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From Noisy Data to Consensus Control: A Localized Design Approach
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Abstract— This paper considers a localized data-driven con-
sensus problem for leader-follower multi-agent systems charac-
terized by unknown linear agent dynamics, where each agent
computes its local control gain using only its locally collected
noise-corrupted data. Both discrete-time and continuous-time
data-driven protocols are presented, which can achieve leader-
follower consensus by handling the challenge of the heterogene-
ity in control gains caused by local data sampling. The design of
these data-driven consensus protocols involves low-dimensional
linear matrix inequalities. Simulation examples are provided to
demonstrate the effectiveness of the proposed methods.

I. INTRODUCTION

Over the past decades, there has been a growing in-
terest in data-driven control due to its advantages of not
requiring precise system models that often contain redundant
parameters and are difficult to identify accurately through
experiments. Quite a few studies have emerged on data-
driven control for linear systems, adopting the paradigm of
Willems’s fundamental lemma proposed in [1]. For instance,
a data-based architecture is developed in [2], where the
control input sequences are set to be persistently exciting
(PE) during the data collection procedure, to address several
classic control problems including stabilization, optimality,
and robust control. In [3], the definition of data informativity
is first introduced to decide the necessity of the PE condition
by defining a system set that is compatible with the collected
data. Additionally, various control tools, including S-lemma
[4], [5], linear fractional transformations [6], [7], Finsler’s
lemma [8], Petersen’s lemma [9], and system level synthesis
approach [10], have been leveraged to address data-driven
control problems based on the noise-corrupted data.

More lately, considerable attention has been devoted to
data-driven control of network systems, owing to their wide-
ranging applications and remarkable extensibility. Neverthe-
less, the inherent constraint of the network system and the
distinct data sampled from different agents generally bring
challenges to the design of the data-based algorithms. The
works in [11] address an output synchronization problem
for heterogeneous linear systems using noise-corrupted data.
However, this approach assumes precise knowledge of the
external noise data, which is often unrealistic in cyber-
physical systems. Moreover, a distributed predictive control
scheme is devised in [12] utilizing sampled data to stabilize
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coupled network systems. Additionally, intriguing studies in
[13], [14], [15] introduce data-based consensus algorithms
for general linear multi-agent systems, in which an identical
control gain is computed based on the data collected at one
single agent and shared across all agents.

Inspired by the aforesaid discussions, in this paper we
consider consensus control based on noise-corrupted data
for both continuous-time and discrete-time leader-follower
multi-agent systems with general linear dynamics from a
fresh perspective. In contrast to existing centralized data-
driven mechanisms relying on data sampled from one single
agent [13], [14], we propose a localized data-based control
architecture adopting the informativity approach, where each
agent samples its local data and calculates its local control
gain using its own collected data. It is noteworthy that the
sampled data from different agents are generally distinct
from each other, introducing heterogeneity into control gains.
To surmount this obstacle, we develop control protocols in
a distributed fashion by synchronizing the distinct control
gains to reach consensus for the leader-follower system.

The main contributions of this paper are at least three-fold:
i) The localized data-driven consensus algorithms presented
in this paper, circumventing the centralized design approach
in [13], [14] necessitating an identical data-based gain for all
agents, determine local gains for each agent in a coordinated
way using locally collected data, which is consistent with
the essential nature of distributed control. ii) We present
specific design methods for data-driven consensus control
algorithms tailored to both continuous-time and discrete-time
multi-agent systems, accompanied by rigorous theoretical
stability analyses. iii) The data-driven consensus protocols
are formulated by solving low-dimensional linear matrix
inequalities (LMIs) in this paper. By contrast, the LMI
conditions obtained in [14], proportional to the scale of the
network, are typically of high dimensions.

The organization of this article is as follows: In Section
II, we present the problem formulation. In Sections III and
IV, we propose the localized data-driven consensus protocol
for discrete-time and continuous-time multi-agent systems
based on the noise-corrupted data, respectively. In Section
V, we present simulation examples to verify the validity of
the proposed algorithms. Section VI concludes this paper.

