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Abstract— Gene circuits within the same host cell often
experience coupling, stemming from the competition for limited
resources during transcriptional and translational processes.
This resource competition introduces an additional layer of
noise to gene expression. Here we present three multi-module
antithetic control strategies: negatively competitive regulation
(NCR) controller, alongside local and global controllers, aimed
at reducing the gene expression noise within the context
of resource competition. Through stochastic simulations and
fluctuation-dissipation theorem (FDT) analysis, our findings
highlight the superior performance of the NCR antithetic
controller in reducing noise levels. Our research provides an
effective control strategy for attenuating resource-driven noise
and offers insight into the development of robust gene circuits.

resource competition, gene circuit, noise reduction, anti-
thetic feedback control

I. INTRODUCTION

One fundamental challenge in synthetic gene circuit design
is posed by resource competition, which causes unintended
interplay between circuit modules [1]–[7]. Specifically, this
interplay arises from the competition for limited cellular re-
sources, such as RNA polymerases (RNAPs), ribosomes, and
transcription factors, among the exogenous genes within the
same host cell [8]–[10], [10]–[12]. This undesired coupling
not only alters the deterministic behavior of synthetic gene
circuits dramatically but also diminishes their robustness
by inducing significant fluctuations in gene expression. For
instance, resource competition manifests a linear interdepen-
dence in a simple two-gene system [9], or results in non-
monotonic rather than the expected monotonic dose-response
curves in an activation cascade circuit [10], and leads to
winner-takes-all behavior instead of the anticipated activation
of two modules in cascading bistable switches circuits [12].
In addition, resource competition was found to play a dual
role in gene expression noise, acting as both a novel source of
noise and a regulator that constrains the level of fluctuations
[13]. The uncertainties caused by context factors and noise
in a gene circuit may result in circuit failure [1], [14].
This underscores the imperative for developing techniques
that mitigate the repercussions of resource competition on
both deterministic and stochastic behaviors to enhance the
robustness of synthetic gene circuits.
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One effective strategy involves leveraging orthogonal re-
source systems, such as orthogonal ribosomes and RNA
polymerases, to establish distinct resource pools for genes
[15]–[17]. Another widely employed approach is to incor-
porate negative feedback or incoherent feedforward control
mechanisms into the circuit design [18]–[25]. These works
have demonstrated the effectiveness of these mechanisms in
controlling one of the modules in the system. Interestingly,
multi-module control strategies have been proposed to alle-
viate winner-take-all resource competition [26], [27].

Gene expression inherently exhibits fluctuations or ”noise”
due to various factors. This noise is generally classified
into two categories: intrinsic and extrinsic. Intrinsic noise
arises from the stochastic nature of biochemical reactions,
particularly when component copy numbers are low. On the
other hand, extrinsic noise stems from fluctuations in external
conditions affecting the system. These variations in gene
expression can disrupt the reliable function of gene circuits,
potentially leading to circuit failure. Effective control strate-
gies for reducing gene expression noise within the context of
resource competition are still lacking. Our previous work has
initiated the investigation of the noise reduction capabilities
of multi-module negative feedback control strategies [13].
Here, we proposed several antithetic controllers using differ-
ent architectural forms, including single-module controller
(SMC), local controller (LC), global controller (GC), and
negatively competitive regulation (NCR) controller. We com-
pared their noise reduction efficiency in the two-gene system
under different levels of resource competition and fluctuation.
Our finding reveals that the NCR antithetic mechanism is
optimal for noise reduction within the context of resource
competition. This research highlights the efficiency of the
NCR mechanism in conjunction with antithetic control for
enhancing noise mitigation in synthetic multi-module gene
circuits.

