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Abstract— Fault diagnosis and prognosis in discrete event
systems are studied in the scenario where the observations are
possibly received with delay. To address this scenario, two con-
ditions for diagnosis and prognosis with delayed observations
are proposed, where we show that the state-of-the-art notion
of prognosability must be revised to avoid conservativeness.
Diagnosability and prognosability conditions are then verified
by introducing a delay observer and a new verification function.
Theoretical analysis indicates the effectiveness of the verification
method for fault diagnosis and prognosis in the system.

I. INTRODUCTION

Fault analysis is fundamental for system reliability and
maintenance. Discrete event systems (DES) [1] provide a
useful framework for fault analysis: structured DES ap-
proaches to fault analysis have been proposed using observa-
tions of the system to detect (fault diagnosis) or predict (fault
prognosis) anomalies and deviations from healthy operation.
Notions of diagnosability [2] and prognosability [3] have
been presented for DES, where the former determines the
ability to timely detect faults, while the latter determines
the ability to forecast future faults based on current system
conditions. Prognosability is also called predictability in
some literature.

With DES encompassing applications across various do-
mains [4], [5], the literature has proposed several settings for
DES fault diagnosis and prognosis, spanning decentralized
scenarios [6], [7], robustness notions [8], [9], fuzzy systems
[10], [11], fault tolerant control [12], [13], among others. The
interested reader can refer to [14], [15] for more details. A
fundamental setting in fault analysis is handling observations
received with delay. Such issues have been addressed in
network systems [16]–[18], and distributed scenarios with
transmission delay [19]–[21], introducing notions of codi-
agnosability and coprognosability. Yet, these results do not
encompass the delayed-observation scenario considered in
this work. This point will be discussed making use of a
suitable example (cf. Example 2&3 in this manuscript).

To consider the delayed-observation scenario, one needs to
extend state-of-the-art notions of diagnosability in K steps,
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such as K-diagnosability [22]. We do this by introducing
a new KT -diagnosability, where T is a delay-dependent
parameter. We show that the state-of-the-art notion of prog-
nosability [3] cannot be extended to the delayed-observation
scenario. We thus propose a notion of prognosability that,
while being equivalent to the state-of-the-art prognosability
in the absence of delays, it can be extended to the delayed-
observation scenario, resulting in T -constrained prognosabil-
ity. We finally propose a delay observer structure to record
the delays required for diagnosis and prognosis, which in
turn leads to a new function to verify KT -diagnosability and
T -constrained prognosability.

The remainder of this paper is organized as follows. In
Section II, the partially-observed DES is introduced. Sec-
tion III recalls the state-of-the-art notions for diagnosability
and prognosability, and proposes novel definitions of KT -
diagnosability and T -constrained prognosability. In Section
IV, we verify such conditions by introducing the delay
observer and the verification function. Section V concludes
this paper.

II. PRELIMINARIES

Let us start by considering a finite event set E as an
alphabet, enabling us to interpret the concatenation of word
strings within the alphabet as finite sequences of events
in E. Let E∗ denote the set of all finite strings over E.
The length of a string s ∈ E∗ is denoted as |s|, and let
ε represent the empty string with |ε| = 0. A language L
constitutes a collection of event strings, derived from events
in E. The prefix-closure of a language L is defined as
L = {s ∈ E∗|∃t ∈ E∗, s.t. st ∈ L}, and L is prefix-closed
if L = L. The post-language of L following a string s is
denoted as L\s = {s′ ∈ E∗ | ss′ ∈ L}. We say that a
language L is live if, for every s ∈ L, there exists an e ∈ E
such that se ∈ L, representing that any string in L can be
extended to any length.