II. PROBLEM FORMULATION

Consider the multi-agent system consisting of one leader
and N followers with the following linear time-invariant
dynamics:

6xi(t):Axi(t)+Bui(t)7 i:0715"'aN7 (l)
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where Ox;(t) = x;(t +1) for the discrete-time case and
0x;(t) = x;(¢) for the continuous-time case, u;(¢) € R? and
x;(t) € R" represent the input and state of the i-th agent. The
pair (A,B) in (1) is assumed to be controllable but unknown.
The control input of the leader indexed by node O in (1) is
set to ug = 0.

The network topology of the system (1) is denoted by a
graph 4 = {¥, &}, where ¥ represents the set of nodes and
& C ¥ x ¥ stands for the set of edges. Agent j can receive
information from agent i if the ordered pair (i, j) € &. The
adjacent matrix 2/ associated with the graph ¢ is defined
such that a;; > 0 if (j,i) € &, and a;; = 0 otherwise. The
degree matrix 7 is defined as & = diag(dp, - - - ,dy), where
di= E]}’:Oa,-j for i =0,1,2,--- ,N. The Laplacian matrix is
defined as L= 2 — o/ .

Assumption 1: The graph ¢ associated with the agents in
(1) has a directed spanning tree with the leader agent as a
root. The subgraph among followers is undirected.

Under the above assumption, the Laplacian matrix associ-

0 0
Lp L)

In view of the fact that the system parameter matrices A
and B are unknown, we need to design consensus control
protocols based on the sampled data. It should be noted
that the agent dynamics are often affected by prevalent
disturbances and measurement errors [16]. Thus, during the
data collection procedure, we consider the following agent
dynamics corrupted by external perturbations:

ated with ¢ can be partitioned as L =

Ox;(t) = Axi(t) + Bui(t) + w;(t), i=0,1,--- ,N.  (2)

Specifically, we sample finite-length data from each agent
and build the following data matrices:

Xio = [x(1) x(2) xi(T)]

Ui = [ui(1)  ui(2) ui(T)],

Xir = [xi(2) x(3) x;(T +1)] in discrete time, (3)
Xip = [1(1) %(2) %(T)]in continuous time,

Wi=[o(l) o(2) o (T)], i=0,1,-- N,

where the noise matrix W; is unknown and each agent only
has access to its own sampled data.
Clearly, the constructed data matrices (3) satisfy

Xiy =AXi- +BU—- +W, “4)

for i=0,1,---,N, according to (2).

. .| X .
Assumption 2: The constructed data matrix Ul } satis-
i

U =n+pfori=1,2,--- N.

Next, the control objective is to devise discrete-time
and continuous-time consensus control protocols based on
the sampled data (3) for the followers in (1) to achieve
leader-follower consensus, i.e., tli_)lgx,'(t) —xo(t) =0 for i =
1,2,---N.

The following lemmas will be exploited in the subsequent
data-based control protocol design.

fies rank [Xl}

Lemma 1: (Matrix S-lemma [4]) Consider two matrices

Enn En Fii Fo
E= F =
[EZI Exn 1 Fn

with E <0 and Fpy < 0. Suppose that ker(Fy) C ker(Fiz).
T

If there exists a matrix C such that {]—} F [I—J > 0, then

C C
T

I I e 1 I

[C} E [C} > 0 holds for all C satisfying LC} F {C] >0

if and only if there exist scalars o > 0 and 3 > 0 such that

E—aF >

Bl 0
0 Ol ’

Lemma 2: (Petersen’s Lemma [9]) Consider matrices 2 €
R o e R™P, 7 € R?%4, and .¥ € R with 2 = 27
and J# = 7T > 0. Define H = {2 € RP*9: T # < H#}.
Then, 2+ W # S +.ST#TwT <0 for all # € H if and
only there exists a scalar € > 0 such that 2+ e# #T +
e\ ST 7 <0.

III. LOCALIZED DATA-DRIVEN CONSENSUS CONTROL

FOR DISCRETE-TIME SYSTEMS

In this section, we provide the specific design methods of
discrete-time data-driven consensus control protocols for the
agents in (1).

We suppose that the additive noise matrix W; satisfies the
following assumption, which also appears in several existing
results [4], [14], [17].

