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Abstract— Trust is one of the crucial factors influencing the
performance and safety of human-vehicle co-driving system.
The evolution mechanism of human-vehicle trust is studied in
this work, and a trust-based steering control model (SCM) is
designed to allow the autonomous driving system to adjust its
control behavior based on real-time trust level, on the purpose
of improve the efficiency and trust. The contributions made
in this paper are as follows: 1) a novel quantitative model of
human-vehicle dynamic trust is established for the first time in
shared steering control by considering the deviation of human-
vehicle driving expectations; 2) a trust-based steering controller
using model free adaptive dynamic programming (MFADP) is
designed which can solve the optimal control policy according
to the value of trust without the dependencies on parameters
of dynamic model of the controlled system. The rationality of
proposed trust model and trust-based steering control method
are validated by high-fidelity Carsim-Simulink simulations.

I. INTRODUCTION

As intelligent vehicles and autonomous driving technolo-
gies advance, intelligent transportation systems have signifi-
cantly improved, offering convenience in specific scenarios.
However, due to the limitations of high-level autonomous
driving and regulatory constraints, fully autonomous vehicles
are unlikely to be widely adopted in the near future. Thus,
intelligent vehicle technology will remain in a state of
human-vehicle co-driving [1]-[3]. In this context, trust is a
crucial factor in human-vehicle interaction [4]—[6]. The level
of human trust in the intelligent system fluctuates during
cooperative driving, and it is essential for the autonomous
system to adjust its control actions in real-time based on
the estimated trust level to better align with the driver’s
expectations and enhance collaboration efficiency.

Human-machine trust is typically defined as an individ-
ual’s confidence in an automated system’s ability to help
achieve specific goals [7]. Due to the importance of trust in
human-machine collaboration, various trust modeling studies
have been conducted. For example, an online probabilistic
trust model is developed using a partially observable Markov
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decision process (POMDP) based on behavioral data of
drivers [8]. This POMDP model is further applied to enhance
human-machine collaboration in [9]. Other researchers use
measurable data, such as EEG, ECG, and gaze behavior, to
build quantitative trust models [10]-[12]. Most existing trust
models rely on probabilistic or machine learning methods
based on physiological and behavioral data, which are limited
by data quality and scenario conditions. Additionally, these
models do not specifically focus on the dynamics of trust in
human-vehicle co-driving systems.

In human-vehicle cooperation, co-driving systems can be
classified into traded control and shared control based on
the mode of interaction [13], [14]. In this context, trust
reflects the driver’s willingness to accept the control actions
of the autonomous system. The dynamic mechanism of
trust in human-vehicle interaction is first explored in [15],
where a quantitative trust model is developed for adaptive
cruise control (ACC) in traded control mode. However,
this work focuses solely on longitudinal control, ignoring
steering scenarios, and the application of traded control is
limited by technology and uncertainties in control takeover.
Therefore, studying trust modeling in shared steering control
is essential. The authors of [16] develop a predictive model
of objective trust in steering control by modifying the cost
function. Moreover, a human-vehicle mutual trust model is
introduced for authority allocation based on the steering be-
havior and performance of driver and automation. However,
trust dynamics in human-vehicle shared steering control are
not studied in these works.

Furthermore, in human-vehicle shared steering control,
the dynamics of the controlled system involve significant
complexity and uncertainty. It is essential to employ data-
driven methods, such as MFADP, to address optimal control
problems when the system model parameters are unknown
[18]. In [19], a data-driven ADP controller is designed
for intelligent vehicle path tracking, with steering input
compensation calculated in real-time using a radial basis
function neural network (RBFNN). Additionally, a human-
vehicle shared steering control framework is proposed in [20]
using an ADP controller, which solves the optimal control
policy through iterative learning. However, as one of the most
critical human factors in human-machine collaborative driv-
ing, trust level is not considered in these studies, which may
lead to human-vehicle conflicts and even nasty accidents.

Therefore, to improve the performance and stability of co-
driving system while reducing the human-vehicle conflicts
and operational workload, a trust dynamics modeling method
and a trust-based human-vehicle shared steering control
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Fig. 1. Diagram of vehicle dynamics.

framework are proposed. Contributions made in this work
are as follows:

1) A novel quantitative model of human-vehicle trust
in shared steering control is established for the first
time. The deviation between the driving expectations
of human driver and automated vehicle is evaluated
to describe the performance of co-driving system for
establishing trust dynamics.

