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Abstract— In cyber-physical systems, replay attacks are a
type of deception attacks that involve replaying previously
recorded sensor data while injecting attack signals into the
physical plant. The replay attacks are difficult to detect because
the data being replayed is normal. To detect replay attacks,
authentication signals are commonly used. However, injecting
authentication signals may affect the performance of system
states that are sensitive to noise or disturbance. To address this
issue, the effect of authentication signals on sensitive states is
measured in the sense of mean square error, and conditions
that the authentication signal has a limited effect or even
no effect on sensitive states are presented. Combining these
conditions, optimization problems are constructed to design the
authentication signal. Finally, the proposed method is validated
through simulation results.

I. INTRODUCTION

Cyber-physical systems (CPSs) are complex systems that
integrate control, communication, and computing technolo-
gies, with wide applications in practical industrial systems
and products [1], [2]. However, unlike traditional control
systems, CPSs rely on remote transmissions subject to attack
risks that may cause significant damages [3], [4], [5].

Replay attack is a kind of deception attack that has
received significant research attention. It involves hijacking
sensors, recording sensor data for a certain amount of time,
and replaying the recorded data while injecting arbitrary
attack signals into the physical plant. According to [6], the
widely used χ2 detector may fail to detect such attacks since
the recorded data is normal, which makes it more harmful.

To detect replay attacks, [6] designed an authentication
signal consisting of i.i.d Gaussian noise added to the control
signal. They also analyzed the benefits of this method for
detecting replay attacks and the performance loss incurred
by adding the authentication signal. Based on this research,
over the past decade, research on replay attack detection
has mainly focused on two aspects: improving detection
effectiveness and reducing performance loss caused by au-
thentication signals. For the first aspect, [7] proposed a
dynamic watermarking method that depends on the system’s
dynamics, resulting in an unstable residue signal when a
replay attack occurs and achieving a probability of detection
equal to one. [8] designed a frequency-based authentication
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signal to determine which channels are affected by the replay
attack. [9] and [10] expanded on the work of [6]. Specifically,
[9] formulated optimization problems to maximize detection
effectiveness while limiting performance loss, while [10]
relaxed the authentication signal to a stationary process
generated by a hidden Markov model (HMM). To reduce
performance loss caused by authentication signals, [11] pro-
posed a periodic watermarking scheduling approach based on
the discontinuous replay attack model, which reduces control
costs. [12] used communication error to assist replay attack
detection, eliminating the need for an artificial authentication
signal. This approach is only suitable for a specific type of
CPS involving an additive white Gaussian noise channel.
[13] designed a stochastic coding scheme in the sensor-
controller channel, where the coding and decoding numbers
do not match during a replay attack, allowing for detection.
However, this approach requires the dynamic coding and
decoding numbers to be known on both the plant and
estimator sides, which could be susceptible to attacks.

The authentication signal is essentially a disturbance input.
In practice, there may exist states which are sensitive to
significant disturbances. For example, in chemical reactions,
maintaining a steady temperature is crucial for the success
of some reactions [14], [15]. Similarly, in robotics, keeping
the lateral direction of a moving robot stable is necessary
to maintain tracking accuracy [16]. The front joint of a
manipulator should also avoid large disturbances to maintain
the accuracy of the end-point [17]. In view of this, the above-
mentioned attack detection methods may not be suitable for
real systems as they may not adequately protect vulnerable
states from being overly disrupted.

In this paper, the problem of designing authentication
signals with limited effect on sensitive states in the mean-
square sense is studied. By using the mean square error
of sensitive states impacted by and free of authentication
signals to measure their effect, we establish necessary and
sufficient conditions on the authentication signal having a
limited effect or even no effect on sensitive states. With these
conditions, we further investigate the design of authentication
signal by formulating it as optimization problems. The main
contributions of this paper lie in establishing necessary and
sufficient conditions of authentication signals with limited or
even no effect on sensitive states for reply attack detection,
and formulating optimization problems to design the optimal
authentication signal.

