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Abstract— Complex systems can be effectively modeled via
graphs that encode networked interactions, where relations
between entities or nodes are often quantified by signed
edge weights, e.g., promotion/inhibition in gene regulatory
networks, or encoding political of friendship differences in
social networks. However, it is often the case that only an
aggregate consequence of such edge weights that characterize
relations may be directly observable, as in protein expression
of in gene regulatory networks. Thus, learning edge weights
poses a significant challenge that is further exacerbated for
intricate and large-scale networks. In this article, we address
a model problem to determine the strength of sign-indefinite
relations that explain marginal distributions that constitute
our data. To this end, we develop a paradigm akin to that
of the Schrödinger bridge problem and an efficient Sinkhorn
type algorithm (more properly, Schrödinger-Fortet-Sinkhorn
algorithm) that allows fast convergence to parameters that
minimize a relative entropy/likelihood criterion between the
sought signed adjacency matrix and a prior. The formalism
that we present represents a novel generalization of the earlier
Schrödinger formalism in that marginal computations may
incorporate weights that model directionality in underlying
relations, and further, that it can be extended to high-order
networks – the Schrödinger-Fortet-Sinkhorn algorithm that
we derive is applicable all the same and allows geometric
convergence to a sought sign-indefinite adjacency matrix or
tensor, for high-order networks.

I. INTRODUCTION

Complex interactions between multiple subsystems can
often be encoded in a networked structure that models
respective relations [22]. These relations may be binary as
in ordinary graphs with vertices and edges, trinary and so
on, as in higher-order relations. The strength of respective
interactions may be assigned as a weight in corresponding
edges, or their higher-order analogues. Yet, contrary to typi-
cal accounts in the vast literature on the subject, interactions
may be sign-indefinite, signifying e.g., promotion/inhibition
or friend/unfriend in biological and social networks, re-
spectively. Moreover, perceived aggregate effects of such
relations may have an added directional bias. In many such
examples, acquiring nodal information is relatively straight-
forward, while directly and precisely learning edge weights
presents a significant challenge. Numerous computational
methods have been proposed to learn and quantify edge
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weights in networks, including cross-correlation [16], mu-
tual information [27], system identification [10], and graph
transformer neural networks [29]. However, most of these
methods require adequate time-series data on node states,
which might not be easily accessible in general.

In our recent work [14], we presented a framework for
identifying sign-distinguishable edge weights by utilizing
prior knowledge of the sign-indefinite structure, encoded in a
sign-indefinite “prior” adjacency matrix, and nodal statistics
that constitute data. The formalism involves minimizing a
suitable relative entropy functional between sign-indefinite
measures, which can be solved using a suitable generaliza-
tion of the well-known Sinkhorn algorithm (more properly,
Schrödinger-Fortet-Sinkhorn algorithm, since it was explicit
in the work of Fortet [15] on the Schrödinger bridge prob-
lem). The generalization consists in modifying the iteration
steps by scaling with values computed as the positive roots
of a quadratic polynomial – the classical Sinkhorn “diagonal-
scaling” iteration applies when the adjacency matrix is sign-
definite (with entries ≥ 0) [6], [18]. The proposed method
was applied to determine the promotion and inhibition inter-
actions in gene regulatory networks [14].

Whereas determining the sign (promotion/inhibition) in
multi-subsystem/multi-species relations may be tangible, de-
termining the precise strength may be challenging as it is
not typically accessible in complex and large-scale networks.
For instance, in gene regulatory networks, protein expres-
sion reveals marginal information on nodes, and statistics
on increased/decreased expression provide a sign for the
promotion/inhibitive coupling between nodes. However, the
strength of such pair-wise or, more generally, multi-gene
interactions cannot be directly observed due to stupendously
complicated effects across the network. Yet it is of at
most importance in inferring potential fitness advantages on
organisms by their combined effect [26]. Then, in ecological
networks, quantifying interspecies interactions can also be
challenging due to the intricate complexity and variability
of the overall activity across the network, including envi-
ronmental factors, habitat structures, and species behaviors
[24]. Such scenarios motivate our problem, where partial
information at the level of nodes can be assumed reliable,
whereas the strength (but not the sign) of respective interac-
tions is less so. Thereby, we consider directional marginal-
wise sign templates that may encode the combined effect
of interactions at the level of nodes, and assume nodal data
as given, from which we seek to identify strength levels of
pair-wise or multi-node interactions.