2) A modified trust-based model-free ADP controller is
designed for trajectory tracking, which adapts its steer-
ing behavior based on the human-vehicle trust level in
the real-time. Optimal control is solved by data-driven
iterations without reliance on the precise knowledge of
system parameters.

The rest of this paper is structured as follows. First in
Section II, the vehicle dynamics and driver preview model
as well as the trust dynamics in shared steering control
are introduced. Then, the MFADP-based steering controller
and a modified trust-based ADP steering control method are
proposed in Section III. Further, the simulation studies are
conducted in Section IV to validate the proposed trust-based
co-driving framework. Finally, the last section summarizes
this paper and discuss some future work.

II. TRUST DYNAMICS CONSTRUCTION FOR SHARED
STEERING CONTROL

A novel quantitative trust model is established in this
section to describe the evolution mechanism of trust level
during human-vehicle co-driving process.

A. Vehicle Dynamic Model

A linear single-track model of vehicle shown in Fig. 1 is
utilized for steering control in this work, and the differential
equations of the controlled system can be written as [21]

c C, [C _err C
: 20,4 2 )
w = vy I
Ly L, I

where, vy,v, indicate the longitudinal and lateral velocity;
o is the yaw rate; m is the mass of the vehicle; Cy and C,
are the cornering stiffness of front and rear wheel; [y and [,
present the distance from mass center of the vehicle to front

and rear axis; I, denotes the yaw moment of inertia; 5f is
the steering angle of front wheel.

With the assumptions that the steering angles as well as
the tire sideslip angles are small [22], [23], if the vehicle
is considered moving at constant longitudinal velocity, the
vehicle dynamics can be linearized as

y=Cx 2

{x — Ax+B&;,
where, x = [Y,@,vy,@]” is the state variables in which ¥
is lateral global coordinate and ¢ is the yaw angle; A,B,C
are constant matrices describing the system’s input-output
relationship and dynamic characteristics, which are given by

0 v 1 0
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B. Driver Expectation Model

A diver preview model is established to describe the
driver’s control expectation considering the characteristics of
actual driving behavior [24]. When driving a car, the driver
always looks ahead on the road and generates a preview point
on his desired trajectory forward at current time ¢. During
the preview time 7, the vehicle is expected to move from
the starting point (x(7),y(¢)) to the preview point, which can
be described as

Yt +T,) =y(t) +Ay = f(t+Tp), 3)

where, y(t+7,) is the predictive lateral position of vehicle;
f(t+T,) is the desired lateral position of preview point. The
preview time is chosen as 0.5s in this paper.

Suppose the vehicle conduct uniformly accelerated recti-
linear motion laterally in the short preview time, thus the
lateral displacement of vehicle can be present as [25]

Ay =Ty ¥(0) 4 3T2 (), @)
where, y(f) and J(¢) are the lateral velocity and lateral
acceleration, respectively.

In every single time element, we can assume that the
vehicle conducts circular motion with a radius R, then we
can obtain an optimal curvature (i.e., the desired or expected
moving curvature of vehicle by the human driver) as (5).

12T 0 -T50]

p = R P )
where, d denotes the preview distance with d = v, T,; p* is
the expected curvature of the driving trajectory by human
driver. Considering the dynamic steering characteristics, the
yaw rate gain during steady steering process can be given
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by Gy = 1_:1{‘}2 with K = %(Cir - é—'f) being the stability
X

factor of vehicle [26], [27] and L = [y + [, is the wheelbase.
According to Ackermann steering theory, there is a direct
proportional relationship between the vehicle’s trajectory
curvature and the steering wheel angle. Hence, the optimal
steering angle of front wheel is derived by the driver’s
preview model as
5, = 2l T) =y ~ T, -5(1)]

B Gpd? ' ©

It is important to emphasize that in practical applications,
data-driven methods can be used to establish human-like
driving decision-making and planning models which can
be utilized to generate the desired trajectories of drivers.
In this paper, the steering angles calculated by (6) based
on known trajectories is regarded as the driver’s expected
steering operation.