The remainder of the paper is structured as follows.
Section II provides preliminary information on replay attacks
and our motivation for this study. In Section III, we describe
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our method for designing the authentication signal. Simula-
tion results are presented in Section IV, and we conclude
this paper in Section V.
Notation. We denote by R the real numbers, Rn the real
space of n dimension for any positive integer n, N the set
of natural numbers, and P+ the set of positive semi-definite
matrix. For a variable X ∈ Rn, Xk represents the value of
X at time instant k, and Xi,k denotes the ith element of Xk.
For A ∈ Rn×n, AT denotes the transpose of matrix A, Tr(A)
denotes the trace of A, and ρ(A) denotes the spectral radius
of A. N (µ,Σ) denotes the Gaussian distribution with mean
µ and covariance Σ. In denotes identity matrix of dimension
n×n. E(·) denotes the expectation of a random variable. For
a set C, |C| denotes the total number of elements in C.

II. PROBLEM FORMULATION

A. System Description
Consider the LQG control problem for linear time-

invariant physical plant of the form

xk+1 = Axk +Buk + wk

yk = Cxk + vk
(1)

where xk ∈ Rn is the system state, uk ∈ Rm is the control
input, yk ∈ Rp is the sensor measurement, wk ∼ N (0, Q)
is the process noise, and vk ∼ N (0, R) is the measurement
noise. Both wk and vk are i.i.d. and mutually independent
Gaussian noises. A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are
the system matrix, input matrix, and measurement matrix,
respectively. As is customary in the field of LQG control,
we make the following assumptions throughout the paper:
the pair (A,B) is stabilizable, the pair (A,C) is detectable,
and (A,

√
Q) is stabilizable.

The LQG control objective is to design a feedback control
law to minimize the cost

J = E
(1
2
xT
NMxN +

1

2

N−1∑
k=k0

(xT
kWxk + uT

kUuk)
)
, (2)

where M ∈ Rn×n, W ∈ Rn×n and U ∈ Rm×m are positive
definite matrices. To solve such a problem, an estimator is
usually deployed, e.g., a Kalman filter of the form

x̂k+1|k = Ax̂k +Buk

Pk+1|k = APkA
T +Q

Kk+1 = Pk+1|kC
T(CPk+1|kC

T +R)−1

x̂k+1 = x̂k+1|k +Kk+1(yk+1 − Cx̂k+1|k)

Pk+1 = Pk+1|k −Kk+1CPk+1|k ,

(3)

where x̂k is the estimated state, Pk is the error covariance,
and Kk is the gain matrix. x̂k+1|k and Pk+1|k are the
predictions of x̂k and Pk, respectively. With the above
Kalman filter, the LQG control law can be given by

uk = Lkx̂k (4)

where Lk = −(BTSk+1B + U)−1BTSk+1A, with Sk+1

satisfying

Sk=A
TSk+1A+W−ATSk+1B(BTSk+1B+U)−1BTSk+1A .

(5)

According to [18], when N → ∞, the estimation error
covariance Pk converges as k → ∞ to a steady-state solution
P , satisfying the Riccati equation

P = APAT +Q−APCT(CPCT +R)−1CPAT, (6)

yielding the gain matrix Kk in steady state as

K = PCT(CPCT +R)−1. (7)

In addition, according to [19], when N → ∞, the solution
Sk converges as k → ∞ to a steady-state solution S,
satisfying the Riccati equation

S = ATSA+W −ATSB(BTSB + U)−1BTSA, (8)

yielding the control gain Lk in steady state as

L = −(BTSB + U)−1BTSA. (9)

B. Replay Attack
In Fig. 1, we can see that during the transmission of data

from the sensor to the estimator over the network, there is a
possibility of an adversary attacking the transmission channel
and maliciously tampering with the data. Specifically, we
consider an adversary launching a replay attack in this paper,
which has access to the following resources [9], [10]:
(i) The adversary can monitor and record the true sensor

outputs yk for all k.
(ii) The adversary can modify both the control signals uk

and sensor signals yk to arbitrary values.
Without loss of generality, we denote the time when the

adversary launches the attack as time 0. The considered
replay attack strategy is given as follows.