II. DESIGN AND FORMULATION OF ANTITHETIC
CONTROLLERS

The two-gene circuit with two similar but independently
controlled genes in the same cell is widely used to charac-
terize gene expression noise and resource competition [9],
[28]. Here we use this two-gene system to study the noise
reduction efficiency of several antithetic controllers. It is
worth noting that this work primarily focuses on intrinsic
noise in systems with limited translational resources, such as
bacteria. As shown in Fig. 1a, we considered the transcription
of GFP and RFP genes for mRNAs, translation for GFP
and RFP proteins, and degradation of both mRNAs and
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(b) Single Module Antithetic Controller (SMC)

⇝
⇝

⇝
⇝

∅

∅

∅∅

∅

∅

∅

⇝
⇝

⇝
⇝

∅

∅∅

∅

∅

∅

⇝
⇝

⇝
⇝

∅

∅

∅

∅

∅

⇝
⇝

⇝
⇝

∅

∅

∅

∅

⇝
⇝

⇝
⇝

∅

∅∅

∅

∅

∅

(e) Negatively Competitive Antithetic Controller (NCR)(d) Global Antithetic Controller (GC)

(c) Local Antithetic Controller (LC)

M1

M2

M1

M2

M1

M2

M1

M2

M1

M2

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

Fig. 1. Antithetic feedback control strategies for gene expression
noise reduction. (a)Diagram of the system with resource competition (RC)
between GFP and RFP modules in the absence of any controller. (b)
Diagram of the system with a single module antithetic negative feedback
controller (SMC), where a single controller RNA is produced by the GFP
module to facilitate the degradation of GFP mRNA through base pairing.
(c) Diagram of the system with local controller (LC), where one controller
RNA is produced by each module protein to independently regulate its
own module mRNAs. (d) Diagram of the system with a global controller
(GC), where a common controller RNA is produced by both modules to
promote the degradation of both module mRNAs. (e) Diagram of the system
with a negative competitive regulation module (NCR), which comprises two
separate negative feedback loops similar to LC but also involves the joint
degradation of the two controller RNAs.

proteins. In addition, we considered the competition between
two modules for shared transcriptional and translational
resources. This resource coupling contributes to the overall
protein noise as the fluctuation of one mRNA leads to the
fluctuation in the available translational resource for the other
mRNA [13].

Antithetic feedback control strategy has been employed
to achieve perfect adaptation in the presence of biochemical
noise and environmental fluctuations [29]–[31]. Moreover,
an antithetic controller has been used to adapt the expression
of the gene of interest to variations in ribosome availability
caused by resource competitors [21].

Here, we aim to test the effectiveness of antithetic con-
trollers in reducing gene expression noise within the context
of resource competition. We proposed several architectures
of antithetic controllers (Fig. 1b-e) by applying the antithetic
mechanism on one module or both modules of the circuit in
different ways. Antisense RNAs are introduced to the down-
stream of the module protein and contain complementary
sequences with their target mRNAs. In the case of a single-
module controller (SMC, Fig. 1b), the antithetic mechanism
has been implemented into the system by incorporating an
antisense RNA (control RNA C1 in Fig. 1b) into the GFP
module that is promoted by this module and facilitates the

degradation of GFP mRNA through base pairing. Unlike
the SMC model, the local controller (LC) has two distinct
antisense RNAs (C1 and C2, Fig. 1c) that are promoted by
two module proteins and control two module mRNAs respec-
tively. Global controller (GC), on the other hand, employs a
common antisense RNA (C) promoted by both modules to
facilitate the degradation of both module mRNAs (Fig. 1d).
The Negatively competitive regulation (NCR) controller is
similar to LC but it includes an additional step where the
two antisense RNAs (C1 and C2) undergo co-degradation
(Fig. 1e).

We first built a general model with a set of ordinary
differential equations (ODE) to describe the dynamics of
mRNA (Mj), control mRNA (Cj), and protein (Pj) levels
for all systems with/without controllers.

d[Mj ]

dt
= vmj

Rmj/Qmj

PFm
− dm[Mj ]− Tc[Mj ][Cj ]

−λGlobTc[Mj ][Ci(̸=j)]

(1)

d[Cj ]

dt
= vcj

[Rcj ]/Qcj

PFm
− dcj [Cj ]− Tc[Cj ][Mj ]

−λGlobTc[Cj ][Ci( ̸=j)]− λNCRTc[C1][C2]