Assumption 3: The noise matrix W; satisfies

[I VVZ] |:N21 N22:| |:WT:| 207 1_0717 7N7 (5)

1

where known matrices Ny > 0, Ny <0, and Nsz =N, are
of suitable dimensions.
From (4) and (5), we can obtain that the discrete system
pair (A,B) in (1) satisfies
T T

I I X I X 1
AT |0 —Xx_ {x“ %12} 0 —Xx._| |AT| >0,
BT| |0 —u_|Ll"™ 7210 —u._| |BT

where i =0,1,--- ,N. It is worth noting that the system model
(A,B) in (1) cannot be identified accurately from the sampled
data (3) due to the external perturbations @;(r) during the
data collection. In other words, there may be multiple sys-
tems that are able to generate the sampled data (3). We define
a discrete system set that is compatible with the collected
data (3) as S; = {(A,B)|(A,B) satifies (6)}. Obviously, the
true system (A,B) € S;. Therefore, we aim to design a
common control protocol for the discrete-time agents in (1)
such that all the systems in S; can achieve leader-follower
consensus under the developed control protocol.

The localized data-driven consensus protocol for the
discrete-time agents in (1) is proposed as follows:

N

ui(t) = akKi(t) Y aijli(e) —x;(1)],
Y 7
Ki(t+1)=Ki(t) + ;)Wij[Kj(f) —Ki(t)],
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fori=1,---,N, where O‘_)LMN

A’l’nﬂ,x(Lff) W,J = 1+d , and Wi = H»Ld

Before moving on, we extend the definition of data infor-
mativity to the case of consensus of the discrete-time multi-
agent system (1), which serves as a foundational scheme to
achieve leader-follower consensus.

Definition 1: Suppose that Assumptions 1-3 hold. The
collected data (X;;,X;—,U;—) are informative for leader-
follower consensus of the discrete system (1), if there exists
a common data-based feedback gain matrix K;(0) such that
In ® A+ oLy ® BK;(0) is Schur stable for all (A,B) € S;.

Next, we will design the initial gain matrices K;(0) in the
protocol (7) for i=0,1,--- N, based on the collected noise-
corrupted data (3).

Theorem 1: Suppose that Assumptions 1-3 hold. The col-
lected data (Xi4,X;—,U;_) are informative for leader-follower
consensus of the discrete system (1), if there exist matrices
®; > 0, F; and scalars & >0, % > 0, and 7; > O satisfying
the following LMI:

M = Amin(Lyr), Av =

(I),'—%I 0 0 0 0 0 1 Xit
0 0 0 @& 0 0 0 —X._
0 0 —-%vi F 0 0 0 —Ui
o @& ET @ F' ool %o o
0 0 0 F t©l 0 0 0
0 0 0 0 0 I 0 0
Ny Nz T
{NZI sz} [ =0,

(3
N—A]

where v = % 7 and [¥]T denotes the matrix that can be

deduced by symmetry. Then, the protocol (7) with o =

ﬁ and K;(0) = E-C[Di_1 fori=0,1,---,N achieves leader-

follower consensus for the discrete-time agents in (1).
Proof: Define

¥, = [IN KA+ Othf ®BK,'(0)]T(IN ® P,)
X [y @A+ oLy ®BK;(0)] — Iy ® P,
where P, > 0. According to Definition 1, the collected data
(Xit+,X;—,U;_) are informative for leader-follower consensus
of the discrete system (1) if there exist appropriate K;(0)
and P; such that ¥; < 0 for all (A,B) €8;. Let ®; = Pf' and
F; = K;(0)®;. Consequently, ¥; < 0 is equivalent to

@, — (AD; + a4 BF,)T & (AD; + a4 BF;) > 0,

for k=1,---,N, where A; denotes the k-th eigenvalue of
Ly¢. This implies that ¥; < 0 can be transformed into the
above N inequalities. Choose o = yrEwm /1 . Evidently, —v <
aA,—1<vfork=1,--- ,N. Motlvated by [18], [19], it can
be inferred that A®; + OclkBF is Schur stable fork=1,--- N
if AD; 4 (14 A)BF; is Schur stable for all |A] < v. Then, it
follows that ¥; < 0 holds, if there exists ®; > 0 such that

®; — (AD; + (1 +A)BF)®; ' (A®; + (1+A)BF)" >0,

which is equivalent to

117 [ 0 I

AT @, . AT|>0. ©
g7) |° _[(1+A)E}(¢i)l[*r 5| v

Note that
®d; 0
_ D; 17| >0 (10)

holds if and only if

d 0 0 0 O

0O 0 0 & 0

0 0 0 F O|+FAI+I'AF; >0, (11)