1) From time −T to time −1, the attacker records a
sequence of sensor measurements yk.

2) From time 0 to time T−1, the attacker injects designed
ua
k to control signal uk to damage the physical plant.

Meanwhile, the attacker replays the recorded sensor
measurements to tamper the true sensor outputs, i.e.,

yak = yk−T , 0 ≤ k ≤ T − 1. (10)

Here we assume that the control system has run for a long
time (already achieved a steady state) before it is attacked,
i.e., the LQG control system has already reached its steady
state before time −T .

According to (7)-(9), the steady-state Kalman filter and
LQG controller are given by

x̂k+1|k = Ax̂k +Buk

x̂k = x̂k|k−1 +Kzk
(11)

with zk = yk −Cx̂k|k−1 and uk = Lx̂k. Thus, under attack
(0 ≤ k ≤ T − 1), the physical plant takes the form

xk+1 = Axk +Bua
k + wk

yk = Cxk + vk.
(12)

The Kalman filter and LQG controller take the form

x̂k+1|k = Ax̂k +Buk

x̂k = x̂k|k−1 +Kz′k
(13)

with z′k = yak − Cx̂k|k−1 and uk = Lx̂k.
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Fig. 1. The framework of an LQG control system.

C. Replay Attack Detection

To detect abnormal data from the received sensor measure-
ments, at the controller side a failure detector g(zk) needs to
be deployed. See Fig. 1 for the framework of the considered
LQG control problem with the replay attack and the failure
detector. A widely used detector is termed as χ2 detector
[20], [21], i.e.,

g(zk) = zTk P−1zk
H1

≷
H0

ν (14)

where P = CPCT+R, H0 means that no alarm is triggered,
H1 means that the detector alarms, and ν is a threshold.

For such a χ2 detector, however, it is worth noting that the
replay attack may still be successfully launched, as shown
in [6, Theorem 2]. In view of this, to detect replay attacks,
the watermarking mechanism is proposed in [6], where an
i.i.d. Gaussian authentication signal is added to the control
inputs, i.e.,

uk = Lx̂k + ζk (15)

where ζk ∼ N (0,Λ) is the i.i.d. Gaussian authentication
signal. The resulting control performance and detection effect
are given below.

Lemma 1: [9, Theorem 5] The LQG performance loss
caused by adding ζk is

∆J = Tr[(U +BTSB)Λ]. (16)
Lemma 2: [9, Theorem 6] In the absence of an attack,

E[zTk Pzk] = p. (17)

Under attack

lim
k→∞

E[z′Tk Pz′k] = p+ 2Tr(CTP−1CU) (18)

where U :=
∑∞

j=0 AjBΛBT(Aj)T with A = (A+BL)(I−
KC). In addition, U can be solved by equation

U −BΛBT = AUAT. (19)

Here we discuss the case that A is stable (ρ(A) < 1),
otherwise limk→∞ E[z′kPz′Tk ] = ∞ and the replay attack
can and must be detected.

By combining the above two results, a constrained op-
timization problem can be formulated for the design of
the covariance Λ of authentication signal, in the sense of
maximizing the detection effect, i.e., 2Tr(CTP−1CU), while
limiting the control performance loss, i.e., ∆J .

D. Problem Statement

When the system is functioning normally (without attack),
the authentication signal is essentially a disturbance input
that affects the control performance of the physical plant.
However, in many practical applications, some plant states
are highly sensitive to disturbances and can only tolerate
limited amounts of disturbance or none at all. For instance,
maintaining a stable temperature in chemical processes is
crucial for certain reactions [14], [15]. Similarly, in robotics,
lateral movements of a robot must be carefully controlled
to maintain accurate tracking [16], while the front joint of
a manipulator must avoid disturbances to ensure precise
control of the end-point [17]. To sum up, sensitive states
are states that are expected to be limitedly affected by
authentication signals. More formally, the sensitive states are
measured in the sense of mean square error, i.e., a state xi,k

is sensitive if it should satisfy

E[(x̄i,k − xi,k)
2] ≤ ηi (20)

where ηi is the tolerance threshold of the sensitive state xi,k,
x̄i,k is the plant state impacted by the authentication signal.