(2)

d[Pj ]

dt
= vpj

[Mj ]/Qpj

PFp
− dp[Pj ] (3)

The index j here indicates module j (1 or 2), and index i
signifies the regulation of molecules in module i on module
j. The first terms in these are the production rates of mRNA,
controller mRNA, and protein with maximum rate vmj , vcj ,
vpj respectively. Here PFm and PFp define the effects
of resource competition in transcription and translational
processes as in our previous works [12], [26], [27],

PFm = 1 +
∑ [Rmj ]

Qmj
+
∑ [Rcj ]

Qcj
(4)

PFp = 1 +
∑ [Mj ]

Qpj
(5)

Rmj and Rcj are the fractions of active promoters for
the mRNA and controller mRNA respectively. While Rmj

is a constant, Rcj =
[Pj ]

n

[Pj ]n+Kcj
as the controller mRNA is

regulated by protein, where n is the Hill coefficient and Kcj

represents the protein binding affinity.
The degradation rates of mRNA, controller mRNA, and

protein, are assumed to be linearly dependent on their
concentration with constants dm, dcj , dp, respectively. In
addition, the co-degradation of control mRNA and its cor-
responding target circuit RNA or the other control RNA is
considered. In the global controller, the co-degradation of
mRNA and the controller antisense mRNA from the compet-
ing module is considered additionally. The co-degradation of
two controller antisense mRNAs is considered in the NCR
controller. Parameters λGlob and λNCR are used here to
distinguish the types of the controllers. The system acts as
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Fig. 2. Stochastic simulation shows a noise reduction with four
antithetic negative feedback control strategies. (a)-(e) Time course sim-
ulations using the Gillespie algorithm show the trajectories of GFP (green)
and RFP (red) under scenarios without a controller (a), with single-module
controller (b), local controller (c), global controller (d), and negatively
competitive regulation controller (e), respectively. The horizontal black
line indicates the mean protein level. (f)-(j) The GFP distributions for the
respective models are indicated, along with their coefficient of variation. For
this simulation, we assumed that the GFP and RFP mRNA copy numbers
were 40 and 5, respectively, and that the GFP and RFP copy numbers were
both 100. RC: no controller; SMC: single-module controller; LC: local
controller; GC: global controller; NCR: negatively competitive regulation
controller.

a local controller by setting λGlob = 0 and λNCR = 0, as
GC by setting λGlob = 1 and λNCR = 0, and as NCR with
λNCR = 1 and λGlob = 0.

Based on the ODE model, we built a stochastic model
to simulate the stochastic trajectories of mRNA and pro-
tein levels using the Gillespie algorithm. In addition, we
combined it with fluctuation-dissipation theory (FDT) to
estimate the level of intrinsic noise in gene expression [32],
[33]. More information on these two methods can be found
in our previous work [13]. Here, we focus on quantifying
GFP protein noise, defined by its coefficient of variation.
To evaluate the effectiveness of each controller in reducing
noise, we also calculated the average fold change in GFP
noise relative to the uncontrolled system. Given that the mean
numbers of mRNA and protein are the key determinants
of the noise level of the protein, here we set their mean
numbers the same for the system with/without controllers
by re-scaling the transcription (vmj) and translation (vpj)
rate constants throughout our research. We fixed the protein
numbers at 100 while changing the mRNA numbers in the
range [0, 50]. For simplicity, here we do not take into account
the variation in the translational/transcriptional resources
and gene copy numbers. That is, both the production rates
of mRNA and controller antisense mRNA are constant in
our system. Based on our previous works [13], [27], the
kinetic parameter values used for our simulation are, unless
otherwise specified, dm = 0.01, dp = 0.03, Rm1 = Rm2 =
50, Kc1 = Kc2 = 250, n = 2, Qp1 = Qp2 = 50, vc1 = vc2 =
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Fig. 3. Noise reduction with four antithetic feedback controllers
depends on GFP and RFP mRNA copy numbers. The GFP noise level
as a function of RFP mRNA under three different scenarios where the GFP
mRNA copy number is set at 5 (a), 25 (b), and 50 (c) for all four controllers.
RC: no controller; SMC: single-module controller; LC: local controller; GC:
global controller; NCR: negatively competitive regulation controller.

