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Abstract— This paper investigates an optimal planning prob-
lem with the requirement of preventing high-level mission
specifications from being revealed to the intruder. We assume
that the behavior of the robotic system at some specific
locations is partially observable, and the intruder is modeled
as a passive observer for the observable behavior and the
corresponding overall transition cost of the trajectories. We
first use the transition system to model the robot system.
Then, we say that the transition system is LTL-based opaque
with respect to high-level mission specifications if the intruder
cannot infer the exact behavior of the system via the observable
sequence of the system. We design a synthesizer for the product
automaton of the transition system and the Büchi automaton
to find the evolutions of possible reachable states. Based on the
synthesizer, the corresponding run can be synthesized in which
the optimality, correctness, and opacity can be guaranteed.

I. INTRODUCTION

Path planning, aimed at guiding robotic systems to reach
a particular objective via the synthesized trajectories, is one
of the important research problems and can be implemented
with ground, aerial, and surface robotic systems [1]–[3]. It
contributes to reducing labor costs and increasing reliability
and scalability [4], [5].

Formal method provides a user-friendly and mathemati-
cally precise manner to solve path planning with temporal
logic specifications, synthesizing optimal runs for the ab-
stracted robotic systems. Currently, research mainly focuses
on the optimal path planning problem satisfying particular
mission specifications as well as some certain subtask re-
quirements. Given a mission specification in the form of
temporal logic, then the optimal runs and corresponding
control strategies will be automatically synthesized with
formal correctness [6]–[8]. In [6] and [7], the optimal path
planning problem with temporal logic specifications was
transformed into the shortest path problem on a directed
weighted graph. In [9], a heuristic search method was
proposed to synthesize end-to-end trajectories for the sys-
tem. Although these methods are effective in synthesizing
correct-by-construction trajectories under the temporal logic
specifications, the requirement of information-flow security
is not considered in these methods.

However, in order to achieve complex global tasks, the
robotic system may need to acquire or transmit information
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with a centralized controller. In this process, malicious
cyberattacks may occur such that critical information can be
leaked [10]. For discrete-event systems, the notion of opacity
is introduced to model the plausible deniability of the secret
of a system. Along the research line of opacity, the secret of
a system is modeled as a set of secret states, and the intruder
is modeled as an eavesdropper which passively observes the
observable behaviors of the system [11], [12]. A system is
said to be opaque if the intruder cannot determine the visited
secret states based on the observation. Various existing
methods have been developed for the enforcement of opacity
for non-opaque systems [13]–[16]. In [17], the structure of
all-inclusive controller for opacity (AIC-O) was constructed
for the enforcement of current-state opacity. In [18], publicly
known nondeterministic edit functions were applied for the
enforcement of opacity. In [19], the dynamic mask was
synthesized for infinite-step opacity. Although these methods
are effective in converting non-opaque systems to opaque, yet
the method for enforcement of opacity is proposed for a set
of static secrets, rather than preserving the intention of the
system.

This paper focuses on designing a path planning method
for a robotic system with temporal logic specifications, in
which the mission specifications will not be revealed to the
intruder via synthesized trajectories. To ensure the informa-
tion security of the robotic system, we extend the notion of
opacity and propose the definition of LTL-based opacity for
the synthesized run of the transition systems. We say that
the synthesized run is LTL-opaque if the passive intruder
cannot infer the LTL specifications via the partial observation
of the run. Then, to synthesize the optimal opaque run for
the system, a new structure named synthesizer is constructed
with respect to the given mission specifications. With the aid
of the synthesizer, we find all sequences which guarantee the
requirement of opacity. Finally, the optimal run can be found
from the set of sequences.

