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Abstract— This paper examines the optimal velocity follow-
the-leader dynamics, a microscopic traffic model, and explores
different aspects of the dynamical model, with particular
emphasis on collision analysis. More precisely, we present a
rigorous boundary-layer analysis of the model which provides
a careful understanding of the behavior of the dynamics in
trade-off with the singularity of the model at collision.

I. INTRODUCTION AND RELATED WORKS

The emergence of autonomous driving technologies such
as adaptive cruise control and self-driving systems has cre-
ated different theoretical challenges in modeling and analysis
of the governing dynamics of the traffic flow.

Traffic flow dynamics has been a widely studied research
area for decades, with literature devoted to various mod-
els based on macroscopic, mesoscopic, and microscopic
descriptions of traffic flow [1]. The microscopic class of
dynamics considers individual vehicles and their interaction.
The earliest car following models date back to the works of
[2], [3], [4], [5]. Nonlinear follow-the-leader dynamics can
be traced back to [6] and [7] among others. The celebrated
Optimal Velocity (OV) dynamical model was introduced and
analyzed in [8], [9], [10] and numerous following studies.
In this paper, we consider the Optimal Velocity Follow-the-
Leader (OVFL) dynamical model which is shown to possess
favorable properties both from a practical and theoretical
point of view [11], [12], [13], [14], [15], [16].

The optimal velocity part of the OVFL model with a posi-
tive coefficient defines a target velocity based on the distance
between each vehicle and its preceding one. Comparing the
target and the current velocities, the acceleration/deceleration
will be encouraged by the OV model. The follow-the-leader
term explains the force that tries to match the vehicle’s
velocity with the preceding one. As the instantaneous relax-
ation time (i.e. (xn−1 −xn)/β in (1)) decreases, a singularity
occurs at collision. Understanding the interaction between
such a singularity and the behavior of OVFL dynamics near
collision is the main focus of this paper.

Stability analysis of platoon of vehicles following (1) has
been studied from various points of view such as string
stability, [5], [10], [17], [18], [19], [20], [21]. Analysis of
collision has been addressed from different standing points
in some prior works. In a simulation-based study, [22] inves-
tigates the likelihood of collision as a consequence of drivers’
reaction time. A Lyapunov-based analysis in a neighborhood
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Fig. 1: The first illustration shows the position and direction of the vehicles. The
second illustration depicts the relative position Xn = x0 − xn.

of the equilibrium point has been studied in [23], [11].
Nonlinear stability analysis and collision avoidance based
on the safe distance is studied in [24] for the OV model.

Focus and Contribution. In contrast to the stability-
based analysis of OVFL dynamics, in this paper, we are
interested in the analysis of collision (e.g. in a platoon
of connected autonomous vehicles which are governed by
such a dynamical model). In other words, our main focus
is on understanding the interplay between the behavior of
the OVFL dynamics and the singularity introduced in (1)
at collision, through a careful and mathematically rigorous
investigation.

Our boundary-layer analysis results are strongly dependent
on the initial values which allow us to study the effect of
singularity when the vehicles are in a near-collision region.
Such analytical understanding is crucial in analyzing the
behavior of the system in real-world conditions such as in
the presence of noise and perturbation. In such conditions,
sooner or later any physical system will be pushed into
various states. Therefore it is necessary and insightful to
understand the deterministic behavior of the system in the
proximity of critical states.

As a consequence of our analysis, we show that the
collision in the system does not happen and hence the system
is well-posed. In addition, our analysis applies to multiple-
vehicle which extends the results of [13].

The organization of this paper is as follows. We start
by introducing the dynamical model. Then, we prove some
essential properties of the dynamics between the first two
vehicles which will be used in the analysis of the other
following vehicles. Then, we study the behavior of the
trajectory of other vehicles with respect to that of the first
two and we show the main result of the paper.