The previously mentioned approach does not take into
account the impact of the authentication signal on sensi-
tive states. As a result, these authentication signals may
significantly impact sensitive states, potentially violating the
condition described in Equation (20). Motivated by this issue,
this paper aims to propose a new authentication signal design
method that can satisfy Equ. (20). Specifically, this paper
aims to address the following two problems:

1) What conditions must be met to ensure that the authen-
tication signal has a limited effect on sensitive states
(i.e., Equation (20) holds), and even has no effect on
them (i.e., Equation (20) holds with ηi = 0)?

2) How can the authentication signal be optimally designed
to satisfy these conditions?

Remark 1: It is assumed that the length of the recorded
sensor measurements T is long enough. In practice, if the
attacker can only record a short segment of sensor measure-
ments, he/she can loop the recorded data to form long replay
data.

Remark 2: The attack signal ua
k can be arbitrarily chosen

because the detector cannot receive true sensor measurements
under the replay attack.

Remark 3: One possible approach to reducing the impact
of the authentication signal on sensitive states is to increase
the weight W in Equation (2) for the sensitive states. How-
ever, this approach has some drawbacks. Firstly, the weight
W is usually designed to balance the trade-off between the
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tracking performance and control cost, and adjusting it to
design the authentication signal may not be reasonable or
optimal. Secondly, even if it were permissible to adjust W , it
is challenging to determine an appropriate value for W since
it depends on the specific system and the importance of the
sensitive states. Lastly, even if W were set to a large value,
the impact of the authentication signal on sensitive states
cannot be completely eliminated since it is not practical to
set the weight to infinity.

III. AUTHENTICATION SIGNAL DESIGN

In this section, we will present the conditions under which
the authentication signal has a limited effect or no effect on
sensitive states. Then, optimization problems are formulated
for designing the authentication signal.

A. Effect Analysis of Authentication Signal on Sensitive
States

This subsection will provide the conditions under which
the authentication signal has a limited effect and even no
effect on sensitive states. We will focus on the scenario where
the system is not under attack. This is because, during an
attack, the attacker can choose ua to dominate the system
performance, and our main objective is to detect the attack.

The following proposition presents the condition that the
authentication signal has a limited effect on sensitive states.

Proposition 1: The mean square errors are limited to
E[(x̄i,k − xi,k)

2] ≤ ηi for all i ∈ F if and only if

eiΥeTi ≤ ηi, ∀i ∈ F (21)

where ei ∈ R1×n is a row vector with all elements being
zero except the ith element as 1, Υ is the solution of the
equation Υ − (A + BL)Υ(A + BL)T = BΛBT, F :=
{i|xi,k is sensitive}, and xi,k is the ith element of xk.

Proof: Without the authentication signal, system (1)
with LQG controller is

xk+1 = (A+BL)xk +BLx̃k + wk

yk = Cxk + vk
(22)

where x̃k := x̂k−xk, and the iteration of x̃k can be obtained
according to (1) and (11), i.e.,

x̃k+1 = Ax̃k +K(yk+1 − Cx̂k+1|k)− wk

= (A−KCA)x̃k + Cwk − wk + vk+1.
(23)

Since we have assumed that the LQG system has run for
a long time before it is attacked, we denote the time instant
when the system starts to work as −∞. According to (22),
the sensitive states can be solved as

xi,k = ei

k−1∑
j=−∞

(A+BL)k−j−1(BLx̃j + wj), i ∈ F .

(24)

With the authentication signal, the controller becomes
(15), and the system (1) becomes

x̄k+1 = (A+BL)x̄k +Bζk +BL¯̃xk + wk

ȳk = Cx̄k + vk
(25)

where x̄k denotes the system state with the authentication
signal added to the system. Let ¯̃xk := ¯̂xk − x̄k. According
to the authentication signal affected version of (1) and (11),
the iteration of ¯̃xk can be obtained as

¯̃xk+1 = A¯̃xk +K(ȳk+1 − C ¯̂xk+1|k)− wk

= (A−KCA)¯̃xk + Cwk − wk + vk+1.
(26)

where ¯̂xk+1|k is the prediction of the estimator. Comparing
(23) with (26), we have ¯̃xk = x̃k,∀k.