Automata are a common framework for manipulating
languages, used to model DES. Let us consider the finite
automaton

G = (X,E, α,X0), (1)

where X is the set of finite states, E is the set of finite events,
α : X × E∗ → 2X is the transition function describing the
transition of an event string, X0 ⊆ X is the set of possible
initial states. The language generated by G from state x ∈
X is denoted by L(x,G) = {s ∈ E∗|α(x, s)!}, where !
indicates that the string s “is defined”, meaning that it can
occur starting from state x. If x0 ∈ X0, we simply denote
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α(x0, s) as α(s) and L(x0, G) as L(G).
In practice, the occurrence of certain events may not be

detectable. Accordingly, we partition E into the observable
events Eo and the unobservable events Euo. Let us now
introduce two projection operators. The operator PEo is
utilized for acquiring the observable events in an event string:
∀s ∈ L(G),∀e ∈ E : α(se)!,

PEo
(ε) = ε, PEo

(se) =

{
PEo(s)e, if e ∈ Eo;

PEo(s), if e /∈ Eo.
(2)

Intuitively, for any system trajectory s ∈ L(G), PEo
(s) gives

the observed events. We extend PEo to handle a set of event
string, that is, ∀S ⊆ L(G), PEo(S) = {s ∈ E∗o |∃s′ ∈
S, s.t. s = PEo

(s′)}. We then introduce the operator ζnEo
:

∀s ∈ L(G),

ζnEo
(s)={s′′∈s|∃s′∈s : |s′|≥|s|−n, s.t.PEo

(s′′)=PEo
(s′)},

where n ∈ N is the number of steps. Intuitively, ζnEo
collects

all prefixes of s which have the same observation as a system
trajectory s′ ∈ s under the observation ability Eo. Obviously,
given n1 ≥ n2, we have ζn2

Eo
(s) ⊆ ζn1

Eo
(s).

A. Illustrative example

Throughout this paper, we take an air heating unit example
to illustrate the key concepts. The example describes a start-
up process of the unit via the automaton G in Fig. 1(b), where
the system is off initially (in state x0 = {0}). In healthy
conditions, after turning the air heating unit on, the air flow
sensor 2 observes that the flow rate is regular (e2, 0 → 1:
e2 occurs and the system state goes from 0 to 1); after
some time, the temperature sensor 1 observes that the desired
temperature is reached (e1, 1 → 2). Then, sensor 2 keeps
monitoring the flow rate (e2, 2 → 2). However, if the air
quality sensor 3 observes an abnormal amount of dust (e.g.,
possibly due to aging or some leak in the duct) (e3, 0→ 3),
after some unobservable anomalies (e.g., unusual vibration
of the fan) (u, 3 → 4), the fan may fail or clog (f, 4 → 5).
As a result, sensor 1 observes high temperature (e1, 5→ 6),
leading to overheating of the coil with no flow. This damage
may be irreversible even in the scenario that the fan recovers
from the clog and restores the flow rate (e2, 6→ 6).

Example 1: (System model). Using the automaton formal-
ism in (1), we have

G = ({0, 1, 2, 3, 4, 5, 6}, {e1, e2, e3, u, f}, α, {0}).

When the system is in state 5, the only event that can occur is
e1, that is, α(5, e1)!. Let Eo = {e1, e2, e3} be the observable
events. Then, for the string e3ufe1e2 generated by G, we
have

PEo
(e3ufe1e2) = e3e1e2,

ζ0Eo
(e3ufe1e2) = {e3ufe1e2},

ζ2Eo
(e3ufe1e2) = {e3, e3u, e3uf, e3ufe1, e3ufe1e2}.
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(b) Model G of Air Heating Unit

Fig. 1: Air heating unit and the model G of its start-up
process.

III. DIAGNOSABILITY AND PROGNOSABILITY WITH
DELAYED OBSERVATION

In this section, we first recall and then extend state-of-the-
art notions of K-diagnosability and prognosability.

A. Diagnosis with Delay

Let K be the maximum number of steps permitted
from the occurrence of a fault to its diagnosis. Let G =
(X,E, α, x0) be the system model. We introduce a structure
of step counter ∆ : L(G)→ {−1, 0, 1, . . . ,K} to count the
number of steps in an event string after a fault event f occurs:
∀s ∈ L(G),∀e ∈ E : α(se)!⇒ ∆(ε) = −1,∆(se) ={

∆(s), if [∆(s)=−1 ∧ e 6=f ] ∨ [∆(s)=K];

∆(s)+1, if [∆(s)=−1 ∧ e=f ] ∨ [0≤∆(s)<K];
(3)

where −1 means no fault happens. By means of ∆, let us
recall the notion of K-diagnosability.