II. MATHEMATICAL MODEL

We consider N + 1 number of vehicles and each vehicle
n = 0,1, · · · ,N has position xn and velocity yn = ẋn such
that xN < xN−1 < · · · < x0 (see Figure 1). We assume that
the first vehicle is moving with a constant velocity v̄; i.e.
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Fig. 2: Function V in (2).

ẋ0(t) = y0(t) = v̄ with the initial value (x◦,y◦). For n ≥ 1

(OVFL)


ẋn(t) = yn(t)
ẏn(t) = α {V (xn−1 − xn)+ yn(t))}+β

yn−1−yn
(xn−1−xn)2

(xn(0),yn(0)) = (xn,◦,yn,◦)

(1)

where function V is monotonically increasing, bounded, and
Lipschitz continuous function. In this paper, we consider

V (x) def
= tanh(x−2)− tanh(−2); (2)

see Figure 2. We define V (∞) = 1.96 as the scaled maximum
possible speed and we ignore the length of vehicles as it
doesn’t affect the analysis. Therefore,

yn(t) ∈ [0,V (∞)), n ∈ {0, · · · ,N} , t ≥ 0. (3)

For simplicity of the analysis, we define the change of
variable in (1)

Xn(t)
def
= x0(t)− xn(t), n = 1, · · · ,N

Yn(t)
def
= y0(t)− yn(t) = v̄− yn(t), n = 1, · · · ,N

Consequently, the dynamics of (1) can be rewritten as
Ẋn(t) = Yn(t)
Ẏn(t) =−α {V (Xn −Xn−1)+Yn(t)− v̄}−β

Yn−Yn−1
(Xn−Xn−1)2

(Xn(0),Yn(0)) = (Xn,◦,Yn,◦)

(4)

for n ∈ {1, · · · ,N} with the convention that X0 = Y0 = 0. It
should be noted that in (4) we have that XN > · · · > X1 >
X0 = 0; see Figure 1. In addition, following (3), we have
that

Yn(t) ∈ (v̄−V (∞), v̄], t ≥ 0. (5)

This is in particular important in choosing the initial values
of the dynamics. The dynamical system (4) has a unique
equilibrium solution when all the vehicles are equidistantly
located and moving with the same velocity [10], [21].
Mathematically, for each n ∈ {1, · · · ,N}

(X∞
n ,Y ∞

n ) = (nV−1(v̄),0) = (nX∞,0)

X∞ =V−1(v̄) = 2+ tanh−1(v◦+ tanh(−2)),

III. DYNAMICS OF THE FIRST TWO VEHICLES

First, we need to understand the interaction between the
first two vehicles carefully.

A. Hamiltonian and Boundedness of Solution

In this section, we consider N = 1 in (4), the dynamics
between the first two vehicles. Following [13], first we recall
few properties of the dynamics of (X1(t),Y1(t)). The main

Fig. 3: Potential P (7) and Hamiltonian H (6) along the trajectory (X1(t),Y1(t)).

Fig. 4: Trajectory of the first two vehicles. The top plot shows the trajectory of
t 7→ X1(t) and t 7→ Y1(t)) separately. The bottom plot show the orbit of this dynamic
for α = 2, β = 1, v̄ = 0.8, (X1,◦,Y1,◦) = (0.5,−0.7).

properties of the dynamics of (X1(t),Y1(t)) can be obtained
by defining the Hamiltonian function

H(x,y) def
=

1
2

y2 +P(x) (x,y) ∈ R2 (6)

with the potential function

P(x) def
= α

∫ x

x′=X∞

{
V
(
x′
)
− v̄
}

dx′; x ∈ R. (7)

Using (6), we can show that the solution (X1,Y1) is bounded.
In particular, it is straightforward to see

Ḣ(X1(t),Y1(t)) =−
{

α +
β

X1(t)2

}
Y1(t)2 ≤ 0 (8)

By the definition of H, we have that
1
2Y 2

1 (t)≤ H(X1(t),Y1(t))≤ h◦

h◦
def
= H(X1,◦,Y1,◦)