Evidently, in real-world systems that may be impacted
by higher-order interactions, describing these solely using
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networks may lead to a loss of higher-order information. A
higher-order network (or a hypergraph) is a generalization of
a network, in which its hyperedges can connect any number
of nodes [1]. Examples of higher-order networks encompass
various domains, including email communication networks,
metabolic networks, and protein-protein interaction networks
[2], [3]. Computational methods and the influx of concepts
such as entropy [4], controllability [5], and various similarity
measures [25] are rapidly entering the toolbox for dealing
with higher-order networks. The contribution in the present
paper can be viewed from this angle, formulating a basic
problem of inference of multi-node interactions based on
observed partial information and priors.

Thus, in this article, we formulate the problem and pro-
pose a framework aimed at tackling the inverse problem of
estimating edge weights in a network by minimizing the
Kullback–Leibler divergence between a prior and a posterior
concerning directional marginal-wise sign patterns. Similar
to our previous work [14], this problem can be solved
using a Sinkhorn-like algorithm. This algorithm amounts
to implementing coordinate ascent to maximize a concave
functional, leading to linear convergence rate. The algorithm
represents a significant generalization of the standard solver
of the entropic regularized optimal transport problem and the
Schrödinger bridges problem, which has attracted increasing
attention among the fields of control [7], [8], machine learn-
ing [8], and image processing [23]. Furthermore, is applies
to higher-order networks, where we determine hyperedge
weights based on directional marginal-wise sign-indefinite
adjacency tensors (generalizations of adjacency matrices).

The organization of the remaining article is as follows.
In Section II, we provide necessary background knowledge
of signed networks and the Sinkhorn algorithm. Section
III presents the generalized Sinkhorn algorithm along with
established theoretical results for our proposed problem. Sec-
tion IV discusses the generalization to general higher-order
networks with the proposed method. Section V includes three
numerical examples to validate the algorithm. Finally, we
conclude with future directions in Section VI.

II. PRELIMINARIES
A. Signed Networks

Signed networks refer to network structures where the
relationships between nodes are sign-indefinite (Aij ⪌ 0)
[30]. These networks capture not only affinity between
nodes but also the nature of respective interactions, whether
these represent cooperation, friendship, antagonism, rivalry,
or other types of expression. Signed networks are prevalent
across diverse domains, spanning sociology [28], ecology
[11], and signal processing [12]. Mathematically, a signed
network can be represented by a sign-indefinite adjacency
matrix, where its entries take values of −1, 0, and 1, or by
a suitably weighted counterpart.

Signed higher-order networks generalize signed networks
by representing relationships among multiple entities or
nodes with positive or negative signs. When all hyperedges
link the exact same k number of nodes, the higher-order
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Fig. 1: Every hyperedge in the example is colored by one
color. (A) 3-uniform higher-order network with hyperedges
e1 = {1, 2, 3}, e2 = {3, 4, 5}, e3 = {5, 6, 7} and e4 =
{8, 7, 1}. (B) Non-uniform higher-order network with hy-
peredges e1 = {1, 2, 3, 4}, e2 = {4, 5}, e3 = {5, 6, 7} and
e3 = {1, 8, 7}.

network is termed k-uniform (Figure 1). Every k-uniform
higher-order network with n nodes can be represented by
a kth-order n-dimensional adjacency tensor (i.e., a multi-
dimensional array generalized from matrices and vectors)
[4], [5]. Thus, similar to signed networks, a signed k-
uniform higher-order network can be characterized by a sign-
indefinite adjacency tensor A ∈ Rn×n× k···×n defined as

Ai1i2···ik =


1 if e forms a positive interaction

−1 if e forms a negative interaction
0 otherwise

, (1)

where e denotes the hyperedge containing node i1, i2, . . . , ik.