0 &P ET d; 0

o 0 0 0 I

where F;=1[0 0 0 F, 0] andI=1[0 0 7 0 0]
Utilizing Lemma 2, (11) holds for all |A| < v if and only
if there exists a scalar 7; > 0 such that

® 0 0 0 0 0
0 0 0 ® 0 0
0 0 —-tvi F 0 0
0 0 0 F 1l 0
0 0 0 0 0 I

It is worth noting that using the Schur Complement
lemma [20] and pre- and post-multiplying [/ A B] and
[I A B] g on (12) directly leads to (9), implying that (12)
is a sufficient condition of (9). Note that all systems (A, B)
in S; satisfy (6). Then, using Lemma 1 for (6) and (12) leads
directly to (8). Next, we can conclude that if (8) is true, then
(9) holds for all (A,B) € S; and thereby ¥; < 0, implying
that the data (X;i,X;—,U;_) are informative for consensus
and hence Iy ® A+ (xL{f®BK,-(0) is Schur stable for all
(A,B) €8; with & = ;=27 and K;(0) = F;®; .

Finally, we need to prove that the proposed control proto-
col (7) along with the feedback gain matrix K;(0) obtained
by (8) can achieve consensus for the discrete-time agents
in (1). Define %(t) = x;(t) — xo(t), Ki(t) = Ki(r) — Ko(0), and
)=[& () @) i (t )]T Substituting (7) into (1)
gives

5(t) =[Iy ® A + Ly © BKy(0)]3(7)
a(Lss)1 @ BKi (1)

+ : (1),
a(Lyf)ny @ BRy(1)

where (Lsy); represents the i-th row of L. It can be inferred
from [21] that K;(z) exponentially converges to Ky(0) for
i=1,---,N. Note that Ko(0) renders Iy ® A+ Ly @ BKo(0)
Schur stable for all (A,B) in Sy, as evidenced by the
aforementioned analysis. Then, in view of Lemma 4 in [21],
we can derive from (13) that ¥(¢) — 0. This completes the
proof. [ ]

Remark 1: Discrete-time data-driven consensus problems
are also studied in [13], [14]. However, the control algorithms
in these works require an identical data-based feedback gain
for all agents, essentially demanding a centralized mech-
anism to collect data, compute the gain, and assign it to
every agent. In contrast, our approach provides a distributed
control architecture, where each follower computes its initial

13)
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local gain using its own locally sampled data. To tackle
the heterogeneity induced by different data-based gains,
an interaction mechanism is designed to synchronize the
feedback gain K;(¢) in (7). Besides, the network system in
[14] is transformed into a single linear system represented
in compact forms, directly leading to a high-dimensional
LMI that is hard to solve for large-scale networks. On the
contrary, the method given in Theorem 1 allows each agent to
compute its own initial gain matrix with a low-dimensional
LMI, making the proposed algorithm more applicable and
accessible in complex network scenarios.

IV. LOCALIZED DATA-DRIVEN CONSENSUS CONTROL
FOR CONTINUOUS-TIME SYSTEMS

In this section, we consider the design of a data-driven
consensus control algorithm for the continuous-time multi-
agent system (1). We need the following assumptions for the
solvability of this problem

Assumption 4: The input matrix B satisfies BBT < QQT,
where Q is a known matrix with full row rank.

Assumption 5: The noise matrix W; satisfies W;W; < AAT
fori=0,1,---,N, where A is a known matrix with full row
rank.

Similar to the analysis in Section III, there may be infinite
systems that can generate the collected data. Therefore, we
define the continuous system set that is consistent with the
sampled data (3) as £, = {[A B]: X,y =AX;_ +BU._ +
Wi, W;WI < AAT}. Substituting W; = X;; —AX;— — BU;_ into
the noise constraint, we can reformulate the system set X; as

s={[A B:[I A B LZ( ’ﬂ 4" <o)

={[A B]=C":Z;+C"X;+X]C+C"ViC <0},

X

where Z; = X; X1, — AAT, X; = — [U-
i

]Xii, and V; =

X ][x.1"
[Ul] Ul'i . It is straightforward to note that the system
— 11—

set X; is a matrix ellipsoid, which is equivalent to
L={[A Bl=C":(C-&)Vi(C-§&) <A},

where & = —V;'X; and A; = X!V, 'X; - Z,. Define .7; =
{(§i+V;1/2%iA}/2)T || %] < 1}. Tt is proved in [9] that
Y; = .7; and the unknown system matrices [A B] =C7 in
¥, can be parameterized by C = &; +V;1/ 2%iAl-1 / 2, which is
a combination of the constructed data matrices &;, V;,A;, and
the uncertainty term %;.