According to (24), (25) and the fact that ¯̃xk = x̃k, for
i ∈ F , the sensitive state impacted by the authentication
signal can be solved as

x̄i,k = ei

k−1∑
j=−∞

(A+BL)k−j−1(Bζj +BL¯̃xj + wj)

= xi,k + ei

k−1∑
j=−∞

(A+BL)k−j−1Bζj .

(27)

According to (27), there have

E[(x̄i,k − xi,k)
2)] = E

[
(ei

k−1∑
j=−∞

(A+BL)k−j−1Bζj)
2
]

=

k−1∑
j=−∞

ei(A+BL)k−j−1BΛBT((A+BL)k−j−1)TeTi .

(28)

Let Fi(k) := E[(x̄i,k − xi,k)
2],∀i ∈ F . It is clear that

Fi(k) is monotonically increasing as k increase. So E((x̄i,k−
xi,k)

2) ≤ ηi,∀k, ∀i ∈ F if and only if limk→∞ Fi(k) ≤
ηi,∀i ∈ F , i.e.,

eiΥeTi ≤ ηi,∀i ∈ F (29)

where Υ :=
∑∞

j=0((A + BL)jBΛBT((A + BL)j)T. Note
that it can be easily verified that such Υ is the solution of
the equation Υ − BΛBT = (A + BL)Υ(A + BL)T. Then
the proof is complete.

A particular scenario of Proposition 1 arises when ηi = 0,
indicating that the designer has a preference of no impact on
the sensitive states, under which the condition in Proposition
1 can be simplified.

Proposition 2: The authentication signal ζk does not af-
fect the sensitive states of system (25), i.e., E[(x̄i,k −
xi,k)

2] = 0, if and only if

ΩBΠ = 0. (30)

where ΠΠT = Λ,

Ω :=


E

E(A+BL)
...

E(A+BL)n−1

 . (31)

with E := [eTi1 , e
T
i2
, ..., eTiq ]

T ∈ Rq×n, where i1, i2, ..., iq ∈ F
and q = |F|.
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Proof: According to (28), E[(x̄i,k − xi,k)
2] = 0 is

equivalent to ∀k,∀i ∈ F ,
k−1∑

j=−∞
ei(A+BL)k−j−1BΠΠT((A+BL)k−j−1B)TeTi = 0.

(32)

Note that the above equation is equivalent to

ei(A+BL)sBΠ = 0 , ∀i ∈ F ,∀s ∈ N. (33)

By Cayley-Hamilton theorem [22], (A+BL)n is a linear
combination of (A+BL)s for s = 0, 1, ..., n− 1. It is clear
that (33) is equivalent to saying

ei(A+BL)sBΠ = 0 , ∀i ∈ F ,∀s ∈ {0, 1, . . . , n− 1}.

This thus completes the proof by calling the definition of E.

B. Optimal Authentication Signal Design
To maximize the detection effect and limit both the

performance loss and effect to sensitive states, according to
Lemma 1, Lemma 2 and Proposition 1, an optimal problem
is constructed as

max
Λ∈P+

2Tr(CTP−1CU)

s.t. Tr[(U +BTSB)Λ] ≤ δ

eiΥeTi ≤ ηi, i ∈ F

(34)

where
U −AUAT = BΛBT (35)

and
Υ− (A+BL)Υ(A+BL)T = BΛBT. (36)

According to the definition of U and Υ, they are linear
to Λ. Thus functions 2Tr(CTP−1CU), Tr[(U +BTSB)Λ],
and eiΥeTi , i ∈ F are all linear to Λ. So the feasible set
of problem (34) is convex since it is the intersection of a
polyhedron and a positive semi-definite cone (Λ ∈ P+).
Given that the objective function is convex, we conclude
that the problem (34) is a convex optimization problem,
specifically a semi-definite programming (SDP) problem.