B. Schrödinger Bridges Problem

The Schrödinger Bridges Problem (SBP) originated as
a problem in large deviations theory, as the problem to
minimize the Kullback-Leibler divergence, a measure of dis-
similarity between probability distributions [7], [9], between
prior and posterior, so that the latter agrees with estimated
statistics. Thus, if Q ∈ Rn×n

≥0 with non-negative entries
represents a “prior” joint probability between two random
variables, and if the corresponding to positive probability
vectors p ∈ Rn

>0 and q ∈ Rn
>0 are not consistent with Q,

then SBP seeks to adjust the values in Q so as to derive a
“posterior” P ∈ Rn×n

≥0 that is consistent with the specified
marginals. The posterior matrix P ∈ C is defined as the set
of admissible elements from a feasible set C = C0∩C1∩C2,
where C0 := {P | Pij ≥ 0}, C1 := {P |

∑n
j=1 P = p}, and

C2 := {P |
∑n

i=1 P = q}.
The standard SBP seeks P as the minimizer of the

Kullback-Leibler divergence to the prior Q, i.e., as the
solution to

P⋆ = argmin
P∈C

KL(P|Q) = argmin
P∈C

n∑
i=1

n∑
j=1

Pij log (
Pij

Qij

).

Throughout we follow the convention that log(0/0) = 0. The
objective function is strictly convex, and once the feasible set
C is non-empty, an optimizer P∗ always exists. Additionally,
a closed-form solution can be derived from the first-order
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Algorithm 1 Sinkhorn algorithm

1: Initialize ν ∈ Rn, e.g., setting ν = 0.

2: For j = 1, 2, . . . , n, determine
µj = log(pj/

∑n
i=1 Qij exp(−νi)).

3: For i = 1, 2, . . . , n, determine
νi = log(qi/

∑n
j=1 Qij exp(−µj)).

4: Repeat steps 2 and 3 until convergence.

optimality condition by employing the Lagrangian, i.e.,

L(P,µ,ν) :=
n∑

ij|Qij ̸=0

Pij log(
Pij

Qij

) +

n∑
j=1

µj

( n∑
i=1

Pij − qj
)

+

n∑
i=1

νi
( n∑
j=1

Pij − pi
)
,

where µj is the jth entry of µ (similarly for qj , νi, and pi).
Therefore, P∗

ij = Qij exp (−νi − µj) with µ and ν are the
dual variables for the marginal constraints

n∑
j=1

P⋆
ij = p and

n∑
i=1

P⋆
ij = q. (2)

The solution P∗
ij has to satisfy the marginal constraints in

C1 and C2, and the optimizer can be thus obtained by
the Sinkhorn scheme that iteratively updates the two dual
variables (Algorithm 1). The linear convergence rate of the
Sinkhorn algorithm can be established using the Hilbert
metric, and interested readers are referred to [23] for further
details.

The SBP can be generalized to the multidimensional
setting, taking the form

P⋆ = argmin
P∈C

∑
i1i2···ik

Pi1i2···ik

(
log
(Pi1i2···ik
Qi1i2···ik

))
, (3)

where Q ∈ Rn×n× k···×n
≥0 represents the given prior and

P ∈ Rn×n× k···×n
≥0 denotes the posterior. The posterior P

satisfies the marginal constraint P ∈ C0∩C1∩· · ·∩Ck where
each Cℓ is defined as Cℓ = {P |

∑
i1···ik/iℓ P = p(ℓ)} for

every marginal vector p(l) ∈ Rn
>0. Similar to the standard

Sinkhorn iteration in Algorithm 1, a closed-form solution of
the optimizer can be derived, obtained by a gradient ascent
method with, similarly, a linear convergence rate [21].