Definition 1: (K-diagnosability [22]) For K ∈ N, a live
language L(G) is K-diagnosable w.r.t. f if ∀s ∈ L(G) :
∆(s) = K,

∀s′ ∈ L(G) : PEo
(s′) = PEo

(s),∆(s′) 6= −1. (4)

Intuitively, (4) means that any string with the same obser-
vation as s must have the fault event f in it, which implies
that the fault can be always diagnosed after it occurs within
K steps.

Now we consider the scenario that the observed signals
are processed and transferred with an unknown delay. We
denote D ≥ 0 as the transmission distance, and T > 0
as a coefficient related to transmission efficiency. If the
observation site observes an event, then it will be received
with a delay of no more than dDT e steps (d·e rounds the
element to the nearest integer towards infinity). We give
the following definition for fault diagnosis with delayed
observation.

Definition 2: (KT -diagnosability) For K ∈ N, T > 0 and
D ≥ 0, a live language L(G) is KT -diagnosable w.r.t. f and
D if ∀s ∈ L(G) : ∆(s) = K,

∀s′∈L(G) :PEo(ζ
dDT e
Eo

(s′))∩PEo(ζ
dDT e
Eo

(s)) 6=∅,∆(s′) 6=−1.
(5)
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Remark 1: By comparing (4) with (5), the presence of
delay enlarges the state set that the system may be in. If
(5) holds, all key events to determine the occurrence of f
can be timely received. Intuitively, KT -diagnosability allows
that any faulty string (s satisfying ∆(s) = K) can be
distinguished from a healthy string (s satisfying ∆(s) = −1),
despite the delay. As T increases, the strings that cannot be
distinguished from the string s : ∆(s) = K become less
and less, that is, less strings would satisfy (5). As expected,
KT ′

-diagnosability implies KT -diagnosability when T ′ ≤ T
(higher transmission efficiency improves diagnosis ability).
Compared to existing work on diagnosability subject to
observation delays [18], Definition 2 focuses on determining
whether key events for diagnosis can be received in a timely
manner. 2

Example 2: (KT -diagnosability in the presence of delay).
Consider the air hearing unit in Sect. II-A. Delayed obser-
vations may happen when the air heating unit is part of
a central energy management system where all observed
signals are processed and transferred. Suppose D = 3 and
K = 3. For T = 1, the occurrence of the events in Eo

will be received in no more than dDT e = 3 steps. Then,
for the string s = e3ufe1e2e2 generated by G, we have
∆(s) = 3 and PEo

(ζ3Eo
(s)) = {e3, e3e1, e3e1e2, e3e1e2e2}.

Since PEo
(ζ3Eo

(s))∩PEo
(ζ3Eo

(e3)) = {e3} and ∆(e3) = −1,
we have that L(G) is not KT -diagnosable w.r.t. f and D for
K = 3, T = 1, D = 3. However, for T = 2, we have dDT e =
2 steps and PEo

(ζ2Eo
(s)) = {e3e1, e3e1e2, e3e1e2e2}. For

any string s′ with ∆(s′) = −1, we have PEo
(ζ2Eo

(s′)) ∩
PEo

(ζ2Eo
(s)) = ∅, implying that L(G) is KT -diagnosable

w.r.t. f and D for K = 3, T = 2, D = 3. 2

B. Prognosis with Delay

Prognosability allows faults to be prognosed before their
occurrence. The literature has introduced the following no-
tion of prognosability.