C. Shared Control and Trust Dynamic Model

In this part, the basic shared steering control model is
introduced, and then we explore the evolution mechanism of
trust in human-vehicle system and build a quantitative trust
dynamics model in the scenario of trajectory tracking.

A shared control model [28], [29] is built in this paper
and represent as

5 = ad,+(1—a)s,, )

where, a € [0,1] is the control authority of human driver;
04,0, indicate the steering angles of the driver and vehicle;
Oy is the final control input to the vehicle system.

Remark 1: Note that in this paper, the autonomous vehicle
is assumed to possess the capability for independent steering
control input. However, it is essential to emphasize that the
operation of the driver is considered to be more reliable and
safe than that of the automation [30]. In this paper, the human
driver represented by preview model and intelligent vehicle
calculate their optimal steering control input independently.

Trust is regarded as objective reliability of autonomous
driving system, which depends on the actual performance of
the shared steering control system, related to the operational
deviations of human-vehicle co-driving system (named as
"error" later). The authors of [15] present a method for
evaluating trust in human-ACC system. However, this model
is limited to longitudinal control and does not address
human-machine collaborative steering. Therefore, this paper
develops a quantitative model of trust and its dynamics
specifically for human-vehicle shared steering control. The
evaluated error during the co-driving process is defined as

E(t)=E(t)+Ex(t)
= 0.1{[u (1) = ya ()P +[9u(t) = )]’} (®)
—0.2¢" YOOl
where, y,(t) and y,(r) are lateral velocity of vehicle and
driver’s expectation; and @, (t),¢,(¢) are the yaw rate; y(r)

is the real lateral displacement while y,(z) is the target lateral
position of human driver. It can be found that, the difference

between driving expectations of driver and machine as well
as the actual tracking performance of system are both con-
sidered in the evaluation of error.

Hence, the performance level of the human-vehicle col-
laboration is defined by

P(t) =1 —tanh(E(t)), 9

where, a hyperbolic tangent function is used to organize the
value of performance P(¢) into range [0, 1]. Sequentially, trust
can be described in a form of state equation as

T(t)=—AT(t)+ur(t), (10)

where, T(¢) is the real-time trust level; A is a positive
constant which describes the descent rate of trust with

SS: A= )»1

NSS: A=X
10742, =2 x 1073 in this paper to regulate the changing
range of trust level; SS indicates the steady state of lateral
trajectory tracking(i.e., y(t) — y;(¢#) = 0); ur(¢) is the input
used to update the dynamic trust state, which is defined as

; the parameters are chosen as A} = 4 X

SS: 0,
MT(t) = . K]P(l), P(l) > Pthr
e {—K2|5d(f) —8,(1)|l, P(t)<Pu
(11)

where, P, = 0.86 is the threshold of performance level; k] =
5x 1072,k = 6 x 1073 are constant parameters.

Remark 2: As shown in Equations (10) and (11), when the
vehicle system tracks the desired trajectory well (i.e., in SS),
the trust level will decrease slowly at a low rate, since the
driving environment is not urgent. When the vehicle system
is in NSS and requires continuous adjustment of the driving
operations, the trust level will either increase or decrease
depending on the changes in the overall performance of
shared control system.

III. TRUST-BASED MFADP STEERING CONTROLLER

In this section, a model-free ADP controller is designed to
solve the optimal steering control policy. Moreover, a trust-
based MFADP controller is established which can adjust its
control policy based on real-time trust level for better driving
performance and less human-vehicle conflicts.

A. MFADP-based Steering Controller

A model-free adaptive dynamic programming method is
proposed to address optimal steering control problem.

Generally, for the vehicle dynamics established in (2), it
is widely accepted to find a feedback control as

u=—Kx, (12)

The feedback gain K in (12) is obtained to realize optimal
control where the following cost function is minimized.
J:/ (x" Ox -+ u” Ru) dt, (13)

0

where, O, R are state weighting matrix and control weighting
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matrix, respectively. In the case that the parameters A and B
in the system model are already known precisely, the feed-
back control problem can be addressed directly by solving
the Algebraic Riccati Equation(ARE) as follows.