III. SINKHORN WITH DIRECTIONAL SIGN TEMPLATES

The underlying principle in our previous work [13], [14]
assumes a predetermined prior, with a given sign template
applied across all directions of the marginal constraints.
However, such an assumption may not always be practical
for real-world applications. In complex systems, precisely
capturing relationships can be challenging due to uncertain-
ties or the inability to directly measure certain edge signs.
This scenario would lead to the creation of multiple distinct
signed networks, each representing alternative interpretations
of the system’s dynamics. For instance, in a social network

where friendships and animosities exist, the absence of
direct observations for several relationships may lead to the
construction of multiple signed social networks with differ-
ing assumptions about uncertain relationships. Since sign
patterns may be subjective and their precise determination
may be impossible under certain circumstances, a framework
that allows for directional sign templates as an initial guess
is necessary and critical.

We introduce a non-trivial generalization of the Sinkhorn
algorithm, namely Sinkhorn with directional sign templates.
We first start with the classical two-dimensional case by
considering a prior matrix Q ∈ Rn×n

≥0 and two specified
positive marginal vectors p ∈ Rn

>0 and q ∈ Rn
>0. In contrast

to the previous work, the problem now admits two directional
marginal-wise sign patterns. The constraints for the posterior
matrix P ∈ Rn×n

≥0 in (2) are thus generalized to

C′
1 := {P |

n∑
j=1

[X∗P]ij = pj},C′
2 := {P |

n∑
i=1

[Y∗P]ij = qi},

(4)
where X ∈ Rn×n and Y ∈ Rn×n are two distinct sign-
indefinite adjacency matrices of the network, and ∗ denotes
the element-wise multiplication.

Problem 1: The SBP seeks the most likely posterior P ∈
Rn×n

≥0 with respect to a given prior Q ∈ Rn×n
≥0 , achieved by

minimizing the relative entropy

P⋆ = argmin
P

n∑
i=1

n∑
j=1

Pij

(
log

(
Pij

Qij

)
− 1

)
(5)

with the convention log (0/0) = 0. We intentionally add −1
at the end for simplicity in later computations. The posterior
P is also required to meet the marginal constraints

n∑
i=1

XijPij = pj and
n∑

j=1

YijPij = qi. (6)

Our problem considers two distinct sign patterns, indicated
by X and Y, for different marginals while maintaining a
convex objective. First, we demonstrate that the optimizer
has a closed-form solution under the feasibility assumption.

Assumption 1 (Existence): The solution to Problem 1 ex-
ists. In other words, the set of possible solutions is defined as
{P | P ∈ C′

1 ∩C′
2}∩{P | KL(P | Q) < +∞} is non-empty.

Note that a simple feasibility test may not exist for the
problem. It is well-known that certain moment problems lack
a straightforward feasibility test, as discussed in [17].

Proposition 1 (Closed-form solution): The optimizer P
has a closed-form solution computed as

P⋆
ij =

{
Qij exp (−µjXij − νiYij) for Xij ̸= 0, Yij ̸= 0

0 for Xij = 0, Yij = 0
,

where µ ∈ Rn and ν ∈ Rn are the Lagrangian multipliers
of the constraints in (4).
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Proof: We first rewrite the Lagrangian L as

L(P,µ,ν) :=
∑

ij|Qij ̸=0

Pij

(
log(

Pij

Qij
)− 1

)

+
∑
j

µj

( n∑
i=1

XijPij − pj
)
+

∑
i

νi
( n∑

j=1

YijPij − qi
)
.

(7)

The first-order optimality condition ∂L/∂Pij = 0 yields
log(

Pij

Qij
) + µjXij + νiYij = 0, for i, j with Qij > 0.

