-
municates with all players to provide them with global
information, i.e., a partial-decision information setting, and
NE seeking under partial-decision information has been in-
vestigated only recently [14], [16]. As designing NE seeking
algorithms at each player needs opponents’ decisions to
compute the value or gradient of its cost function when
not available directly, in this paper, we assume that players
can only have partial-decision information, received by com-
municating with their neighbours over an undirected graph,
denoted by G = (V, E ,W ), where V = [N ] is the node
set corresponding to all players, E is the edge set, and
W = (wij) ∈ RN×N is the adjacency matrix. wij > 0
if (i, j) ∈ E meaning that players i and j can communicate
directly with each other, and otherwise wij = 0. It is assumed
that wii > 0 for all i ∈ [N ] in this paper. Furthermore,
wij > 0 also means the impact of player j on i. A standard
assumption is made on graph G.

Assumption 3: G is connected. The adjacency matrix W is
symmetric and doubly stochastic, that is, W⊤ = W , W1N =
1N and 1⊤

NW = 1⊤
N .

Based on Assumption 3, which is a mild condition in
decentralized algorithms, one has [28]

σ := ∥W − 1N1⊤
N/N∥ ∈ [0, 1). (6)

Assumption 4: For each i ∈ [N ], Ai has full row rank.
Under Assumption 4, it can be ensured that

λmin(AiA
⊤
i ) > 0. Assumption 4 is essential in proving the

linear convergence of the designed algorithm, which is often
made for linear convergent algorithms for decentralized
optimization with affine constraints (see [29] and references
therein).

In summary, in this setting, the aim of this paper is to de-
sign a decentralized algorithm to find the unique variational
GNE of game (1) and also establish the linear convergence
rate of the designed algorithm.

III. THE DEVELOPED ALGORITHM AND
CONVERGENCE ANALYSIS

In this section, a decentralized primal-dual algorithm is
first proposed to learn the unique variational GNE for
coupled constrained games in a partial-decision information
scenario and then the linear convergence result is provided.

Note that each player cannot access the information of
all other players in the partial-decision information setting.
Then, each player is assigned two additional variables to
estimate the decisions of other players and the global dual
variable, respectively, through local communication via the
graph G. It can be obtained that the weighted matrix W
is primitive under Assumption 3. Then, W has a sim-
ple eigenvalue 1 and other eigenvalues being in (−1, 1).
Therefore, IN − W is a positive semi-definite matrix, and
(INm − W ⊗ Im)λ = 0 for λ ∈ RNm if and only if
λ = 1N ⊗ λ for some λ ∈ Rm. Define a symmetric matrix
B ∈ RN×N such that B2 = 1

2 (IN−W ), then λmin(B
2) = 0,

λmax(B
2) = λ2

max(B) < 1, and it holds that (B⊗Im)λ = 0
for λ ∈ RNm is equivalent to λ = 1N⊗λ for some λ ∈ Rm.

Denote Π := diag{A1, . . . , AN}, b := col(b1, . . . , bN )
and B := B ⊗ Im. At iteration k, player i is endowed with
variables xi,k, xji,k and λi,k to represent its decision, the
estimate of player j’ decision and the estimate of the global
dual variable, respectively. xii,k = xi,k. In view of B(1N ⊗
λ∗) = 0, a modified primal-dual algorithm is proposed as
follows:

xi,k+1 =
N∑
j=1

wijxij,k − α∇ifi(xi,k,x−i,k)

− αA⊤
i λi,k, (7a)

x−i,k+1 =
N∑
j=1

wijx
j
−i,k, (7b)

vk+1 = λk − B2λk + β(Πxk+1 − b) + Byk, (7c)
yk+1 = yk − γBvk+1, (7d)
λk+1 = PRNm

+
[vk+1], (7e)

where x−i,k := col(x1i,k, ..., x(i−1)i,k, x(i+1)i,k, ..., xNi,k),
xj
−i,k := col(x1j,k, . . . , x(i−1)j,k, x(i+1)j,k, . . . , xNj,k),

xk = col(x1,k, . . . , xN,k), λk := col(λ1,k, . . . , λN,k),
vk,yk ∈ RNm are auxiliary variables, and α, β, γ > 0
are stepsizes to be determined. Moreover, one can initialize
xi,0 ∈ Rni , x−i,0 ∈ Rn−ni , λ0 ∈ RNm arbitrarily, and
y0 = 0Nm. Iteration (7) cannot be implemented in a fully
decentralized manner since the matrix B is involved. In what
follows, let us equivalently transfer iteration (7) into a fully
decentralized algorithm. By (7c), one has

vk+1 − vk = (INm − B2)(λk − λk−1) + βΠ(xk+1 − xk)