The main contributions of this paper are summarized as
follows. First, we propose a new type of information flow
security named LTL-based opacity. Compared to [20], the
objective is to synthesize the run in which the high-level
mission specifications of the synthesized run are indistin-
guishable from the intruder. In this new notation of LTL-
based opacity, the intruder is modeled as a passive observer
and infers the given LTL specifications, and the run is LTL-
based opaque if the intruder cannot determine the high-
level mission specifications via the observable traces and the
overall transition costs. Second, we propose a correct-by-
construction method to synthesize the optimal opaque run for
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a robotic system and a general type of LTL specifications.
We design a new synthesizer for the product system to
estimate possible reachable states under the proposition of
the LTL formula. Then, all sequences of states satisfying the
requirements of correctness and opacity can be extracted, and
the optimal run can be found within these cycles. Compared
to [21] and [22], the goal is to synthesize the optimal run
such that the intruder cannot identify whether the fixed secret
locations have been visited, or which agent has visited the
secret locations. In the proposed method, a more general type
of secret is taken into consideration, which is a dynamic set
of states under the mission specifications.

The remainder of this paper is organized as follows. Sec-
tion II introduces the preliminaries of the transition system
and LTL specifications. Section III proposes the definition
of LTL-based opacity and the problem formulation for the
synthesized runs. Section IV constructs the synthesizer and
develops the algorithm that finds the optimal opaque run
based on the synthesizer. Section V demonstrates a case
study to illustrate the effectiveness of the synthesis algorithm.
Section VI makes the conclusion and presents the future
research directions.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a mobile robot deployed in a road network,
which can be modeled as a weighted transition system (TS)

T := (Q, q0, δ,Π, L, w)

where
(i) Q is a finite set of states,

(ii) q0 ∈ Q is the initial states,
(iii) δ ⊆ Q×Q is the transition relation,
(iv) Π is a finite set of atomic propositions (APs),
(v) L : Q → 2Π is a map giving the set of APs satisfied

in a state,
(vi) w : δ → R+ is a map assigning a positive integer

weight to each transition.
For TS T abstracted from a robotic system and the corre-
sponding environment, the transition relation δ and states
Q are the road network and the intersections, respectively,
the set of APs is defined based on the behavior of the
robot on specific states, and the map of transition weight
w corresponds to the traveling times between intersections.
The full set of the runs of the TS T is a set of infinite
sequences RT,i = {q0q1 . . . qk . . . ∈ Q∗}, where k ∈ N, and
Q∗ = ∪j∈Nq = q∪qq∪qqq∪. . ., ∀q ∈ Q denotes the Kleene
closure of the set of states Q. Then, we denote the run of
TS T as r ∈ RT,i.

For TS T, the high-level mission specifications are de-
scribed by linear temporal logic (LTL) formulas. An LTL
formula consisting of a set of APs Π, boolean operators,
and temporal operators, is formed according to the following
syntax,

ϕ := TRUE | α | ϕ1 ∧ ϕ2 | ¬ϕ | ⃝ϕ | ϕ1 U ϕ2,

where α ∈ Π is an AP, and temporal operators ⃝ and U
mean “next” and “until”, respectively. Based on the afore-
mentioned definitions, the other temporal operators, such as

q0 q1

q2 q3

L(q0) = 

L(q2) = { gather } 

L(q2) = { upload } 

L(q3) = { recharge } 

 = { recharge, gather, upload }

1

1

1

2 3

1

Fig. 1. TS T abstracted from persistent surveillance mission.

∨ (conjunction), ⋄ (eventually), □ (always), and → (impli-
cation), are also induced in which ϕ1∨ϕ2 := ¬(¬ϕ1∧¬ϕ2),
⋄ϕ := TRUEU ϕ, □ϕ := ¬⋄¬ϕ, and ϕ1 → ϕ2 = ¬ϕ1 U ϕ2.
Given a run r of TS T, we say r satisfies an LTL formula ϕ
if the trace L(r) = L(q0)L(q1) . . . L(qi) . . . , i ∈ N satisfies
ϕ.

An LTL formula can be represented in an automata-
theoretic setting as Büchi automaton (NBA)

B := (S, S0,Σ, δB, F )

where S is a finite set of states, S0 ⊆ S is a set of initial
states, Σ is an input alphabet, δB ⊆ S × Σ × S is a non-
deterministic transition relation, and F ⊆ S is a set of
accepting states.