200, dc1 = dc2 = 1, Qm1 = Qm2 = 1, Qc1 = Qc2 = 1.

III. RESULTS

A. Noise reduction by the introduction of antithetic con-
troller mechanism

First, we examined whether the proposed antithetic con-
trollers can reduce intrinsic noise levels using stochastic
simulation. The stochastic trajectories of GPF and RFP
proteins, both with and without controllers, are illustrated in
Fig. 2a-e. Here, the GFP and RFP mRNA numbers are fixed
at 40 and 5 respectively. The small number of RFP mRNA
leads to a significant fluctuation in RFP protein, consequently
triggering substantial variations in GFP levels due to resource
competition. This observation is evident through the anti-
correlated fluctuations observed in the GFP and RFP proteins
(Fig. 2a). Introducing an antithetic control strategy on either
a single module (SMC) or both modules (LC, GC, NCR) has
the potential to reduce the noise level, as evidenced by the
decreased fluctuations observed in GFP protein trajectories
and the narrower distribution of GFP expression compared
to the RC case (Fig. 2f-j). Interestingly, the NCR controller
exhibits the narrowest GFP distribution among all the con-
trollers, suggesting its exceptional performance in reducing
noise levels within the context of resource competition.

B. The performance of antithetic feedback controllers in
noise reduction depends on mRNA levels

To investigate the influence of GFP and RFP mRNA copy
numbers on protein noise levels, we expanded our analysis
to examine the dependence of the GFP protein noise level
on the quantity of RFP mRNA. Specifically, we fixed the
GFP mRNA at low copy number (GFP mRNA = 5, Fig. 3a),
moderate copy number (GFP mRNA = 25, Fig. 3b), and
high copy number (GFP mRNA = 50, Fig. 3c). We assessed
the GFP noise level under these conditions using the FDT
method.

At a low copy number of GFP mRNA (Fig. 3a), a notable
level of GFP noise is observed in the absence of a controller
RNA (RC system, green line). This is attributed to minor
changes in GFP mRNA resulting in substantial fluctuation
in translation. Furthermore, GFP noise increases with the
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Fig. 4. GFP protein noise within the GFP and RFP mRNAs space
shows overall noise reduction performance of four antithetic feedback
controllers. (a)-(e) Heatmap across GFP and RFP mRNA space depicting
the level of GFP protein noise for the system without a controller (a), SMC
(b), local controller (c), global controller (d), and NCR controller (e). The
color bar indicates the GFP protein noise level. (f) The average fold change
in GFP noise level relative to the uncontrolled system is shown for all four
controllers to compare their noise reduction efficacy. RC: no controller;
SMC: single-module controller; LC: local controller; GC: global controller;
NCR: negatively competitive regulation controller.

RFP mRNA copy number due to the resource competition-
mediated coupling. Interestingly, all four antithetic con-
trollers demonstrated significant reductions in noise levels,
with the GC controller slightly less effective than others in
this scenario. As we raise the copy number of GFP mRNA,
the GFP noise level in the RC case decreases but still shows
an increase with RFP mRNA copy number (Fig. 3b-c). The
four controllers exhibit varying degrees of effectiveness in
noise reduction. As shown in Fig. 3b, SMC and LC con-
tinue to demonstrate comparable levels of noise reduction.
Intriguingly, the noise curves exhibit a decrease in the GC
case while showing an increase in the NCR case with rising
RFP mRNA copy numbers. At one critical point, the noise
curves of NCR and GC intersect. Below this critical point,
NCR outperforms the other controllers, while GC excels in
the range of large RFP mRNA copy numbers. Additionally,
it is observed that the critical point shifts to the right with
a high copy number of GFP mRNA (Fig. 3c), expanding
the range where the NCR works as the optimal controller.
These findings suggest that GC performs optimally in regions
where two competing mRNAs are comparable in abundance,
whereas NCR excels in cases where the system exhibits
greater asymmetry.