ATP 4+ PA —P*BR'BTP*=0
{ +PA+Q : a4

K* = R71 BT P*,
where, P* is a real symmetric, positive definite matrix which
is the solution of ARE; K*is the optimal feedback gain.

Nevertheless, in many steering control conditions and
complex scenarios, A and B cannot be measured exactly
due to the uncertainty and unsteady disturbance. To this
end, model-free data-driven approach is used in this paper
without the reliance on knowledge of the specific parameters
of system model.

In the perspective of online iteration, a control policy with
noise is considered as:

u=—-Kx+e, (15)

where, K is the feedback control gain in iteration; e is
the artificial exploration noise selected to be a sinusoidal
signal with e =2sin(100¢). Then the online policy iteration
equation is obtained

Ky =R 'BTP_,,

xT (t + 6t)Pex(t + 6t) — xT (1) Pex(t)
—2 [ e TRK, | 1 xdT
= — [ ¥ (Q+ KT RK )xd,

(16)

where, Py is the real symmetric positive definite solution of
Lyapunov equation A? P+ PAy + Q-+ K RK;, = 0 with Ay =
A — BK. In this case, P, and the feedback gain K| can be
solved by online iterations when A,B in the system model
are unknown.

Off-policy learning method is then applied to find the
optimal control in this paper. From (16), with an initialized
arbitrary control u = uy, we can transform the equation into
the form of kronecker product with

xIOpx = (xT ®xT) vec(Qx),
(u+ka)TRKk+1x
=[(x" ®@x") (L, @ K['R)
+ (" @uf) (I @ R)]Kes1,

A7)

where, Q) = Q+Kk7 RKj. Organizing the parameters and
variables, we have
vec(Py)

2 [VeC(KkH )} -

[

ks (18)

S '
|:—2 [Ixx (In ®KER) + L (In ®R)]:|, >

O =
(20)

Ep = —Lavec(Qy),

where vec(-) is defined as a vector in R™" by stacking the

columns of a matrix in R"*"; I, and I, are matrices
used to record state information for iterations. For any
positive integer / and time constants 0 <t <t < --- <1y,
we have

T
— ! o) ]
O = [x®x|t0,x®x\,l yoe 7x®x|tlil}

2

T
Ly = [fffx@xd’c,. ,;3x®xd17,-~~ 71;5—1 x®xd’c}

T
1, 1 I
Lo = [ t12x®ud7:,f,23x®udr,-~ ’ftl,1x®”d7]

Hence, O, %, are derived by measuring system states
and inputs at multiple time ranges as well as combining
with parameter values at current iteration step. The optimal
steering control is realized using MFADP.

B. Trust-based Steering Control Model

This section establishes a novel steering control model
based on established trust dynamics.

In the steering controller using MFADP, the value of state
weighting matrix Q is very crucial in the calculation of
the feedback gain. Inspired by [31], the value of Q could
be dynamically adjusted. In our work, we consider that
parameter Q will be influenced by quantitative trust in the
real time, which will further affect the control policy. The
adjustment mechanism of Q is described by

0=0,+[1-T1))(Qa—0Qv), (22)
where, O, and Q, are the weighting matrices of automation
and human driver. In this case, the parameters are given by
Q4 = diag(5,5,0,0) and Q, = diag(0,0,5,5) such that the
control weightings for distinct state variables are different
to emulate the steering characteristics of human driver and
intelligent controller. Then the trust-based SCM can be
established as Algorithm I.

Algorithm 1: Trust-based model free ADP control

Data: initial feedback gain Ky, set the weighting
matrices Qg and Q,, Set € > 0 as a small

threshold.

1 k+0;

2 Get the real-time trust level T'(¢);

300+ [1-T)](Qa—0);

4 Sett=1:=0;

5 repeat

6 u<+ —Kox+e;

7 Compute matrices Oy, Iy and I, from (21);

s until full rank condition of Oy is satisfied,

9 Compute P; and K;; from (18) with k = 0;

10 repeat

11 k< k+1;

12 Update P, and K; from 6 { vec(P) ] =5
vec(Kit1) ’

13 until |Pk—Pk,1 < 8‘ ,k >1;

Result: Optimal control policy u = —Kjx.
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Fig. 2.