The product automaton P = T × B between TS T and
NBA B is the tuple P := (SP, SP,0, δP, FP, wP, SP,π)
where

(i) SP = Q× S is a finite set of states,
(ii) SP,0 = {q0} × S0 is a set of initial states,

(iii) δP ⊆ SP × SP is the transition relation and for states
(q, s) and ((q̄, s̄), ((q, s), (q̄, s̄)) ∈ δP if and only if
(q, s) ∈ δT and (s,L(q), s̄) ∈ δB,

(iv) FP = Q× F is a set of accepting (final) states,
(v) wP : δP → R≥0, and wP(((q̄, s̄), ((q, s), (q̄, s̄))) =

wP((q̄, s̄)), ∀((q̄, s̄), ((q, s), (q̄, s̄)) ∈ δP ,
which can be considered as an NBA.

III. PROBLEM FORMULATION

In this section, we focus on the notion of LTL-based
opacity for the abstracted system. Suppose the high-level
mission specification of the robot T is given in the form
of

ϕ := φ ∧ (□ ⋄ π), (1)

where φ is an arbitrary proposition, and π is an AP, and the
cost function

J(Tπ) = lim sup
k→+∞

(Tπ(k + 1)− Tπ(k)) (2)

must be minimized. In (1) and (2), AP π must be satisfied
infinitely often, and the maximal time between successive
satisfactions of AP π must be minimized.

Meanwhile, there is an intruder modeled as a passive
observer which knows the behavior of the robotic system
and observes the satisfaction of the observable APs and
the corresponding overall transition cost. The intruder can
then infer the high-level mission specification based on the
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available information flow. Assume that the behavior of the
TS T is partially observed and that the set of APs can be
partitioned into the following two disjoint sets

Πi = Πi,o ∪Πi,uo, (3)
where Πo is the set of observable APs and Πuo is the set
of unobservable APs. The behavior visible to an observer is
defined by an event operator E : Q∗ → 2Πo which is defined
as follows

E(r) = ∪n
i=0{L(qi)} ∩Πo, (4)

where i, n ∈ N, and r = q0q1 . . . qn . . . ∈ rT is a run of
TS T. Inductively, the event operator E(r) output the set of
observable APs within the run r. Furthermore, the intruder
can calculate the overall transition cost J(Tπ) based on the
set of observable APs. Then, if for a synthesized run ρ for
TS T, the intruder can never infer the mission specification
π, then we say that the run ρ is LTL-based opaque. To this
end, we propose the notion of LTL-based opacity which are
formally defined as follows.

Definition 1 (LTL-Based Opacity): Let T := (Q, q0, δ,
Π, L, w) be a TS with Πo ⊆ Π as the set of observable
APs and the LTL formula ϕ := φ ∧ (□ ⋄ π). A run ρ of TS
T is said to be LTL-based opaque with respect to Πo and π
if

(i)
ρ |= φ ∧ (□ ⋄ π),
∃ξ ∈ RT, ξ |= φ ∧ (□ ⋄ π ∧□ ⋄ γ), E(ρ) = E(ξ), and

(ii)
Jξ(Tπ) = kπ,γJξ(Tγ).

where kπ,γ ∈ N>0, γ is an unobservable AP, and

Jξ(Tπ) = lim sup
k→+∞

(Tπ
ξ (k + 1)− Tπ

ξ (k))

and
Jξ(Tγ) = lim sup

k→+∞
(Tγ

ξ (k + 1)− Tγ
ξ (k))

are cost functions with respect to run ξ and APs π and γ,
respectively.

Inductively, for condition (i) of Definition 1, according
to [6], the optimal run ρ satisfying the LTL specification
ϕ = φ ∧ (□ ⋄ π) must be in the prefix-suffix form, and
in the suffix cycle of the run ρ, AP π must be satisfied
infinitely many times. If there exists a run ξ in which the
suffix cycle satisfies the APs π and γ infinitely often, then
the intruder cannot determine the goal AP by the trace
of the run. Besides, for condition (ii) of Definition 1, the
maximal time between successive satisfactions of AP π is
in integral multiples of the time of AP γ. Therefore, the
intruder cannot determine the mission specification π based
on overall transition cost of the run. Now, we have the
following proposition to illustrate the effectiveness of LTL-
based opacity in security preservation.