(9)

Therefore,

|Y1(t)| ≤ ȳ def
=
√

2h◦, X1(t)≤ x̄ def
= h◦, t ≥ 0. (10)

Finally, it is shown that the solution X1(t) never hit zero
which can be interpreted as no collision between the first
two vehicles. In particular,

X1(t)≥ δ1, t ≥ 0 (11)

where, the lowerbound δ1 = δ1(X1,◦,Y1,◦) depends on the
initial values of the system. Figure 4 shows the trajectory
of the dynamical model for the first two vehicles. Now, we
need to develop some more properties of the trajectory of
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flow (X1(t),Y1(t)).
Remark 3.1: Using (10) and (11), set (0, x̄]× [−ȳ, ȳ] is

positively invariant with respect to the flow (X1(t),Y1(t)) and
has a compact closure. Furthermore, (8) precludes a periodic
orbit. Therefore, an application of the Poincaré-Bendixon
theorem, suggests that the equilibrium solution (X∞,0) is
globally asymptotically stable.
In this paper, we are mainly concerned with the boundary-
layer analysis of the system near collision (the situation
that can happen, for instance, as a result of instantaneous
perturbation in the system; like sudden braking of the leading
vehicles which propagates). In other words, we are interested
in the case that the distance between the corresponding
consecutive vehicles becomes relatively small. In particular,
we consider the initial values ∆Xn,◦ < X∞, for the respective
n ∈ {1, · · · ,N}.
In addition, suppose that Y1,◦ < 0. Fix a time T > 0. Since
X1,◦ < X∞, the dynamics of (4) for N = 1 suggest that
Ẏ1(t) > 0 for t ∈ (0,ε◦); some neighborhood of time zero.
On the other hand, since the X1,◦ is relatively small, the
dominant term in the dynamics of Ẏ1 in (4) is −βY1(t)/(X1(t))2

for t ∈ (0,ε◦). Hence, for sufficiently large β , Y1(t̄)> 0 for
some t̄ < T (see Figure 4). Therefore, in this paper, we
consider the case of Y1,◦ > 0; otherwise, the same analysis
follows after shifting the initial time to t̄.
Moreover, the interaction between two consecutive vehicles
depends on their relative speed, i.e. Y2 −Y1 (rather than
merely the relative velocity Y1 of the leading vehicle) which
will be analyzed in its full generality. In particular, the
most interesting case for the purpose of our boundary layer
analysis will be Yn −Yn−1 < 0, n ≥ 2, which implies that the
following vehicle is moving faster than the leading one. This
can potentially result in a collision. We will discuss this case
in detail in the next section.

B. Controlling the Behavior of the Dynamics by Controlling
the Parameters

In this section, we study the behavior of the trajectory of
t 7→ Y1(t) for (X1,◦,Y1,◦) ∈ (0,X∞]×R+. We define

T∞

def
= inf{t ≥ 0 : X1(t) = X∞} (12)

as the first time for which the trajectory t 7→ X1(t), starting
from the initial data (X1,◦,Y1,◦), approaches X∞. The change
of variables u def

= x−X∞ and v def
= y help us standardize the

stability analysis by translating the equilibrium point to the
origin. The Hamiltonian can be rewritten as

H(u,v) = 1
2 v2 + P̃(u) def

= 1
2 v2 +α

∫ u

0

{
V (u′+X∞)− v̄

}
du′

dH
dt

(u(t),v(t)) =−
(

α +
β

(u(t)+X∞)2

)
v2(t).

(13)

The main result of this section expresses that by controlling
the parameters α and β we can control the behavior of the
trajectory t 7→ Y1(t). In particular,

Theorem 3.2: Starting from (X1,◦,Y1,◦)∈ (0,X∞]×R+, for

Fig. 5: The behavior of the trajectory for the different cases of initial values
(X1,◦,Y1,◦).

sufficiently large values of α and β , we have that

limsup
t↗T∞

v(t) = 0.