Otherwise, Pij = 0. Therefore, the optimizer must have the
following functional dependence on the Lagrange multipli-
ers, i.e., P∗

ij = Qij exp
(
−µjXij − νiYij

)
, if Qij ̸= 0, and

P∗
ij = 0 otherwise.
The optimal kernel can be rewritten in a more specific

form

P∗
ij =


Qij exp

(
− µj − νi

)
, if Xij > 0, Yij > 0,

Qij exp
(
− µj + νi

)
, if Xij > 0, Yij < 0,

Qij exp
(
+ µj − νi

)
, if Xij < 0, Yij > 0,

Qij exp
(
+ µj + νi

)
, if Xij < 0, Yij < 0,

0, if Xij = 0, Yij = 0.

(8)

To write (8) in a more compact form, we define indicator
matrices Q++, Q+−, Q−+, and Q−− as

Q++ := {Qij | Xij > 0, Yij > 0},
Q+− := {Qij | Xij > 0, Yij < 0},
Q−+ := {Qij | Xij < 0, Yij > 0},
Q−− := {Qij | Xij < 0, Yij < 0}.

It is straightforward to see that Q = Q+++Q+−+Q−++
Q−−. We also define variables αj = exp(µj) and βi =
exp(νi). The optimizer (8) thus can be rewritten as

P⋆
ij = Q++

ij αjβi +Q+−
ij αjβ

−1
i +Q−+

ij α−1
j βi +Q−−

ij α−1
j β−1

i ,

which satisfies the constraints in (4), i.e.,
n∑

i=1

(Q++
ij βi +Q+−

ij β−1
i )αj + (Q−+

ij βi +Q−−
ij β−1

i )α−1
j = pj ,

n∑
j=1

(Q++
ij αj +Q−+

ij α−1
j )βi + (Q+−

ij αj +Q−−
ij α−1

j )β−1
i = qi.

Additionally, to simplify the constraints, we define

a
{Q++,Q+−}
j (β) :=

n∑
i=1

(
Q++

ij βi +Q+−
ij β−1

i

)
,

b
{Q−+,Q−−}
j (β) :=

n∑
i=1

(
Q−+

ij βi +Q−−
ij β−1

i

)
,

a
{Q++,Q−+}
i (α) :=

n∑
j=1

(
Q++

ij αj +Q−+
ij α−1

j

)
,

b
{Q+−,Q−−}
i (α) :=

n∑
j=1

(
Q+−

ij αj +Q−−
ij α−1

j

)
.

We can then rewrite the constraints as

pj = a
{Q++,Q+−}
j (β)αj − b

{Q−+,Q−−}
j (β)α−1

j , (9a)

qi = a
{Q++,Q−+}
i (α)βi − b

{Q+−,Q−−}
i (α)β−1

i . (9b)

Algorithm 2 Generalized Sinkhorn algorithm

1: Initialize β ∈ Rn, e.g., setting ν = 1.

2: Compute Q++, Q+−, Q−+, and Q−−.
3: For j = 1, 2, . . . , n, determine

αj = g
(
a
{Q++,Q+−}
j (β), b

{Q−+,Q−−}
j (β), pj

)
. (11a)

4: For i = 1, 2, . . . , n, determine

βi = g
(
a
{Q++,Q−+}
i (α), b

{Q+−,Q−−}
i (α), qi

)
. (11b)

5: Repeat steps 2 and 3 until convergence.
6: Compute the optimizer P⋆.

We observe that αj can be explicitly computed from the
marginal constraint pj , while keeping the vector β fixed.
Similarly, βi can be computed from qi. To see this, we can
consider the following function f(x) = ax+ bx−1, where a
and b are both positive. Thus, for a given value c, a solution
to f(x) = c can be readily obtained as the positive root of
a quadratic equation, computed as

x =

(
−c+

√
c2 + 4ab

2b

)
=: g(a, b, c). (10a)

For our purposes, the case where b = 0 is also of interest,
i.e.,

x =
(a
c

)
=: g(a, 0, c). (10b)

The proposed generalized Sinkhorn algorithm for two direc-
tional sign templates is summarized in Algorithm 2.

Proposition 2 (Convergence): Algorithm 2 converges to
optimal with linear convergence rate under Assumption 1.