Definition 3: (Prognosability [3]). A live language L(G)
is prognosable w.r.t. f if ∀sf ∈ L(G) : s ∈ E∗,

∃s′ ∈ s̄ : ∆(s′) = −1, s.t. ∀t ∈ L(G) :

∆(t) = −1 ∧ PEo
(t) = PEo

(s′),∃n ∈ N, s.t.
∀t′ ∈ L(G)\t, [|t′| ≥ n⇒ ∆(tt′) ≥ 0].

(6)

Intuitively, (6) means that any string that has the same
observation as s′ ∈ s̄ will always lead to the occurrence
of f , implying that we definitely know that the fault will
happen after observing PEo

(s′). Later we will show with an
example that Definition 3 cannot handle delay well. We now
introduce a different definition of prognosability that, while
being equivalent to Definition 3 in the absence of delays, is
extendable in the scenario of delayed observation.

Definition 4: (Prognosability). A live language L(G) is
prognosable w.r.t. f if ∀s ∈ L(G) : ∆(s) = 0,

∃s′ ∈ s̄, s.t.∀t ∈ L(G) : ∆(t) = −1 ∧ PEo
(t) = PEo

(s′),

∃n ∈ N, s.t.∀t′ ∈ L(G)\t, [|t′| ≥ n⇒ ∆(tt′) ≥ 0].
(7)

The following lemma shows that Definition 4 is equivalent
to Definition 3.

Lemma 1: Let G in (1) be the system model, f be the
fault events. Then, for any sf ∈ L(G), (6) holds if and only
if for any s ∈ L(G) : ∆(s) = 0, (7) holds.

Proof: As necessity is obvious, let us only consider
sufficiency. Suppose that for any s ∈ L(G) : ∆(s) = 0, (7)
holds. We first show that for any s ∈ L(G) : ∆(s) = 0,
(6) holds. Consider s′ in (7). If ∆(s′) = −1, then (6) holds
directly. If ∆(s′) 6= −1, then there exists s1 ∈ s′ ⊆ s̄ such
that ∆(s1f) = 0, which implies that

∃s2 ∈ s1f, s.t.∀t ∈ L(G) : ∆(t) = −1 ∧ PEo(t) = PEo(s2),

∃n ∈ N, s.t.∀t′ ∈ L(G)\t, [|t′| ≥ n⇒ ∆(tt′) ≥ 0].
(8)

Obviously, the only case that ∆(s2) 6= −1 is s2 = s1f .
Because PEo

(s1f) = PEo
(s1), we can set s2 = s1 to make

(8) hold. Since s2 ∈ s1f ⊆ s̄, we conclude that for any
s ∈ L(G) : ∆(s) = 0, (6) holds. We then show that for
any sf ∈ L(G) : s ∈ E∗, (6) holds. If ∆(s) = −1, then
∆(sf) = 0, implying that (6) holds. If ∆(s) 6= −1, then
there exists s1 ∈ s̄ such that ∆(s1f) = 0, which also implies
that (6) holds.

Now we extend Definition 4 in the scenario of delayed
observation, when the message from the observation site can
be received in no more than dDT e steps.

Definition 5: (T -constrained prognosability). For T > 0
and D ≥ 0, a live language L(G) is T -constrained prognos-
able w.r.t. f and D if ∀s ∈ L(G) : ∆(s) = 0,

∃s′ ∈ s̄, s.t. ∀t ∈ L(G) : ∆(t) = −1∧

PEo
(ζ
dDT e
Eo

(t)) ∩ PEo
(ζ
dDT e
Eo

(s′)) 6= ∅,∃n ∈ N,
s.t. ∀t′ ∈ L(G)\t, [|t′| ≥ n⇒ ∆(tt′) ≥ 0].

(9)

Remark 2: Due to the transmission delay, receiving the
occurrence of an event before the fault f does not mean that
f has not occurred yet. Hence, condition (9) means that any
string that may lead to the same received observation as s′ ∈
s̄ will always lead to the occurrence of f . If (9) holds, all key
events to determine if f will occur can be timely received.
In other words, we definitely know that f will occur before
its occurrence despite the delay. Note that T ′-constrained
prognosability implies T -constrained prognosability when
T ′ ≤ T . Compared to existing work on prognosability
subject to observation delays [21], Definition 5 provides a
less conservative definition, as illustrated below.