This implies that by controlling α and β , the flow Y1(t) will
be absorbed to the equilibrium point as t ↗T∞. We postpone
the proof of this theorem until some preliminary results are
established. The following lemmas explain the behavior of
the trajectory t 7→Y1(t) around the equilibrium point. Figure
5 is provided as a graphical aide to the proofs.

Lemma 3.3: The set U1
def
= {(x,y) : x < X∞,y ∈ R+} is

invariant with respect to the trajectory [0,T∞) ∋ t 7→
(X1(t),Y1(t)). In other words, if (X1,◦,Y1,◦)∈U1, then Y1(t)>
0 for t ∈ [0,T∞).

Proof: We use the proof by contradiction to show the
result. Suppose that there exists a time t◦ < T∞ such that
Y1(t◦) = 0. By the continuity of the solution, we have that
Ẏ1(t◦)< 0. On the other hand,

Ẏ1(t◦) =−α {V (X1(t◦))− v̄+Y1(t◦)}−β
Y1(t◦)

(X1(t◦))2

=−α {V (X1(t◦))− v̄}> 0

where the last inequality holds since X1(t◦)< X∞. But this is
a contradiction and hence the result follows (see Figure 5).

In a similar manner, one can discuss the behavior of the
integral curve around the equilibrium point.

We like to show that the rate of convergence of the trajec-
tory (X1(t),Y1(t)) to the equilibrium point can be controlled
by controlling the parameters α and β .

Lemma 3.4: Let’s define the domain C
def
= (δ1 −X∞, x̄−

X∞)×R (see (10) and (11) and the definition of u,v before
(13)) which contains the equilibrium point. There exists
constants k and k such that

k∥U∥2 ≤ H(u,v)≤ k∥U∥2, U = (u,v)T ∈ C
Proof: The right-hand side inequality is by Lipschitz

continuity of function V and the fact that v̄ =V (X∞) and for
k def
= max

{ 1
2 ,α

}
. To see the left-hand side of the inequality,
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we note that function P̃ (as in (13)) is a convex function
(see the illustration P of Figure 3 and consider that the
equilibrium point is shifted to the origin) and in addition,
over the domain C̄ , the closure, we have

P̃′′(u) = αV ′(u+X∞)≥ αk(14) > 0 (14)

for some constant k(14) > 0. Therefore, P̃ is strongly convex
on C which implies that

P̃(u)≥ P̃(0)+ P̃′(0)u+ αk(14)
2 u2

Since P̃(0) = P̃′(0) = 0, we have that

H(u,v) = 1
2 v2 + P̃(u)≥ 1

2 v2 +
αk(14)

2 u2 ≥ k∥U∥2 (15)

for k def
= min

{
1
2 ,

αk(14)
2

}
. This completes the proof.

For the proof of Theorem 3.2, with a slight abuse of notation,
we consider T∞ as in (12) to denote the time that trajectory
t 7→ u(t) approaches the origin (which is the equilibrium
point here). Proof: [of Theorem 3.2] Let us fix ε > 0
such that Ball((0,0)T,ε) be the region of attraction (for
exponential stability) of the origin in the linearized model;
see Remark 3.1. We recall Lemma 3.3 and we define

T ε
∞

def
= inf{t < T∞ : u(t)< ε/3} , (16)

If for some values of α and β

v(t)< ε, t ∈ [T ε
∞ ,T∞),

i.e. is already in the domain of attraction, then the claim fol-
lows by exponential convergence of the linearized problem.
Suppose on the contrary that for all values of α and β ,
v(t)≥ ε on [T ε

∞ ,T∞). Then over the domain C(
α +

β

(u(t)+X∞)2

)
v2(t)≥ 1

2

(
α +

β

x̄2

)
v2(t)+ 1

2

(
α +

β

x̄2

)
ε

2

≥ 1
2

(
α +

β

x̄2

)∥∥∥(u(t),v(t))T∥∥∥2

for t ∈ [T ε
∞ ,T∞), and where the last inequality is by (16).