The goal of this section is to devise a common control
protocol for all the continuous systems in X; to achieve
leader-follower consensus. In this case, the localized control
protocol is devised as follows:

N
ui(t) = BKi(t) Zaij[xi(t) —xj(t)]7

N e (14)
Ki(t) =h ;}au[lfj(t) —Ki(1)],i=1,2,--- N,

where & > 0 is a scalar and 8 = ﬁ
1 N

Next, we will design the original gain matrix K;(0) in
(7) for i =0,1,--- /N based on their locally collected data
(3). Toward this, we first introduce the definition of data
informativity for leader-follower consensus of the continuous
linear multi-agent system (1).

Definition 2: The collected data (X;;,X;—,U;_) are infor-
mative for leader-follower consensus of the continuous sys-
tem (1), if there exists a common data-based feedback gain
matrix K;(0) such that Iy ® A+ BLss ® BK;(0) is Hurwitz for
all (A,B) € %,.

We present the main result of this section as below.

Theorem 2: Let Assumptions 1, 2, 4, and 5 hold. If
there exist matrices Q;,Y;, and a scalar & > 0 satisfying the
following LMI:

o"
-7 +007  yI  XI'— {Yf]
1
Y, -5 0 <0, (15
X; — LQV} 0 -V;
AN—Ay

in which v = yrou o then the sampled data (X;;,X;_,U;_) are
informative for leader-follower consensus of the continuous
system (1). Moreover, the proposed control protocol (7) with
Ki(0) =Y,0; ' for i =0,1,---,N achieves leader-follower
consensus for the continuous-time agents in (1).

Proof: Define

R; Z[IN XA +ﬁLff ®BK,‘(O)]QZ'
+ Q,’[]N ®A +BLff ®BK,‘(O)]T,

where 2; = Iy ® Q;. The collected data (X;y,X;—,U;_) are
informative for consensus of the continuous system (1) if
there exists a constant matrix Q; > 0 such that R; < 0 for all
(A,B) € X;. Note that R; < 0 is equivalent to

[A + BABK;(0)]Q; + QilA+ BABKi(0)]T <0 (16)

for k=1,2,---,N, where A; represents the k-th eigenvalue
of the matrix Lyy. Rewrite (16) into

1 11" T
[A } l:Kz(O):| 0i+0i |:Kl(0):| [A B}
(B — 1)BK:(0)Q; + (BA— 1)QKT (0)BT < 0.

Let ¥; = K;(0)Q;. Note that —v < A, —1 < v for k =
1,2,---,N. It then follows that (17) is true fork=1,2,--- | N,
if

a7

) . T
i 2]+ (2] w e omemrar<o a9

holds for all |p|< v. Utilizing Lemma 2, we can deduce that
(18) holds, if there exists T > 0 such that

T
2] 0] o n Lo <o
(19)
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Fig. 1.

The network topology

Multiple both sides of (19) by 7 and “absorb” it in Q; and

Y;, so that (19) is equivalent to
-1 rAnT
A B Qi n Oi

S+ |3| A B v Y+ BB <0. (20)
L l_ L l_

In view of Assumption 4, it is obtained that (20) holds, if

1T

A B Qi+Qi

ST A BT +vrv+00" <o @D
L l_ L l_

Substituting the parametrization of [A B}T =& +
V. '2%A)% into (21) yields

Qi o]" LAl2 ~1/2 | Qi
ol 5]+ 5] e G

T (22)
+ {g] V' 2ZA v T 47 <0.

1

Utilizing Lemma 2 again, we have (22) holds if and only if
there exists & > 0 such that

2 2] et fg] 2]

+v2YTy + Q0! <o.

Multiplying both sides of (23) by &; again and “absorbing”
it in P, Y;, we can deduce that (23) is true, if

o8] sone 5] 5

, (24)
+V?YiTY,~ 46007 <0.
1
Then substituting & = —V;'X; and A; = X/'V;'X; - Z;
into (24) and exploiting the well-known Schur complement
lemma, it is obtained that (24) is equivalent to (15), implying
that if (15) holds, then R; < O and thereby the collected
data (X;+,X;_,U;_) are informative for consensus of the
continuous system (1).