Example 3: (T -constrained prognosability in the presence
of delay). Consider the system G in Fig. 1(b) and the string
s = e3uf generated by G. Suppose D = 3 and T = 2.
Then, we know that e3 will be received within dDT e = 2
steps before the occurrence of f , that is, f can be prognosed.
Given PEo

(ζ2Eo
(e3uf)) = {e3}, we have that the set of

strings t satisfying ∆(t) = −1 ∧ PEo
(ζ2Eo

(t)) ∩ {e3} 6= ∅
is {e3, e3u}, which will lead to f in 2 steps. Hence, we
conclude that L(G) is T -constrained prognosable w.r.t. f and
D for T = 2 and D = 3. Let us now consider the extension
from Definition 3, which is equivalent to [21, Definition 3]
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in the centralized case: ∀sf ∈ L(G) : s ∈ E∗,

∃s′ ∈ s̄ : ∆(s′) = −1, s.t. ∀t ∈ L(G) :

∆(t) = −1 ∧ PEo
(ζ
dDT e
Eo

(t)) ∩ PEo
(ζ
dDT e
Eo

(s′)) 6= ∅,
∃n ∈ N, s.t.∀t′ ∈ L(G)\t, [|t′| ≥ n⇒ ∆(tt′) ≥ 0].

(10)

For the string s = e3uf , we have that the set of strings s′ ∈
s : ∆(s′) = −1 is {ε, e3, e3u} and ∀s′ ∈ {ε, e3, e3u}, ε ∈
PEo

(ζ2Eo
(s′)). However, if we consider the string e2, we have

ε ∈ PEo
(ζ2Eo

(e2)) and

∀n ∈ N,∃t′ ∈ L(G)\e2 : |t′| ≥ n, s.t.∆(e2t
′) = −1,

implying that s does not satisfy (10). In other words, the
extension (10) of Definition 3 fails to capture that f can be
prognosed. This justifies the introduction of Definition 4 and
its extension in Definition 5. 2

IV. VERIFICATION OF DIAGNOSABILITY AND
PROGNOSABILITY

In general, it is intractable to determine if a fault can be
diagnosed or prognosed by analysing each event string. It is
necessary to embed the delay information into the automaton
and develop a feasible method to verify KT -diagnosability
and T -constrained prognosability. This is done by linking the
system states to fault events and by building a delay observer
structure to handle the delays.

A. Delay Observer

A delay observer aims to register the delays of the events
that help to distinguish the faulty from the healthy strings.
To construct a delay observer, a fault automaton structure
[23] is utilized to track the number of steps following a fault
occurrence

Ĝ = (X̂, E, α̂, x̂0), (11)

where X̂ = X × {−1, 0, 1, . . . ,K} comprises the state in
X of G along with the fault counting component, denoted
as x̂ = (x, |x̂|f ) ∈ X̂ where |x̂|f represents the number of
steps following a fault occurrence. The transition function
α̂ : X̂ × E → X̂ is specified as follows: ∀x̂ = (x, |x̂|f ) ∈
X̂, e ∈ E : α(x, e)!,

α̂((x, |x̂|f ), e) = (α(x, e), |x̂|f + v),

where |x̂|f ∈ {−1, 0, 1, . . . ,K} and v is determined by

v =

{
0, if [|x̂|f = −1 ∧ e 6= f ] ∨ [|x̂|f = K];

1, if [|x̂|f = −1 ∧ e = f ] ∨ [0 ≤ |x̂|f < K].