Driving scenario of double lane change.

TABLE 1
PARAMETERS OF VEHICLE MODEL

Parameters Value Parameters Value
m 1412kg Iy 1.015m
I, 1536.7kg - m? I 1.895m
Cy -112600N /rad C, -94548N /rad

Specifically, when the value of trust is low, the automated
vehicle would focus on deviation of lateral position and yaw
angle, updating its control policy to follow driver’s expecta-
tion to increasing the performance and trust. Conversely, if
the trust is high, the vehicle applies steering strategy with a
weighing matrix close to Q,. The optimal control policy is
solved based on updated weighing matrix using MFADP.

IV. SIMULATION STUDIES AND ANALYSIS

High-fidelity Carsim-Simulink simulations are used to
verify the effectiveness of trust model for human-vehicle
cooperation as well as the trust-based steering control. We
choose a driving scenario of double lane change for human-
vehicle collaborative trajectory tracking as shown in Fig.2.
And the longitudinal velocity of vehicle in the simulation is
controlled to be a constant value of v, = 80km/h.

Remark 3: To validate the proposed trust-based human-
machine co-driving strategy, the human driver and automa-
tion are considered to have different driving expectations. In
the lane-changing scenario, the automated system prioritizes
safety by maintaining maximum distance from obstacles,
which may increase the consumption of time and energy.
In contrast, experienced drivers can optimize the efficiency
while ensuring safety by following a more suitable trajectory.
As shown in Fig.2, the blue line represents the driver’s
expected trajectory, while the red line indicates a more
conservative path preferred by the automated system.

Based on the designed scenario, high-fidelity Carsim-
Simulink co-simulations are conducted to validate the pro-
posed framework with parameters listed in Table I. The time
period of simulation is 15s, and the time step is 0.01s. In
this section, traditional shared control model (abbreviated
as “Tra-SCM”) and the proposed trust-based shared control
model (“Trust-SCM”) are tested and evaluated, the control
authority is allocated using numerical function method with
same parameters referring to [32]. But the "Tra-SCM" uses
the controller with constant matrix Q, while "Trust-SCM"
applies trust-based MFADP controller for the automation.

The results of trajectory tracking with different shared
control methods are represent in Fig.3. Under "Tra-SCM",
the actual trajectory has a larger deviation from the human
driver’s expectation. In contrast, the tracking performance

4
—*—Driver target
3+ —*—Tra-SCM
= —+—Trust-SCM
oot 3.80
= ae0f
1 3.40
6 65 7 15 8
0 | . N
0 5 10 15
Time (sec)
Fig. 3. Trajectory tracking profiles.
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Fig. 5. Profiles of performance and Trust.

of "Trust-SCM" is significantly better than the "Tra-SCM"
which indicates that utilizing trust-based MFADP controller,
thereby adaptively adjusting control strategies according to
the trust level, can enhance the performance of human-
vehicle collaborative driving.

Fig.4 shows the deviations of lateral displacement and
yaw angle. It is evident that the average tracking error under
“Trust-SCM” is significantly smaller than that of "Tra-SCM"
during the steering processes. Meanwhile, a less value of ey
is can also be found in “Trust-SCM”, which indicates better
trajectory tracking performance.

Moreover, it is evident that both the performance of
co-driving system and the trust level under "Trust-SCM"
takes higher average level than "Tra-SCM" from Fig. 5.
This implies that real-time adjustment of control strategies
based on trust can effectively improve the performance of
collaborative driving and reduce conflicts.
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V. CONCLUSION

The major contribution of this work is proposing a novel
quantitative trust dynamic model for human-vehicle shared
steering control for the first time, considering the deviations
between human and automation expectations. Additionally,
the paper designs a trust-based model-free adaptive dynamic
programming controller that can adaptively adjust the control
weight matrix based on the real-time trust level. Valida-
tion through high-fidelity Carsim-Simulink co-simulations
confirms the increase in trust level and reduction in driver
workload using the proposed trust-based human-vehicle co-
driving system. Future research will focus on trust-based
authority allocation strategies for human-vehicle cooperative
driving and game theory-based shared steering control.
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