Using (13), we have that over t ∈ [T ε
∞ ,T∞)

Ḣ(u(t),v(t))≤−K(17)
∥∥(u(t),v(t))T∥∥2

, (17)

where, K(17)
def
= 1

2

(
α + β

x̄2

)
.

Using Lemma 3.4 and (17), we can write

Ḣ(u(t),v(t))≤−K(17)

k
H(u(t),v(t)), t ∈ [T ε

∞ ,T∞).

Using Gronwall’s inequality, we get

H(u(t),v(t))≤ H(u(T ε
∞ ),v(T ε

∞ ))exp
{
−K(17)

k
t
}
,

for t ∈ [T ε
∞ ,T∞). Once more, using Lemma 3.4, we will have∥∥∥(u(t),v(t))T∥∥∥2

≤ 1
k

H(u(t),v(t))

≤ 1
k

H(u(T ε
∞ ),v(T ε

∞ ))exp
{
−

K(17)

k
t
}

≤ h◦
k

exp
{
−

K(17)

k
t
}
, t ∈ [T ε

∞ ,T∞),

Fig. 6: The first figure is for α = 3, β = 2 and it converges to the rest point. The
second figure is with respect to α = β = 1. Hence for relatively small α and β , the
integral curve will spin around the equilibrium point before it is absorbed. The red
curves zoom into the behavior of the trajectories near the equilibrium point. Other
parameters are v̄ = 1.3, (X1,◦,Y1,◦) = (0.5,1).

where the last inequality is from (8). But comparing K(17)
and k shows that for sufficiently large values of α and β ,∥∥(u(t),v(t))T∥∥< ε for some t ∈ (T ε

∞ ,T∞) which contradicts
our initial assumption. Therefore, the statement of the theo-
rem follows (see Figure 6).

IV. DYNAMICS OF OTHER VEHICLES

The analysis of the properties of the dynamics of inter-
action between vehicle n and n− 1 for n ≥ 2 requires an
in-depth understanding of the interaction between vehicles
n−1 and n−2 (the leading vehicles). In this section, using
the results of section III, we will consider the interaction
between vehicles n and n − 1 for n = 2 (the interaction
between vehicles two and three).

For the purpose of our analysis (in particular collision
analysis), we need to work with the difference flow (X2 −
X1,Y2 −Y1) rather than the flow (X2,Y2). In particular, X2 −
X1 = 0 means collision. Therefore, it would be reasonable to
introduce the change of variables

ξ1
def
= X1, ξ2

def
= X2 −X1,ζ1

def
= Y1 ζ2

def
= Y2 −Y1,

and the difference dynamical model of (4) then reads

ξ̇1 = ζ1

ζ̇1 =−α {V (ξ1)− v̄}−αζ1 −β
ζ1

(ξ1)2

ξ̇2 = ζ2

ζ̇2 =−α {V (ξ2)−V (ξ1)}−αζ2 −β

(
ζ2

(ξ2)2 − ζ1
(ξ1)2

)
(ξ1(0),ζ1(0)) = (ξ1,◦,ζ1,◦) = (X1,◦,Y1,◦)

(ξ2(0),ζ2(0)) = (ξ2,◦,ζ2,◦) = (X2,◦−X1,◦,Y2,◦−Y1,◦).

(18)

First, we look at the existence of the solution of the dynamics
of (18). We define the state space

D
def
= ((0,∞)×R)2 ∋ (ξ1,0,ζ1,0,ξ2,0,ζ2,0) (19)

and the flow Ξ
def
= (ξ1,ζ1,ξ2,ζ2). From the abstract theory of

dynamical systems, the solution of (18) exists on a maximal
interval [0,T c), for some T c > 0.
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Fig. 7: Illustration of the proof discussions.