In addition, to make it more convenient for solving (34)
with optimization toolboxes, Eqns. (35) and (36) can be
solved by vectorization operation [23, Proposition 10.4]. For
example, U can be solved as

U=

n∑
j=1

(En
j )

T
{
[In2−(A⊗A)]−1(B⊗B)

n∑
i=1

Em
i Λemi

}
(enj )

T
.

(37)

where En
j ∈ Rn2×n are column-wise block matrices consist-

ing of n blocks of size n×n, with an identity matrix only in
the ith block and the others are all zeros, and Em

i ∈ Rm2×n

share the same structure with En
j . enj ∈ Rn are column

vectors, whose ith element is 1 and the others are all zeros,
and emi ∈ Rm share the same structure with enj .

A special case of (34) is ηi = 0,∀i ∈ F . According to
Proposition 2, in this case, the second constraint in problem
(34) becomes ΩBΛ = 0.

0 20 40 60 80 100

0

200

400

600

800

1000

Fig. 2. The output of the detector with different authentication signal.

IV. SIMULATION VERIFICATION

In this section, simulation results are given. The physical
plant model is a chemical reactor borrowed from [24]. The
linearized model of the chemical reactor is
ẋ1

ẋ2

ẋ3

ẋ4

=

−0.0010 −0.0254 0 −0.2052

0 −0.0036 0.004 0.0048
0 −0.4571 −0.0429 0
0 0 0 −0.05



x1

x2

x3

x4



+


0 0.78
0 0
40 0
0 0

[u1

u2

]

y =
[
x1 x2

]T
(38)

where x1, x2, x3 and x4 are the concentration of reactant, the
temperature of the reactor, the temperature of the jacket and
the liquid volume of the reactor, respectively. In addition, to
obtain the discrete-time model, the continuous-time model
(38) is discretized with time step 0.1s. The noises added to
the discrete model are set as Q = R = 0.01I4.

The LQG controller is designed with parameters W = I4
and U = I2. The performance loss limitation δ is set as 4.
For comparison, if the sensitive states are not considered,
i.e., the constrains eiΥeTi ≤ ηi, i ∈ F are removed in (34),
the solution is

Λ1 =

[
0.1181 0

0 0

]
. (39)

Suppose the temperature of the reactor (x2) and the
temperature of the jacket (x3) are the sensitive states. Setting
η2 = 0.0001 and η3 = 0.5, the solution to (34) is

Λ2 =

[
0.0304 0.7463
0.7463 18.3445

]
. (40)

In addition, if the sensitive state does not allow any
additional noise, i.e., η2 = η3 = 0, the solution is

Λ3 =

[
0 0
0 24.6921

]
. (41)

Then we add the designed authentication signal into the
system model, and the replay attacks begin at step 60.
Simulation results are presented in Figs. 2-4. From Fig. 2,
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Fig. 3. The state of the system with different authentication signal.
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Fig. 4. Effect of different authentication signal to sensitive states.

we see that the amplitude of g(zk)s’ increases in different
degrees. In detail, the authentication signal generated by Λ1

is the most obvious, followed by Λ2, and Λ3 is the least.
From Figs. 3 and 4, with the authentication signal generated
by Λ1, the sensitive states suffer from a great amount of
noise, while with our method, a smaller amount of noise
(Λ2) or no noise (Λ3) would affect sensitive states, which
verifies the effectiveness our proposed method.

To conclude, from Figs. 2, 3 and 4, we find that although
our method would sacrifice detection performance, it can
effectively limit the effect of authentication signal to sensitive
states.

V. CONCLUSION

This paper presented a method for designing an au-
thentication signal that limits its impact on the sensitive
states of a physical plant. We first measured the effect of
authentication to sensitive states by mean square error. Using
geometric control methods, we derived conditions under
which sensitive states would be subject to limited effect or
even be free of the authentication signal. We then constructed
optimization problems containing with these conditions and
utilized optimization tools to find the optimal authentication
signal. Finally, we verified the effectiveness of the proposed
authentication signal by comparing simulation results.
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