C. NCR antithetic controller exhibits the most effective per-
formance in noise reduction

To further compare the performance of the four antithetic
controllers in noise reduction, we systematically examined
the GFP noise level in the space of GFP and RFP mRNA
copy numbers. As shown in Fig. 4a, the GFP noise level
significantly decreases with GFP mRNA copy number and
slightly decreases with RFP mRNA copy number, consistent
with Fig. 3. All four controllers demonstrated different
degrees of noise reduction (Fig. 4b-e). SMC and LC
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Fig. 5. Controller architecture determines the noise reduction efficacy.
The dependence of the average fold change in GFP noise level in the systems
with LC, GC, and NCR controllers on parameter (a) λGlob and (b) λNCR.

demonstrate similar noise reduction capabilities across the
entire space, except for a small region characterized by high
GFP mRNA and low RFP mRNA copy numbers, where LC
outperforms SMC slightly. Overall, both controllers exhibit
a great performance with low GFP mRNA copy numbers
but experience a decline as the GFP mRNA copy numbers
increase. This pattern is attributed to the single control
strategy in SMC and the separate control strategies in LC.

Interestingly, GC and NCR show distinct patterns. GC
demonstrates effectiveness in noise suppression when both
GFP and RFP mRNA levels are either very low or very high
(Fig. 4d), but it fares poorly in regions where GFP and RFP
mRNA levels are imbalanced. In other words, GC excels
at controlling noise under symmetric scenarios. The NCR
system exhibits superior overall noise reduction capabilities
across a wider range, particularly in asymmetric scenarios
characterized by imbalanced mRNA copy numbers. The only
scenario where GC outperforms NCR is when both mRNA
copy numbers are high. These interesting patterns arise from
the presence of cross-regulations within the NCR and GC
mechanisms. In GC, the two modules may inhibit each other
through the shared control RNA C, while in NCR, the two
modules may mutually promote each other through the co-
degradation of their control RNAs. In the imbalanced region,
the fluctuation of two mRNAs is more positively correlated
due to positive cross-regulation in NCR. This positive corre-
lation can counteract the negative correlation resulting from
resource competition, leading to better performance of NCR
over GC in these regions. In the region of high mRNA levels,
the impact of this cross-regulation is minimal. However, GC
tends to have a higher copy number of control RNAs due to
the shared control RNA and the absence of co-degradation,
leading to the superior performance of GC over NCR in this
region.

To assess the overall performance of these controllers, we
defined noise reduction efficacy as the average fold change in
the GFP noise level relative to the baseline uncontrolled RC
gene circuit. Fig. 4f illustrates the noise reduction efficacy for
the four controllers, conclusively demonstrating that the NCR
antithetic controller achieves the most effective performance
in noise reduction. These results indicate that controller ar-
chitecture significantly influences their performance in noise
suppression.
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D. Noise reduction efficacy is determined by the controller
architecture

To illustrate that controller design is crucial for effectively
reducing gene expression noise, we first examined how noise
reduction efficacy depends on two hyperparameters, λGlob

and λNCR. The parameter λGlob is specific for GC, repre-
senting the additional degradation of each module’s mRNA
by the opposite control RNA compared to LC. The global
controller system is the same as LC when λGlob = 0, and
its strength increases with λGlob. Similarly, The parameter
λNCR is specific for the NCR controller, describing the
additional co-degradation of two module’s control RNAs
compared to LC. The NCR system becomes the same as
LC When λNCR = 0, and has a stronger controller strength
with higher values of λNCR.

Fig. 5a shows the dependence of the noise reduction
efficacy on λGlob for the system with local, global, and NCR
controllers. Given that LC and NCR systems are independent
of the λGlob, the average fold change in the GFP noise level
remains unchanged with variations in λGlob, exhibiting a flat
curve. Intriguingly, the average fold change in the GFP noise
level for the GC system initially decreases from the same
value as LC at λGlob = 0 and then rises with increasing
λGlob. There exists a range of λGlob values where GC works
better than LC and NCR. However, this advantage diminishes
with higher values of λGlob. That is, the performance of
the global controller does not escalate with its controller
strength. In fact, if λGlob is excessively high, the noise level
might even surpass that of the no-controller scenario.