Next, it remains to ensure that the developed con-
trol law (14) achieves leader-follower consensus for the
continuous-time agents in (1) with K;(0) = Y;0; ! De-
fine e;(t) = x;(t) — x0(t), Ki(t) = Ki(t) — Ko(0), and e(t) =
lel (1) ei@) - e,(,(t)]T. Following similar lines in the
proof of Theorem 1 and in view of Lemma 1 in [22], it is
obtained that K; — 0 exponentially for i = 1,2,---,N and
lim;_,e e(¢) = 0. This completes the proof. [ |

x7

x2 X3 ——x4 ——x5 ——x6

0 5 10 15
time(s)

Fig. 2. The trajectories of the discrete-time multi-agent system (1) on the
X-axis under the topology in Fig. 1

[ YO ——yl ——y2 y3 ——y4 ——y5 ——y6 ——y7

5 10 15
time(s)

Fig. 3. The trajectories of the discrete-time multi-agent system (1) on the
Y-axis under the topology in Fig. 1

Remark 2: In Theorems 1 and 2, the collected data are
sampled from both leader and follower agents, while an in-
teraction mechanism is exploited to tackle the heterogeneity
in control gains. It is worth mentioning that the collected
data matrices (X;;,X;—,U;_) are informative for consensus
for i=0,1,--- N in both Theorems 1 and 2, which implies
that K;(0) renders Iy ® A+ aLsr ® BK;(0) Schur stable in
Section III and Iy ® A+ BLsr ® BK;(0) Hurwitz in Section
IV for i=0,1,2,--- ,N. This enhances the reliability of the
proposed control protocols, as the network system (1) can
still achieve consensus even if the leader agent becomes non-
functional and is unable to transmit its feedback gain and
state information.

V. ILLUSTRATIVE EXAMPLES

In this section, we will demonstrate the effectiveness
of the proposed algorithms via some simulation examples.
The communication topology is described in Fig. 1. The
dynamics of the discrete-time and continuous-time agents
are both characterized by (1), with

0 1 0.5
a= o513
For the discrete-time multi-agent system (1), we add
energy-bounded noises, drawn randomly from a Gaussian
distribution with zero mean and unit variance, to the mea-
surements of the agents’ dynamics. The noise signals, de-
noted as W;, adhere to the constraint in (5), where Ny =0.11,
Ny = —I, and Nip = Np; = 0. Solving (8) via the CVX
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x1

X2 x3

time(s)

Fig. 4. The trajectories of the continuous-time multi-agent system (1) on
the X-axis under the topology in Fig. 1

¥8 ——y4 ——y5 ——y6 ——y7
T T T

10 20 30 40 50 60 70
time(s)

Fig. 5. The trajectories of the continuous-time multi-agent system (1) on
the Y-axis under the topology in Fig. 1

toolbox [23] yields distinct initial feedback gain matrices
K;(0). Subsequently, we obtain the state trajectories of agents
as depicted in Figs. 2-3, from which it is manifest that
the discrete-time agents in (1) reach consensus under the
proposed protocol (7) based on the noise-corrupted data (3).

For the continuous-time case, we suppose that the energy-
bounded noise signals W; adhere to Assumption 4 for i =
0,1,---,N. The upper bound of noise is set to A = 1073,
Solving (15) via CVX also gives distinct original feedback
gain matrices. We demonstrate the state trajectories of the
agents in Figs. 4-5. It is clear from these figures the de-
veloped data-driven consensus control law (14) guarantees
leader-follower consensus for the continuous agents in (1) in
the presence of noise signals.

VI. CONCLUSIONS

In this paper, we have studied the localized data-driven
consensus control problem for leader-follower multi-agent
systems, allowing each agent to compute its local control
gain with its locally collected data. Both the discrete-time
and continuous-time data-driven consensus control prob-
lems have been addressed by solving low-dimensional LMIs
derived from the matrix S-lemma and Petersen’s lemma,
respectively. Potential future research includes data-driven
consensus control with output-feedback design and the inte-
gration of data-driven and event-triggered mechanisms.
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