The initial state is x̂0 = (x0,−1). Note that L(Ĝ) =
L(G). In both diagnosis and prognosis problems, we aim
to distinguish two set of states, denoted by X̂F (faulty) and
X̂H (healthy). In the diagnosis problem, we distinguish

X̂F = {x̂ ∈ X̂ | |x̂|f = K},
X̂H = {x̂ ∈ X̂ | |x̂|f = −1},

(12)

while in the prognosis problem, we distinguish

X̂F = {x̂ ∈ X̂ | |x̂|f = 0},
X̂H = {x̂ ∈ X̂ | ∀n ∈ N,∃s ∈ L(x̂, Ĝ) : |s| > n,

s.t. ∆(s) = −1}.
(13)

The delay observer to determine the delays to be recorded
is defined as an automaton

OEo
(Ĝ) = (Y,Eo, β, y0), (14)

where each state y ∈ 2X̂×{0,1,...,d
|a1a2|

T e,∞} represents the
state estimation with delay value. The transition function
β : Y × Eo → Y and the initial state y0 are built as in
Algorithm 1. Algorithm 1 collects the initial states with the
delay value ∞ into y0, and uses two iterative procedures to
build the delay observer. The procedure RECORD1(x̂, u, y)
collects the state estimation for y while appending the delay
value to each state in the state estimation and collecting them
in y. The procedure RECORD2(y) explores new transitions
and observer states while appending the delay value to the
“initial” states in the state estimation.

The delay observer has the same structure as a classical
observer [1], where the only difference lies in the states with
the assigned delay value. Given any y ∈ Y , any pair of two
states (x̂, u), (x̂′, u′) ∈ y satisfies that there exist s, s′ ∈
L(G) : x̂ ∈ α̂(s), x̂′ ∈ α̂(s′) such that PEo

(s) = PEo
(s′).

For each s ∈ L(G) : α̂(s) ⊆ X̂F , OEo
(Ĝ) records the delay

of the events in Eo that help to distinguish s from the system
trajectories s′ ∈ L(G) : α̂(s′) ∩ X̂H 6= ∅. This is needed to
verify KT -diagnosability and T -constrained prognosability,
as it will be clear in the next section.

Example 4: (Building the delay observer). For the system
G in Fig. 1(b), we consider D = 3, K = 3 and T = 2,
and build the corresponding fault automaton Ĝ as shown in
Fig. 2(a). Given dDT e = 2, Eo = {e1, e2, e3} and X̂F , X̂H

in (12), we run Algorithm 1 to obtain the delay observer
Odiag

Eo
(Ĝ) shown in Fig. 2(b), where one can see that only the

delay of e1 (denoted with bold) in e3ufe1e2e2 is recorded.
The delay value “0” in (6, 3, 0) indicates that the occurrence
of e1 that helps to distinguish e3ufe1e2e2 from other system
trajectories s′ ∈ L(G) : α̂(s′) ∩ X̂H 6= ∅ has been received,
which implies that the fault can be diagnosed, as shown in
Example 2. On the other hand, given X̂F , X̂H in (13), we
obtain Odiag

Eo
(Ĝ) shown in Fig. 2(c) with Algorithm 1, where

the delay of e3 in e3ufe1e2e2 is recorded. 2

B. Verification of KT-diagnosability and T -constrained
prognosability

Using all structures above, we initiate the verification pro-
cess of KT -diagnosability and T -constrained prognosability.

In Section IV-A, we embed all delays of necessary events
into the delay observer, in which all states will be checked
by the following verification function. Define the mapping
ψ : y → {H,F} as follows: ∀y ∈ Y,

ψ(y) =

{
F, if y ∈ VC;
H, otherwise;

(15)
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Algorithm 1 Construction of the delay-observerOEo(Ĝ)

Input: Ĝ = (X̂, E, α̂, X̂0), dDT e, Eo, X̂F , X̂H ;
Output: OEo

(Ĝ) = (Y,Eo, β, y0);
1: y0 ← ∅;
2: for x̂0 ∈ X̂0 do
3: y0 ← y0 ∪ (x̂0,∞); RECORD1(x̂0,∞, y0);
4: end for
5: Y ← {y0}; RECORD2(y0); Return OEo

(Ĝ);
6: procedure RECORD1(x̂, u, y)
7: for e ∈ Euo : α̂(x̂, e)! do
8: for x̂′ ∈ α̂(x̂, e) do
9: if 0 < u <∞ then