Proposition 1: Given a TS T, an LTL specification ϕ :=
φ ∧ (□ ⋄ π), a set of observable APs Πo ∈ Π, and a run ρ,
the intruder cannot infer the intention π of TS T if the run
is LTL-based opaque with respect to T, Πo, and π.

Our goal is to synthesize the run which is LTL-based
opaque for the robotic system. To this end, the cost function
(2) should be minimized. Now, we formally give the problem
formulations as follows.

Problem 1: Given a robotic system modeled as TS T :=
(Q, q0, δ,Π, L, w), an LTL formula ϕ := φ ∧ (□ ⋄ π) over
the set APs Π, if the set of APs can be partitioned into two
disjoint sets as (3), and the behavior of the intruder can be
defined by event operator in (4), synthesize individual runs
ρ for TS T which are LTL-based opaque and satisfy the
following conditions,

(i)

∃ξ ∈ RT, ξ |= φ ∧ (□ ⋄ π ∧□ ⋄ γ), E(ρ) = E(ξ),
(ii)

Jξ(Tπ) = kπ,γJξ(Tγ)., and

(iii) the cost function (2) is minimized after conditions (i)
and (ii) are satisfied.

IV. SYNTHESIZER OF LTL-BASED OPACITY RUNS

s2s1s0

¬gather

gather

¬gather ∧ upload

gather ∧
upload

¬upload 
¬gather ∧

upload

gather ∧ upload

¬upload

(a)

s2s1 s3s0

gather

¬gather

¬gather ∧
upload

¬upload

gather ∧ upload

¬recharge

¬upload ∧
recharge

¬gather ∧
upload ∧
recharge

gather ∧
upload ∧
recharge

gather ∧
upload ∧
recharge

¬recharge

¬upload ∧recharge

¬gather ∧
upload ∧
recharge

(b)
Fig. 2. (a) is the NBA B constructed from LTL specification
ϕ := □ ⋄ gather ∧ □ ⋄ upload, and (b) is the NBA B′

constructed from modified LTL specification ϕ′ := (□ ⋄
gather∧□⋄upload)∧□⋄recharge for LTL-based opacity.

In this section, we construct the synthesizer for LTL-based
opaque runs and propose the algorithm that finds the optimal
opaque run. According to [6], to synthesize optimal run for
TS T under the LTL specification ϕ := φ ∧ (□ ⋄ π), an
NBA B is constructed based on the LTL formula ϕ. Then,
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the optimal run can be obtained in the product automaton
P = T × B. Although the optimal run can be synthesized
via the aforementioned algorithm correct-by-construction,
yet the synthesized run may not be LTL-based opaque such
that the mission specification will reveal to the intruder.

Our goal is to synthesize the LTL-opaque run for TS
T, while guaranteeing its optimality. We use the mission
specification ϕ′ := φ∧ (□ ⋄ π ∧□ ⋄ γ) to construct NBA B
such that the corresponding product automaton P contains
the states in which APs π and γ are satisfied, respectively. We
use SP,π ∈ SP and SP,γ ∈ SP to denote the accepting states
for APs π and γ in the product automaton P, respectively.
Besides, with a slight abuse of notation, we use a ∈
(a, b, c, . . .) to denote a is an element of tuple (a, b, c, . . .),
and we use ∅ for none of the APs are satisfied for the current
state. Since the product automation P constructed from TS
T and LTL specification ϕ′ := φ ∧ (□ ⋄ π ∧ □ ⋄ γ) can
be seen as an NBA, the corresponding accepting language
will satisfy proposition φ infinitely many times, i.e., if the
accepting language of product automaton P, contains the
states of sπ,P ∈ SP,π , and sγ,P ∈ SP,γ , then the correctness
of the LTL specification and repeated satisfactions of APs
π and γ will be guaranteed. Thus, we have the following
lemma.