Assumption. We suppose that

T c < ∞. (20)

We start with the implications of (20). As t ↗ T c, the flow
Ξ, either grows unbounded, or Ξ ∈ ∂D . We recall that under
the conditions of Theorem 3.2, ζ1 vanishes at T∞. Therefore,
if T c ≥ T∞ then for t ∈ [T∞,T c) the dynamics ζ̇2 in (18)
will be the same as dynamics of ζ̇1 and so the solution exists
for all t ≥ T∞; i.e. T c = ∞. On the other hand, ζ2 → ±∞

is prohibited by the properties of the dynamics and since
ξ1(t) /∈ {0}, we must have

lim
t↗T c

ξ2(t) = 0, (21)

i.e. T c is the collision time.
Under such an assumption, there exists a time

ť def
= sup

{
t < T c : ξ2 >

1
2 δ2
}
, δ2

def
= min{ξ2,◦,δ1} (22)

where δ1 < X∞ is defined in (11). In other words, if the
collision time is finite, then there should be a time ť after
which the trajectory ξ2(t)≤ 1

2 δ2, for t ∈ [ť,T c). We study the
behavior of the ζ̇2 in this region. The next result shows that
in this region, ζ2(t)< 0; i.e. the follower vehicle is moving
faster than the leading one.

Lemma 4.1: The Set U
def
=
{
(x,y) : x ∈ (0, 1

2 δ2),y ∈ R+

}
is invariant with respect to the trajectory t ∈ [ť,T c) 7→
(ξ2(t),ζ2(t)). In other words, if ζ2(t) > 0 for some t ∈
[ť,T c), then it must remain positive.

Proof: Figure 7 illustrates the proof argument. Suppose
on the contrary that ζ2(t) < 0 for some t ∈ [ť,T c). This
implies, by definition of ť, there exists a time t◦ such that
ζ2(t◦) = 0 and ζ̇2(t◦) < 0. But using the dynamics of ζ2 in
(18) as well as (22), must have that

ζ̇2(t◦) =−α {V (ξ2(t◦))−V (ξ1(t◦)}+β
ζ1

(ξ1)2 > 0,

which is a contradiction.
Remark 4.2: Lemma 4.1 along with the assumption (20)

shows in particular that ζ2(t)< 0 for t ∈ [ť,T c).
Lemma 4.3: For t ∈ [ť,T c), we have that

ζ̇2(t)> 0.
Proof: Let’s consider the dynamics of ζ̇2 in (18). Then,

(22) implies that −α {V (ξ2)−V (ξ1)}> 0. Remark 4.2 show
that −αζ2 > 0. Finally ζ1 > 0 implies that the last term
should also be positive and this completes the proof.

Proposition 4.4: Under the conditions of Theorem 3.2,
T c = ∞. In other words, collision does not happen in the
dynamical model (18).

Proof: The result of Lemma 4.3 (monotonicity of ζ2(t))
suggests that, given the trajectory of t 7→ (ξ1(t),ζ1(t)), we
should be able to locally write

ξ2(t) = ψ(ζ2(t)), for t ∈ [ť,T c), (23)

for some function ψ which will be constructed below.
Employing (18), we have that

ζ2 = ξ̇2 = ψ
′(ζ2)ζ̇2 = ψ

′(ζ2)

{
−α {V (ψ(ζ2))−V (ξ1)}−αζ2

−β

(
ζ2

(ψ(ζ2))2 − ζ1

(ξ1)2

)}
.

(24)

Furthermore, thanks to strictly monotone behavior, the func-
tion ζ2 : [ť,T c)→ [ζ̌ , ζ̂ ), where ζ̌

def
= ζ2(ť) and ζ̂

def
= ζ2(T

c),
is a diffeomorphism. Let θ

def
= ζ

−1
2 , the inverse function of ζ2.