10: u′ ← u− 1;
11: else
12: u′ ← u;
13: end if
14: if (x̂′, u′) /∈ y then
15: y ← y ∪ {(x̂′, u′)};
16: RECORD1(x̂′, u′, y);
17: end if
18: end for
19: end for
20: end procedure
21: procedure RECORD2(y)
22: ι← {x̂ ∈ X̂ | (x̂, u) ∈ y}; ERec ← ∅;
23: for e ∈ Eo do
24: ι∗ ← {x̂ ∈ X̂ | ∃x̂′ ∈ ι, s.t. x̂ ∈ α̂(x̂′, e)};
25: if ι∗ ∩ X̂H = ∅ then
26: ERec ← ERec ∪ {e};
27: end if
28: ye ← ∅;
29: end for
30: for (x̂, u) ∈ y do
31: for e ∈ Eo : α̂(x̂, e)! do
32: if u =∞∧ e ∈ ERec then
33: u′ ← dDT e;
34: else if 0 < u <∞ then
35: u′ ← u− 1;
36: else
37: u′ ← u;
38: end if
39: for x̂′ ∈ α̂(x̂, e) do
40: if (x̂′, u′) /∈ ye then
41: ye ← ye ∪ {(x̂′, u′)};
42: RECORD1(x̂′, u′, ye);
43: end if
44: end for
45: end for
46: end for
47: for e ∈ Eo do
48: Add β(y, e) = ye to OEo

(Ĝ);
49: if ye /∈ Y then
50: Y ← Y ∪ {ye}; RECORD2(ye);
51: end if
52: end for
53: end procedure
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(c) Oprog
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(Ĝ)

Fig. 2: Fault automaton Ĝ, and the delay observers Odiag
Eo

(Ĝ)

and Oprog
Eo

(Ĝ) for fault diagnosis and prognosis with dDT e =
2.

where the condition y ∈ VC is defined as:

∃(x̂, u) ∈ y, s.t. x̂ ∈ X̂F , u > 0. (16)

Now we are in the position to verify KT -diagnosability and
T -constrained prognosability with the following theorem.

Theorem 1: Let G in (1) be the system model, f be the
fault events, D be the transmission distance, OEo(Ĝ) be the
delay observer built with Algorithm 1. Then, if X̂F and X̂H

are as in (12), L(G) is KT -diagnosable w.r.t. f and D if and
only if

∀y ∈ Y, ψ(y) = H. (17)

If X̂F and X̂H are as in (13), L(G) is T -constrained
prognosable w.r.t. f and D if and only if (17) holds.

Proof: Let us only prove the KT -diagnosability of
the theorem, as the proof for T -constrained prognosability
follows similar lines.

(Necessity): Seeking a contradiction argument, let us first
suppose that L(G) is KT -diagnosable w.r.t. f and D while
∃y ∈ Y , s.t. ψ(y) = F . Then, we have that y satisfies (16).

We now consider event strings s ∈ L(Ĝ) : x̂k ∈ α̂(s)
and s′ ∈ s̄ : |s| − |s′| = dDT e, where x̂ is in (16). Then, we

have that s′ ∈ ζd
D
T e

Eo
(s). Since u > 0, we can obtain from

the procedures RECORD1 and RECORD2 (cf. lines 25 and
32) in Algorithm 1 that there exists (x̂′′,∞) ∈ β(PEo

(s′))
such that |x̂′′|f = −1; otherwise, we have that ∀(x̂′, u′) ∈
β(PEo(s′)), |x̂′|f ≥ 0, which is impossible since the delay
∞ will never appear in such an observer state according to
the procedure RECORD2. Then, we have that there exists
s′′ ∈ L(Ĝ) : x̂′′ ∈ α̂(s′′) such that PEo

(s′′) = PEo
(s′) ∈

PEo
(ζ
dDT e
Eo

(s′′))∩PEo
(ζ
dDT e
Eo

(s)). Finally, with ∆(s) = K and
∆(s′′) = −1, we conclude that L(G) is not KT -diagnosable
w.r.t. f and D, resulting in a contradiction.