+ B(yk − yk−1). (8)

Substituting (7d) into (8) yields that for k ≥ 0,

vk+1 = (INm − γB2)vk + (INm − B2)(λk − λk−1)

+ βΠ(xk+1 − xk), (9)

where v0, λ−1, y−1 and x0 are set to be v0 = 0Nm, λ−1 =
0Nm, y−1 = 0Nm and Πx0 = b, respectively. Let C =
(cij)N×N := B2 = 1

2 (IN − W ). Then iteration (7) can be
rewritten as a fully decentralized algorithm (cf. Algorithm
1).

Remark 1: Algorithm (7) is inspired by [29], [30], where
the aim is to minimize a global cost function. However, the
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Algorithm 1 Decentralized Primal-Dual Algorithm
Each player i maintains vector variables xi,k ∈ Rni , xji,k ∈
Rnj , vi,k ∈ Rm and λi,k ∈ Rm at iteration k.
Initialization: For any i ∈ [N ], initialize xji,0 and λi,0

arbitrarily, and set vi,0 = 0m, λi,−1 = 0m and Aixi,0 = bi.
Iteration: For every player i, repeat for k ≥ 0:

xi,k+1 =

N∑
j=1

wijxij,k − α∇ifi(xi,k,x−i,k)

− αA⊤
i λi,k, (10a)

x−i,k+1 =
N∑
j=1

wijx
j
−i,k, (10b)

vi,k+1 = vi,k − γ
N∑
j=1

cijvj,k −
N∑
j=1

cij(λj,k − λj,k−1)

+ λi,k − λi,k−1 + βAi(xi,k+1 − xi,k), (10c)
λi,k+1 = PRm

+
[vi,k+1]. (10d)

problem studied here is different, i.e., continuous games,
which, together with the considered partial-decision infor-
mation setting, leads to that the theoretical analysis in this
paper is significantly distinctive from that in [29], [30].

Remark 2: Algorithm 1, which is equivalent to iteration
(7), is not a typical primal-dual method since the auxiliary
variable vk, instead of the dual variable λk, is used in
(7d). This, together with the term −B2λk used in (7c),
plays a critical role in establishing linear convergence when
dealing with coupled inequality constraints. In fact, iteration
(7) is devised based on an augmented Lagrangian function
obtained by adding −1/2λ⊤B2λ−y⊤Bλ to the Lagrangian
function (3) since Bλ∗ = 0Nm. Moreover, note that the
projection step in (7e) is to tackle the inequality constraints,
then Algorithm 1 can reduce to the case of affine equality
constraints by letting λk = vk and the results obtained in this
paper are applicable to solving the distributed GNE seeking
problem with coupled affine equality constraints.

Next, we rewrite (10a) and (10b) into a compact form
by introducing two matrices Ri and Si for player i to
manipulate its decision variable xi,k and the estimate x−i,k

of other players’ decisions. Let

Ri :=
[
0ni×n<i Ini 0ni×n>i

]
, (11)

Si :=

[
In<i 0n<i×ni 0n<i×n>i

0n>i×n<i 0n>i×ni In>i

]
, (12)

where n<i :=
∑i−1

j=1 nj and n>i :=
∑N

j=i+1 nj . Then it
can be easily verified that R := diag{R1, . . . ,RN} and
S := diag{S1, . . . ,SN} satisfy

RR⊤ = In, SS⊤ = INn−n, R⊤R+ S⊤S = INn,

RS⊤ = 0, SR⊤ = 0.

Denote

xi,k := col(x1i,k, . . . , xNi,k),

xk := col(x1,k, . . . ,xN,k).

One has Rixi,k = xi,k, Sixi,k = x−i,k. Hence, xk = Rxk

and col(x−1,k, . . . ,x−N,k) = Sxk. With these notations,
(10a) and (10b) can be rewritten as

xk+1 = RWxk − αF(xk)− αΠ⊤λk, (13)
Sxk+1 = SWxk, (14)

where W := W ⊗ In and

F(xk) :=col(∇1f1(x1,k,x−1,k), . . . ,

∇NfN (xN,k,x−N,k)). (15)

In view of xk = R⊤xk + S⊤Sxk, one has

xk+1 = Wxk − αR⊤F(xk)− αR⊤Π⊤λk. (16)

Before presenting the main result, some auxiliary lemmas
are first provided. All the proofs are omitted here due to
limited space, which will be provided in the full-length paper.