Lemma 1: Given a product automaton P constructed from
TS T and NBA of LTL formula ϕ′ := φ∧(□⋄π∧□⋄γ), if a
accepted sequence of automaton P contains the states sπ,P ∈
SP,π and sγ,P ∈ SP,γ , then the corresponding sequence in
TS T will satisfy the LTL specification φ and the APs π and
γ infinitely often.

(q1, s1) (q0, s1) (q2, s1)

(q0, s2)

(q2, s2)

(q3, s2)

(q1, s3)

gather

(q0, s3)

(q2, s0)

gather

recharge

upload

upload

gather

1

1

22

1

1

1

1

1

1

1

1

1
3

2

Fig. 3. Product automaton P = T ×B′ with respect to TS
T and LTL specification ϕ′ := (□ ⋄ gather ∧□ ⋄ upload)∧
□ ⋄ recharge.

To find the loops which guarantee correctness and opacity,
we construct the structure of the synthesizer from the product
automaton, which can be formally given as follows.

Definition 2: The synthesizer is a bipartite transition sys-
tem A := (Y, Z, y0, δY Z , δZY ) where

(i) Y = {({(q, s)}, α) ∈ 2SP,π × Π|∃s ∈ (q, s), s ∈ Πo}
is a finite set of Y-states,

(ii) Z = {({(q, s)}, α) ∈ 2SP,π × Π|∃s ∈ (q, s), s ∈ Πuo}
is a finite set of Z-states,

(iii) y0 = (SP,π, π ∈ Y ) is the set of initial states,
(iv) δY Z ⊆ Y × Z is the transition relation from Y-states

to Z-states,
(v) δZY ⊆ Z × Y is the transition relation from Z-states

to Y-states.

Inductively, in synthesizer A, the Y-states are for the set
of states with observable APs, and The Z-states are for the
possible reachable states from the state of Y-states, in which
the APs of a Z-states are unobservable or unchanged.

In synthesizer A, the set of information states Y and Z
are updated according to the following rules. Given a Y-state
y ∈ Y and an unobservable AP γ′ ∈ Πuo, the following Z-
states z′ can be obtained by its unobservable reach

URγ′(y) = ({(q′, s′) ∈ SP|∃(q, s) ∈ y,∃(q′, s′) ∈ SP,

(s, γ′, s′) ∈ δB, δP((q, s), (q
′, s′))!}, γ′),

where notation (·)! denotes “is defined”. Besides, we define
UR∅(y) = ({(q, s) ∈ SP|∃(q, s) ∈ y}∪

{(q′, s′) ∈ SP|∃(q, s) ∈ y,∃(q′, s′) ∈ SP,

s′ = ∅, δP((q, s), (q′, s′))!}, ∅).
Similarly, given a Z-state z ∈ Z and an observable AP
π′ ∈ Πo, the following Y-states y′ can be obtained by its
observable reach
NXπ′(z) = ({(q′, s′) ∈ SP|∃(q, s) ∈ z,∃(q′, s′) ∈ SP,

(s, π′, s′) ∈ δB, δP((q, s), (q
′, s′))!}, π′).

Inductively, the unobservable reach is for the possible reach-
able states from the states within a Y-state to the states
with unobservable APs via trace-empty paths, while the
unobservable reach for a null AP yields the reachable states
with no traces and the states within the input Y-states. The
observable reachis for the possible reachable states from the
states within a Z-state to the states with observable APs
via the path of no traces. According to the aforementioned
information states update rules, the following remark is given
for the upper bound of the maximal number of states of the
synthesizer A.

Remark 1: Consider a TS with the number of Q states,
if the length of the LTL formula is denoted as ∥ϕ∥, then
the upper bound of the maximal number of states of the
synthesizer is 2Q+∥ϕ∥+2.