Then, function ζ1 on [ť,T c) can be presented as the smooth
function ζ1 ◦θ on [ζ̌ , ζ̂ ) if T c < T∞ and zero otherwise. A
similar argument holds true for ξ1 ◦θ .
Let us now formalize the construction of ψ by extending the
function θ smoothly on the domain (−∞,0) and defining a
function

g(ζ ,ψ)
def
= −ζ

α{V (ψ)−V (ξ1(θ(ζ )))}+αζ+β

(
ζ

ψ2 − ζ1(θ(ζ ))
(ξ1(θ(ζ )))

2

)

for (ζ ,ψ)∈ (−∞,0)×(0,δ2), and (ζ1,ξ1)∈ (0, ȳ)×(δ1,X∞).
Therefore, using (24), the dynamical model can be presented
by

ψ
′(ζ ) = g(ζ ,ψ(ζ )), ψ(ζ̌ ) = ξ2(ť) (25)

where ζ̌
def
= ζ2(ť) and ξ2(ť) = 1

2 δ2. Through such construc-
tion, the dynamics of (25) is well-defined and has a maximal
interval of existence (µ−,µ+) ⊂ (−∞,0) and contains the
initial value ζ̌ . The construction (25) creates a barrier dy-
namics through comparison with which we can show ξ2 > 0
on [ť,T c) (see (23)).

Theorem 4.5: We have that

inf
ζ̄∈[ζ̌ ,µ+)

ψ(ζ̄ )> 0.

Proof: Let’s consider the definition of ψ ′(ζ ) in (25).
We recall that ζ1 > 0 for t ∈ [ť,T c), and by construction
ψ(ζ )< δ2 ≤ δ1 < ξ1. This implies that

ψ
′(ζ )< 0, ζ ∈ [ζ̌ ,µ+).

Dividing both sides of (25) by ψ2(ζ ), it is straightforward
to see that

ψ ′(ζ )

ψ2(ζ )
>

−ζ

Negative Terms + βζ
>

−ζ

βζ
=− 1

β

on [ζ̌ ,µ+). Then, one can show that (see [13])

inf
u∈[ζ̌ ,µ+)

ψ(u)≥ inf
u∈[ζ̌ ,µ+)

R(u)≥

{
( 1

2 δ2)
−1 +

ζ̌

β

}−1

. (26)
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Fig. 8: Illustration of the trajectory of the dynamics between the first two and the
second two vehicles.

This concludes the proof.
We conclude the proof of proposition 4.4, by showing that
µ+ = ζ̂ = ζ2(T

c). In other words, we show that the result
of the Theorem 4.5 holds true for all [ť,T c) which in turn
implies that T c = ∞. To do so, as mentioned before, ζ2 :
[ť,T c)→ [ζ̌ , ζ̂ ) is a homeomorphism. Therefore, we should
have

θ
∣∣
[ť,T c)

(
[ζ̌ ,µ+)∩ [ζ̌ , ζ̂ )

)
= [ť,T ′),

for some T ′ ≤ T c and we recall that θ = ζ
−1
2 . From

(25) (ψ(ζ ),ζ ) solves the dynamics of (18) and hence must
coincide with (ξ2,ζ2) on [ť,T ′). The case of T ′<T c is pre-
cluded by the behavior of the dynamics near the boundaries.
For the case of, T ′ = T c, limt↗T c ψ(ζ ) = limt↗T c ξ2 = 0
which is prohibited by Theorem 4.5. This contradicts our
main assumption (20).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a rigorous boundary layer
analysis of the OVFL dynamical model near collision. Such
analysis provides an in-depth understanding of the behavior
of the dynamics especially when the system is forced out of
equilibrium. Understanding the interaction of the singularity
and behavior of the dynamics near collision is fundamental
both from a theoretical standpoint and in designing efficient
systems, such as adaptive cruise controls.

This paper can be extended on several fronts. The theory
can benefit from a broader definition of Hamiltonian which
serves as a Lyapunov-type function to explain the bound-
edness and stability of the equilibrium solution. Utilizing
this, further analysis is required to generalize the results in
a rigorous way.
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