Proof: The convergence of the algorithm can be
understood through the strong duality of the problem. We
first substitute the optimizer P∗

ij into the Lagrangian (7),
obtaining

h(µ,ν) =

n∑
i=1

n∑
j=1

−P⋆
ij − µjpj − νiqi. (12)

The dual problem is therefore a maximization problem with
a strictly concave objective defined as

argmax
µ,ν

h(µ,ν), (13)

where the Slater’s condition is satisfied, ensuring that strong
duality holds.

Given that the objective is strictly convex, we can ob-
tain the optimizer P⋆ using a coordinate ascent strat-
egy, while ensuring strong duality holds. Specifically, the
coordinate-wise optimization of the dual (13), i.e., µj =
argmaxµj

h(µ,ν) and νi = argmaxνi
h(µ,ν), gives that

∂h(µj , νi)

∂µj
=

n∑
i=1

P⋆
ij − pj = 0,

∂h(µj , νi)

∂νi
=

n∑
j=1

P⋆
ij − qi = 0

at each step, leading to an update for µj and νi to satisfy
(9) and (11). Therefore, the generalized Sinkhorn iteration in
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Algorithm 2 inherits the linear convergence rate of coordinate
ascent [21, Theorem 2.1], as in the standard Sinkhorn.

Last but not least, the problem and obtained results (in-
cluding Algorithm 2 and Proposition 2) can be extended
to the multi-marginal setting for higher-order networks,
with a predetermined kth-order n-dimensional prior Q ∈
Rn×n× k···×n

≥0 and k positive marginals p(1),p(2), . . . ,p(k) ∈
Rn

>0. Moreover, every marginal constraint set for the poste-

rior P ∈ Rn×n× k···×n
≥0 is then defined as

C
′′
ℓ := {P |

∑
i1i2···ik/iℓ

X (ℓ)
i1i2···ikPi1i2···ik = p

(ℓ)
iℓ

},

where X (l) ∈ Rn×n× k···×n are directional marginal-wise
sign-indefinite adjacency tensors. Thus, all the admissible
solution P has to be in the set C′′ = C′′

1 ∩ C′′
2 ∩ · · · ∩ C′′

k .
Problem 2: The SBP seeks the most likely posterior P ∈

Rn×n× k···×n
≥0 with respect to a given prior Q ∈ Rn×n× k···×n

≥0 ,
achieved by minimizing the relative entropy (3) over admis-
sible solutions P ∈ C′′.

The problem is well-defined when it is feasible, and its
solution can be obtained similarly to the two-dimensional
case (Algorithm 2). Concerning convergence, the argument
is analogous to our discussion in Proposition 2, as it relies
on the gradient ascent nature of the problem [21].

IV. GENERAL HIGH-ORDER NETWORKS

Every k-uniform higher-order network, where hyperedges
have the same cardinality k, is known to possess a kth-order
tensor representation (1). However, representing general (or
non-uniform) higher-order networks is not straightforward
due to the potential variance in hyperedge cardinality. Never-
theless, a tensor representation can be achieved by converting
the original non-uniform higher-order network to a uniform
one through the addition of ‘virtual’ nodes. These virtual
nodes carry no nodal information but merely serve as place-
holders to ensure every hyperedge has the same cardinality.
Consequently, the converted uniform higher-order network
features kmax cardinality for every hyperedge, with kmax

representing the largest hyperedge cardinality in the orig-
inal non-uniform higher-order network. A simple example
of such conversion is illustrated in Figure 2. Ultimately,
the corresponding marginal distribution maintains the same
number of nodes, with nodal information on every virtual
node set to zero. Hence, this problem can be adapted to
Problem 2.

V. NUMERICAL EXAMPLES

We conducted three numerical examples to illustrate our
framework and the efficiency of the generalized Sinkhorn
algorithm. The code for all experiments can be found at the
following link: https://github.com/dytroshut/
marginal-wise-CDC.