Considering the run of the synthesizer A can be repre-
sented as rA = p0p1 . . . pi . . ., p ∈ Y ∪ Z,i ∈ N. For states
qi qi+1, there exists a set of states Si ∈ pi, Si+1 ∈ pi+1

such that ∃si ∈ SP ∩ Si and ∃si+1 ∈ SP ∩ Si+1 of the
corresponding product automaton P. If the transition relation
(si, si+1) ∈ δP, then the subsequence sisi+1 can be directly
obtained from the synthesizer A. Otherwise, there exists
an optimal path si . . . si+1 in the corresponding product
automaton P in which only APs πi ∈ pi and πi+1 ∈ pi+1 are
satisfied. Now, with a slight abuse of notations, we extend
the event operator for the product automaton P and the
synthesizer A such that

E(rP) = ∪n
i=0{si} ∩Πo, si ∈ (qi, si),
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({(q2, s0),  (q2, s1), (q2, s2)},  gather) ({(q3, s2)}, recharge) ({(q2, s2)}, gather)

({(q2, s2)}, )({(q1, s3)}, upload)

({(q1, s3), (q0, s3)}, )

({(q2, s0), (q2, s1)}, ) ({(q1, s1)}, upload)

({(q1, s0), (q1, s1)}, upload)

({(q2, s0), (q2, s1) ), (q2, s2)}, )

({(q1, s1),  (q1, s3)}, upload)

({(q1, s1), (q0, s1) ), (q1, s3) , (q0, s3)}, )

({(q2, s0)}, )

({(q2, s0),  (q2, s1)}, gather)

({(q2, s0)}, gather)

Fig. 4. Synthesizer A constructed for product automaton P = T×B′.

and

E(rA) = ∪n
i=0{αi} ∩Πo, αi ∈ ({(qi, si)}, αi),

where i, n ∈ N, and the sequences
rP =(q0, s0)(q1, s1) . . . (qn, sn) . . .

rA =({(q0, s0)}, α0)({(q1, s1)}, α1) . . .

({(qn, sn)}, αn) . . . .

Then, we give the following lemma for the existence of the
correspondence between the sequences of synthesizer A and
product automaton P.

Lemma 2: Given a sequence of states in rA a synthesizer
A, there will be a set of corresponding sequences rP in the
product automaton P such that the satisfaction of observable
APs are identical, i.e., E(rP) = E(rA).

Once the synthesizer is constructed, we use Algorithm
1 to find the optimal opaque run for TS T. Besides, the
correctness of Algorithm 1 is illustrated in Theorem 1.

Theorem 1: Given a TS T, a high-level mission specifi-
cation in the form of LTL formula ϕ := φ ∧ (□ ⋄ π), and a
set of observable APs Πo ∈ Π, if for each state q ∈ Q, the
number of APs ∥L(q)∥ ≤ 1, then the optimal LTL-opaque
run can be synthesized by Algorithm 1.

V. CASE STUDIES

In this section, we demonstrate a case study to illustrate the
effectiveness of our proposed algorithm. Consider a surveil-
lance robotic system in a road network with intersections,
the abstracted system is denoted T illustrated in Figure 1.
The high-level mission specification is given as

ϕ := □ ⋄ gather ∧□ ⋄ upload (5)
where the AP π = upload. In (5), the LTL specification
ϕ means the robot must gather and upload data infinitely
often, and the maximal time between successive uploads
of the data must be minimized. Assume the behavior of

Algorithm 1: OPTIMAL RUN WITH OPACITY-
PRESERVATION

Input: TS T;
LTL formula ϕ := φ ∧ (□ ⋄ π);

Output: Optimal opaque runs ρ∗;
1 suffix set← ∅;
2 R← ∅;
3 foreach γ ∈ Πuo\{π} do
4 Construct NBA from LTL formula

ϕ′ := φ ∧ (□ ⋄ π ∧□ ⋄ γ);
5 Construct product automaton P = T×B′;
6 Construct synthesizer A from product automaton P;
7 Find all cycles ξPsuffix ∈ Rsuffix containing y0, at

least one Y-state (p, π), and at least one Z-state
(p′, γ), ∃p, p′ ⊆ 2SP within synthesizer A;

8 foreach ξP,suffix ∈ Rsuffix do
9 if ∃kπ,γ , Jξ(Tπ) = kπ,γJξ(Tγ) then

10 Add ξPsuffix to suffix set;

11 foreach ξP,suffix ∈ Rsuffix do
12 Project ξP,suffix back to TS T;
13 Find the corresponding optimal prefix for the projected

suffix cycle;
14 Find the corresponding run ρ satisfying the condition

of transition cost and LTL specification;
15 Add run ρ to R;