Lemma 1: Iteration (10) or equivalently (7) has a fixed
point (x∗,v∗,y∗,λ∗) satisfying

x∗ = Wx∗ − αR⊤F(x∗)− αR⊤Π⊤λ∗, (17)
v∗ = λ∗ + β(Πx∗ − b) + By∗, (18)

Bv∗ = 0Nm, (19)
λ∗ = PRNm

+
[v∗], (20)

and B2λ∗ = 0Nm. For any fixed point (x∗,v∗,y∗,λ∗), it
holds that x∗ = 1N ⊗ x∗ for x∗ ∈ Rn and λ∗ = 1N ⊗ λ∗

for λ∗ ∈ Rm with x∗ being the variational GNE of game (1)
and λ∗ being the optimal global dual variable. �

Based on (17) and the uniqueness of x∗, it can be seen
that the optimal dual solution λ∗ is also unique. For the fixed
point of iteration (7), (x∗,v∗,y∗,λ∗) with x∗ = 1N ⊗ x∗,
v∗ = 1N ⊗ v∗, λ∗ = 1N ⊗ λ∗ and y∗ being in the range
space of B, define the error variables:

x̃k := xk − x∗, ṽk := vk − v∗, (21)

ỹk := yk − y∗, λ̃k := λk − λ∗. (22)

Based on (7) and (16)–(20), the error variables evolve as

x̃k+1 = Wx̃k − αR⊤(F(xk)− F(x∗))

− αR⊤Π⊤λ̃k, (23)

ṽk+1 = λ̃k − B2λ̃k + βΠ(xk+1 − x∗) + Bỹk, (24)
ỹk+1 = ỹk − γBṽk+1, (25)

λ̃k+1 = PRNm
+

[vk+1]− PRNm
+

[v∗]. (26)

Denote W∞ := 1N1⊤
N/N⊗In and x⊥,k := (INn−W∞)xk,

then xk = W∞xk + x⊥,k, (x⊥,k)
⊤W∞xk = 0, and

WW∞ = W∞W = W∞W∞ = W∞. Hence,

∥Wxk − x∗∥2 = ∥WW∞xk − x∗ +Wx⊥,k∥2

= ∥W∞xk − x∗∥2 + ∥Wx⊥,k∥2, (27)
∥Wx⊥,k∥ = ∥(W −W∞)x⊥,k∥ ≤ σ∥x⊥,k∥, (28)
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where the inequality is derived based on (6).
Lemma 2: Under Assumptions 1–3, the error variable x̃k

generated by Algorithm 1 satisfies

∥x̃k+1∥2 ≤ ρ(Mα)∥x̃k∥2 −
µ

N
α∥W∞xk − x∗∥2

− σLα∥x⊥,k∥2 − α2∥R⊤Π⊤λ̃k∥2

+ 2α(x∗ − xk+1)
⊤Π⊤λ̃k, (29)

where

Mα :=

[
1− µ

N α+ L2α2 (σ + 1)Lα
(σ + 1)Lα σ2 + 3σLα+ L2α2

]
. (30)

�
Lemma 3: The error variables ṽk, ỹk and λ̃k generated

by Algorithm 1 satisfy

∥ṽk+1∥2INm−γB2 + γ−1∥ỹk+1∥2

= ∥λ̃k − B2λ̃k + βΠ(xk+1 − x∗)∥2 − ∥Bỹk∥2

+ γ−1∥ỹk∥2, (31)

where γ > 0 is chosen as γ < λ−2
max(B). �

Next, it is ready to present the main convergence result
on Algorithm 1.

Theorem 1: Under Assumptions 1–4, the sequences {xk},
{vk}, {yk} and {λk} generated by Algorithm 1 satisfy

Ek+1 ≤ ρ(Mα)∥x̃k∥2 −min{µ/N, σL}α∥x̃k∥2

− α2∥Π⊤λ̃k∥2 + αβ−1∥λ̃k∥2 + 2αβ−1∥B2λ̃k∥2

− 2αβ−1∥Bλ̃k∥2 − αβ−1∥Bỹk∥2

+ αβ−1γ−1∥ỹk∥2, (32)

where Ek+1 := ∥x̃k+1∥2INn−2αβR⊤Π⊤ΠR +

αβ−1∥λ̃k+1∥2INm−γB2 + αβ−1γ−1∥ỹk+1∥2.
In addition, if α, β, γ > 0 satisfy ρ(Mα) < 1 and