(Sufficiency): Seeking a contradiction argument, let us
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suppose that ∀y ∈ Y, ψ(z) = H while L(G) is not
KT -diagnosable w.r.t. f and D. Then, we have that there
exists s, s′ ∈ L(G) : ∆(s) = K,∆(s′) = −1 such that
PEo(ζ

dDT e
Eo

(s)) ∩ PEo(ζ
dDT e
Eo

(s′)) 6= ∅.
We first consider the case that there exists s′′ ∈ L(Ĝ) :

PEo
(s′′) = PEo

(s) such that ∆(s′′) = −1. According to
the procedures RECORD1 and RECORD2 (cf. lines 25 and
32) in Algorithm 1, there exists (x̂, u) ∈ β(PEo

(s)) such
that |x̂|f = K and u = ∞, implying ψ(β(PEo(s))) = F ,
resulting in a contradiction.

We then consider the case that ∀s′′ ∈ L(Ĝ) : PEo
(s′′) =

PEo
(s),∆(s′′) 6= −1. In this case, there must exist sk ∈

s̄, e ∈ Eo : ske ∈ s̄ such that ∃s−1 ∈ s̄′, s.t.
PEo

(s−1) = PEo
(sk) ∈ PEo

(ζ
dDT e
Eo

(s′)) ∩ PEo
(ζ
dDT e
Eo

(s)).
Note that ∆(s−1) = −1. From the definition of ζ, we can
obtain that sk ∈ ζd

D
T e

Eo
(s), which implies that |s| − |ske| <

dDT e since e ∈ ω(sk) and |s| − |ske| ≥ dDT e would lead

to sk /∈ ζ
dDT e
Eo

(s). According to the procedures RECORD1
and RECORD2 (cf. lines 25 and 32) in Algorithm 1, there
exists (x̂1, u1) ∈ β(PEo

(ske)) such that u1 = ∞ or dDT e.
Since |s| − |ske| < dDT e, there exists (x̂2, u2) ∈ β(PEo(s))
such that |x̂2|f = K and u2 > u1 − dDT e ≥ 0, implying
ψ(β(PEo

(s))) = F , resulting in a contradiction, which
completes the proof.

Remark 3: (Complexity analysis). The computational
complexity of the proposed verification methods primarily
arises from the construction of the delay observer, which
has a complexity similar to that of the observer [1] in the
literature. Indeed, the only difference between these two
observers lies in the addition of an extra delay value in the
states.

Example 5: (Verifying KT -diagnosability and T -
constrained prognosability). Consider the delay observer
in Fig. 2(b) and 2(c). We use (15) to check the states in
Odiag

Eo
(Ĝ) and Oprog

Eo
(Ĝ). We know that in diagnosis

problem, X̂F = {x̂ ∈ X̂ | |x̂|f = 3} while in
prognosis problem, X̂F = {x̂ ∈ X̂ | |x̂|f = 0}.
We have ψ({(6, 3, 0)}) = H in Odiag

Eo
(Ĝ) and

ψ({(3,−1, 2), (4,−1, 1), (5, 0, 0)}) = H in Oprog
Eo

(Ĝ),
indicating that L(G) is KT -diagnosable and T -constrained
prognosable w.r.t. f and D for K = 3, T = 2, D = 3 as
shown in Example 2 and 3. 2

V. CONCLUSION

This work extended and solved fault diagnosis and progno-
sis in discrete event systems in the delayed observation sce-
nario. In order to make this extension possible, we proposed
a new diagnosability notion, namely KT -diagnosability, as
well as a new prognosability notion, namely T -constrained
prognosability, extended from a restated prognosability def-
inition to avoid conservativeness. To handle the delayed
observations, a delay observer was constructed, that allows
to verify the aforementioned conditions of diagnosability
and prognosability. Interesting directions for future work
are to consider multiple delays, dynamic observations and
stochastic settings.
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