16 Find the optimal opaque ρ∗ from R with minimal
transition cost Jρ(Tπ);

17 Find the shortest path ρ0 from q0 to the optimal run ρ∗;
18 return Optimal opaque run ρ0ρ

∗

the robot is partially observable, i.e., the observable set
of APs Πo = {gather, upload}, while the unobservable
set of APs Πuo = {recharge}. Besides, there exists an
intruder that monitors the behavior of the robot, and infers
the intention via the observable trace and the corresponding
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overall transition cost.
To avoid the optimal AP π = upload being revealed to the

intruder, we first let AP γ = recharge. Then, we convert the
modified LTL specification ϕ′ := (□⋄gather∧□⋄upload)∧
□ ⋄ recharge to the NBA B′ illustrated in Figure 2 (b). and
construct the product automaton P = T × B′ illustrated
in Figure 3 and the corresponding synthesizer A illustrated
Figure 4. As illustrated in Figure 4, the cycles
ξP,suffix,1

=(({(q3, s2)}, recharge) (({(q1, s3)}, upload)
({(q1, s3), (q0, s3)}, ∅))k ({(q2, s0)}, gather))ω

ξP,suffix,2

=(({(q3, s2)}, recharge) ({(q2, s2)}, gather) ({(q2, s2)}, ∅)
(({(q1, s3)}, upload) ({(q1, s3), (q0, s3)}, ∅))k

({(q2, s0)}, gather))ω

can be found, where k ∈ N>0 is an arbitrary positive
integar, (r′)k is for the subsequence r′ will be repeated for
k times, and (r′)ω is for the subsequence r′ will be repeated
infinitely many times. Then, one can easily check that the
corresponding subsequence

ξsuffix,1 = (q3 q0 (q1 q0)
k q2)

ω

is projected from ξP,suffix,1 and

ξsuffix,2 = (q3 q0 q2 (q1 q0)
k q2)

ω

is projected from ξP,suffix,2. However, for suffix cycle
ξsuffix,1, the cost functions Jξ(Tπ) = Jξ(Tγ) = 6 + 2k,
while for suffix cycle ξsuffix,2, the cost functions Jξ(Tπ) =
8 + 2k and Jξ(Tγ) = 4 + 2k. For both of the suffix cycles,
the condition (ii) of LTL-based opacity is satisfied. Besides,
for suffix cycles ξsuffix,1 and ξsuffix,2, the trace-equivalent
run is ρsuffix = ((q1q0)

l+1q2)
ω , and the corresponding cost

function Jρ(Tπ) = 2+2l. Considering the optimal transition
cost of ξsuffix,1 and ξsuffix,2 is 4, we let l = 3 such that
the optimal opaque run is

ρ = (q0 q2 q1 q0 q1 q0 q1)
ω,

and the corresponding trace-equivalent run is

ξ = (q0 q2 q3 q0 q1)
ω.

One can easily check that for optimal run ρ there exists
the run ξ such that the sets of observable APs E(ρ) =
E(ξ) = {gather, upload}, and the cost function Jρ(Tπ) =
Jξ(Tπ) = Jξ(Tγ), which meet the definition of LTL-based
opacity. Thus, the run ρ obtained from Algorithm 1 is optimal
opaque, i.e., the intruder cannot determine for sure the AP
π is upload or recharge via the synthesized optimal run.

VI. CONCLUSION

In this paper, we have proposed an opacity-preserving
path planning method with opacity preservation. To this end,
we first extend the notion of opacity and put forward the
definition of LTL-based opacity. Then, a new structure named
synthesizer is developed for finding all LTL-based opaque
runs under the LTL specifications. An algorithm is proposed
to find the optimal opaque run via the synthesizer. Finally,

a case study is demonstrated to illustrate the effectiveness
of our method. In our further research, the path planning
problem with opacity preservation for multi-agent systems
and stochastic systems will be investigated.
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