β < min
{ µ

2Nλmax(Π⊤Π)
,

σL

2λmax(Π⊤Π)
,

1

αλmin(ΠΠ⊤)

}
,

γ < min
{ 2− 2λ2

max(B)
1− αβλmin(ΠΠ⊤)

,
1

λ2
max(B)

}
, (33)

then, xk and λk generated by Algorithm 1 linearly converge
to x∗ and λ∗, respectively. Specifically,

Ek+1 ≤ aEk, (34)

where a := max{ρ(Mα), 1−αβλmin(ΠΠ
⊤), 1−σ2(B)γ} <

1. �
Theorem 1 presents the linear last-iterate convergence

result on the designed distributed GNE seeking algorithm in
Algorithm 1 and also provides the explicit convergence rate
by appropriately selecting stepsizes α, β and γ. However,
how to find a feasible stepsize α is still not clear. In what
follows, a proposition on α is derived to show the range of
feasible α ensuring ρ(Mα) < 1.

Proposition 1: If the positive constant α satisfies α <

min
{

1−σ2

9σL ,
√
1−σ2
√
3L

, µ(1−σ)
6NL2

}
, then ρ(Mα) < 1. �

Remark 3: From Theorem 1 and Proposition 1, it can
be observed that the upper bounds of stepsizes α, β and γ
depend on the number of the players, the communication

structure, and the affine inequality, as well as the Lipschitz
and monotonicity constants of the pseudo-gradient function.
In fact, from the proofs, one can find that these bounds on the
stepsizes are not tight and larger stepsizes may be selected
to ensure better convergence results.

IV. SIMULATIONS

In this section, consider a Nash-Cournot game [16], where
there are N firms producing a commodity that is sold to
m markets. Each firm i ∈ [N ] participates in ni (≤ m)
of the m markets and determines its production quantities
xi ∈ Rni to be delivered to the ni markets. Since each
market has a maximal capacity, which results in a coupled
affine inequality Ax ≤ b, where A = [A1, . . . , AN ] with
A ∈ Rm×ni , x = col(x1, . . . , xN ), b = col(b1, . . . , bm)
with bi > 0 being the capacity of the market i. The aim
of each firm is to minimize its cost function fi(xi, x−i) =
ci(xi)−p(Ax)⊤Aixi, where ci(xi) = x⊤

i Qixi+q⊤i xi is the
production cost of firm i with Qi ∈ Rni×ni being a positive
definite matrix, qi ∈ Rni and p : Rm → Rm being a price
vector function associating with the markets. Specifically,
the price for market i is the ith element of p(Ax), i.e.,
[p(Ax)]i = Li − wi[Ax]i, where Li > 0 and wi > 0. Set
N = 50, m = ni = 5, and Ai = Im, i ∈ [N ]. Choose Qi

to be a diagonal matrix. For each i ∈ [N ], randomly select
the diagonals of Qi, bi, Li and wi from [1, 8], [1, 2], [10, 20],
[1, 3] and [5, 10] with uniform distributions, respectively. The
communication graph is randomly created as shown in Figure
1. This setup satisfies all our theoretical assumptions, and
set the stepsizes β = 0.1 and γ = 0.1. The evolutions of
∥xk−x∗∥/||x∗|| generated by Algorithm 1 and the proposed
forward-backward (FB) algorithm in [16] are provided in
Figure 2 under different stepsizes α and τ , respectively,
where two algorithms are performed with the same initial
conditions and implemented by Matlab R2020a running on
a laptop equipped with Intel(R) Core(TM) i7-1065G7 CPU
@ 1.30GHz. It can be seen from Figure 2 that our algorithm
performs a faster convergence, and larger feasible stepsizes
also lead to the faster convergence.
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Fig. 1: Random communication graph with 50 nodes.
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Fig. 2: Distance from the variational GNE for Algorithm 1
and the FB algorithm in [16] with different α and τ .

V. CONCLUSION

In this paper, the GNE seeking problem for continuous
games with coupled affine inequality constraints was solved
by designing a novel primal-dual algorithm. The linear
last-iterate convergence of the designed algorithm was also
rigorously analyzed and the bounds of feasible stepsizes were
provided. Future work of interest may be on the design of
linearly convergent algorithms for continuous games with
compact strategy set constraints and coupled nonlinear in-
equality constraints.
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