A. Ecological Network

In ecological networks, interactions between species are
often understood qualitatively, meaning that the signs of
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Fig. 2: Uniformity conversion. (A) A non-uniform higher-
order network with hyperedges e1 = {1, 2, 3}, e2 = {1, 4},
and e3 = {3, 4} is converted to a 3-uniform higher-order net-
work by adding virtual node 5. (B) The resulting 3-uniform
higher-order network with hyperedges e1 = {1, 2, 3}, e2 =
{1, 4, 5}, and e3 = {3, 4, 5}.
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Fig. 3: The topology of a 10-node network with sign tem-
plates X (left) and Y (right).

interactions (such as inhibition or promotion) can be de-
termined with reasonable confidence, but quantifying the
actual magnitudes may be challenging [19], [20]. Under
certain instances, even determining the signs of interactions
can be obscure. Thus, it is necessary to consider multiple
potential sign patterns when learning the magnitudes of these
interactions. In this example, we considered an ecological
network where ten species are represented by nodes, and
their species-wise interactions are represented by edges. The
abundance of each species is normalized and represented as
marginal distributions given by

p = [0.1, 0.05, 0.05, 0.15, 0.2, 0.05, 0.03, 0.07, 0.25, 0.05],

q = [0.05, 0.1, 0.05, 0.2, 0.07, 0.15, 0.05, 0.25, 0.03, 0.05].

The two marginal distributions originated from two potential
sign templates X and Y, with negative signs located at
X1,2,Y1,2,Y1,9,Y9,10 with their permutations.

Specifically, the coefficient between Species 1 and 2 is
known to be negative, while the interactions between Species
1 and 9, as well as between Species 9 and 10, are uncertain.
The topologies of both of the 10-node signed ecological
networks are depicted in Figure 3. The prior is set as
Q = |X| = |Y| for simplicity, without any initial guess of the
edge weights. The posterior (14) obtained using Algorithm 2
represents the maximum likelihood estimation based on the
observed information from the ecological networks.

B. Convergence

To demonstrate the convergence rate of the proposed
framework, we presented a multi-marginal case study in-
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P =



0.0108 0.0990 0.0817 0 0.0412 0 0.0167 0 0.0194 0.0292
0.1497 0 0.1195 0 0 0 0.0291 0 0 0.0511
0.0286 0.0002 0 0 0.0023 0 0.0009 0.0180 0 0

0 0 0 0 0.0168 0 0 0.1332 0 0
0.0010 0 0.0063 0.1439 0.0038 0.0450 0 0 0 0

0 0 0 0 0.0059 0 0.0024 0 0.0417 0
0.0006 0.0002 0.0035 0 0 0.0249 0.0009 0 0 0

0 0 0.0025 0.0561 0 0 0 0 0.0104 0.0011
0.0850 0 0 0 0 0.0801 0 0.0536 0 0.0314
0.0015 0.0006 0 0 0 0 0 0.0453 0.0027 0


(14)

volving tensors (Problem 2), where both the prior and
posterior are third-order tensors associated with a higher-
order network. The marginal violations are defined as

log

(∥∥∥∑i1i2i3/iℓ
[X (l)∗P]i1i2i3−p(ℓ)

∥∥∥) for ℓ = 1, 2, 3. Both

the convergence and its linear convergence rate in terms of
marginal violations can be found in our arXiv version.

VI. CONCLUSION

In this article, we introduced a generalized Sinkhorn algo-
rithm with directional sign indicators, where each sign pat-
tern serves as an initial guess along with the corresponding
marginal, to quantitatively learn edge weights in a (higher-
order) network. We also investigated the convergence and
convergence rate of the proposed method. The current frame-
work has demonstrated efficiency in the maximum likelihood
estimation of (high-order) networks. Furthermore, given that
a prior and a posterior are high-dimensional arrays, the
problem may encounter the “curse of dimensionality,” as both
memory and computation complexity increase exponentially
with the size of the problem. To mitigate this challenge, it
is worthwhile to apply tensor decomposition techniques.
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