In contrast, increasing λNCR consistently reduces the fold
change in GFP noise within the NCR system, starting from
the same value as LC at λNCR = 0. Since λNCR is not
involved in LC and GC systems, it does not influence the
noise level in these systems (Fig. 5b). Thus, the designed
co-degradation of two controller RNAs offers a dependable
method to minimize noise without directly affecting protein
and mRNA copy numbers. These findings suggest that
the NCR system is more effective and reliable in noise
reduction compared to the global controller.

To further assess the effectiveness of all the controllers,
we introduced extrinsic noise into the system. In order to
conduct a thorough evaluation of the impacts of extrinsic
noise, we generated 1000 random parameter sets with either
a 20% or 50% variation to their base values. The Latin hy-
percube sampling method was used to ensure a representative
sampling of the parameter space. Subsequently, We estimated
the noise level for all the systems with each parameter
configuration within the GFP and RFP mRNA space. Finally,
we calculated the average fold change in GFP noise relative
to the basal no-controller case. The results are shown in the
scattered plots (Fig. 6) for the direct comparison of the noise
reduction efficacy in the NCR system against the other three
controllers. Notably, for a 20% parameter alteration, all the
points fall under the diagonal line in the comparison of SMC
and LC to NCR (Fig. 6a-b). Furthermore, the majority of
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Fig. 6. Comparison of the performance of NCR controller with respect
to the other three controllers in the presence of extrinsic noise. The
density scatter plots illustrate the average fold change in GFP noise in the
systems with an NCR controller compared to those with three antithetic
controllers under 1000 random parameter sets. The color indicates the
density of the dots. The value of each parameter is randomly chosen from
80% to 120% of its nominal value in (a-c), and from 50% to 150% of its
nominal value in (d-f). The Latin hypercube sampling method was used to
ensure a representative sampling of the parameter space.

points lie below the diagonal line in the comparison of GC
to NCR (Fig. 6c), indicating that NCR outperforms the other
systems across most parameter sets. With a 50% parameter
variation, there is a slight increase in the proportion of points
above the diagonal line in the comparison of SMC and LC to
NCR (Fig. 6d-e), and 24% of points above the diagonal line
for the compassion of GC to NCR (Fig. 6f). This suggests
that under significant extrinsic noise, GC has some potential
to outperform NCR. Nevertheless, overall, NCR remains the
optimal controller even in the presence of extrinsic noise.

IV. CONCLUSIONS

Identifying the sources of noise in gene expression and
controlling the level of noise are pivotal challenges in sys-
tems and synthetic biology. Traditionally, it was assumed that
the cellular resources for gene expression were unlimited.
However, recent findings reveal that both the translational
and transcriptional resources are limited. This scarcity trig-
gers substantial competition between genes within a synthetic
gene circuit, creating indirect connections and increasing
the complexity of the system. Consequently, predicting and
controlling gene circuit function becomes more challeng-
ing. Additionally, fluctuations in resource availability or
the biochemical reactions due to this competition introduce
further unpredictability in gene expression. In this study,
we introduced three distinct multi-module antithetic con-
trol mechanisms and evaluated their efficacy in controlling
noise in gene expression. Through extensive simulations and
systematic analysis, we demonstrated the effectiveness of
these control strategies in reducing noise. Notably, we found
that the negatively competitive regulation controller consis-
tently outperforms the other controllers in noise reduction,
regardless of parameter selection. Moving forward, further
investigations could focus on the experimental validation of
these controllers and their implementation in practical bio-
logical systems. In addition, resource competition intertwines
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with growth feedback, adding complexity to the system’s
behavior [7], [34]–[38]. Exploring more sophisticated control
mechanisms for managing the intricate interactions among
feedback factors would be an intriguing avenue for future
research.
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