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Abstract— This paper aims at proposing a data-based track-
ability compensation strategy for iterative learning control sys-
tems to enhance their tracking performances when confronted
with untrackable references. By designing and leveraging offline
input-output test principles, an alternative data-based represen-
tation is constructed, based on which a data-based trackability
criterion is developed. In scenarios where the reference outputs
are untrackable, by interconnecting the original system with
an auxiliary system, the trackability set of the interconnected
system is modified. Consequently, the originally untrackable
references become trackable for the interconnected system, and
the perfect tracking preformances of iterative learning control
can be guaranteed.

I. INTRODUCTION

Iterative learning control (ILC), as a powerful intelligent
control method, has been widely applied in various industrial
fields such as robotics [1], chemical processes [2], and high-
speed trains [3]. ILC is especially applicable for systems that
undergo repetitive operations within some specific time dura-
tion, and its implementation relies on the learning mechanism
from past experiences [4]. To be specific, by employing the
knowledge of tracking errors and inputs from past iterations,
ILC recursively modifies the control inputs throughout the
iteration axis and ultimately achieves accurate tracking of the
desired reference over the entire time duration [5]. There has
been an abundant research history of ILC, for which we refer
readers to a comprehensive survey for more explanations [6].

Convergence analysis is indispensable for the synthesis of
ILC, essential for characterizing the tracking performance of
the designed iterative learning controller. In the most of the
existing literatures of ILC, the mainstream convergence anal-
ysis frameworks are building upon the Banach fixed point
theorem or the composed energy functions [7]. Nevertheless,
both of these analytical frameworks depend on a conservative
assumption on the existence of the desired input with respect
to the desired reference. Unfortunately, the existence of such
desired input is strictly dependent on the model knowledge,
raising doubts on the rationality of this assumption. Once this
assumption fails to hold, ILC can solely achieve conservative
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tracking performances. To address this essential issue, some
recent results have introduced the trackability and established
its connection with the solvability of linear algebraic equa-
tions [8]. Benifiting from these efforts, one can efficiently
verify the trackability of some reference, thereby determining
whether perfect tracking performance can be achieved [9].

Inspired by the results mentioned earlier, a further question
arises: whether there exists certain trackability compensation
strategy to guarantee that ILC can achieve perfect tracking
of those references that were originally untrackable. This
question motivates the proposal of a data-based trackability
compensation strategy via interconnection in this paper. Due
to the absence of model knowledge, the offline input-output
tests are designed, from which an alternative data-based I-O
representation is constructed. By leveraging this data-based
I-O representation, the trackability of certain references and
the trackability set of original ILC systems can be identified.
For untrackable references, by interconnecting the original
ILC system with the specifically designed auxiliary system,
the trackability set of the interconnected system may be com-
pensated. Through the proposed trackability compensation
strategy, the originally untrackable references are expected
to lie within the compensated trackability set. Subsequently,
we can proceed with the synthesis and analysis of ILC for the
interconnected system, and the perfect tracking performances
for the originally untrackable references can be achieved.

The reminder of this paper is organized as follows. The
preliminaries on ILC and the data-based trackability compen-
sation problems via interconnection are formulated in Section
II. In Section III-A, the offline I-O tests are designed, from
which a data-based I-O representation is constructed. The
trackability compensation strategy is demonstrated in Section
III-B. Afterward, for those originally untrackable references,
a modified data-based ILC framework is presented in Section
III-C. An illustrative example is provided in Section IV.
Finally, Section V summarizes the contributions in this paper.

Notation: Let ZN = {0,1, · · · ,N} and Z+ = {0,1,2, · · ·}.
For a matrix A, its transpose and Moore-Penrose inverse are
denoted as AT and A†, respectively. The null and identity
matrices with appropriate dimensions are denoted as 0 and
I. For arbitrary vectors a and b, col(a,b) refers to

[
aT bT

]T.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Iterative Learning Control and Trackability

Consider a class of repetitive systems whose dynamics can
be described by the state space representation as

xk(t +1) = As(t)xk(t)+Bs(t)uk(t)
yk(t) =Cs(t)xk(t)+Ds(t)uk(t)

(1)
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where t ∈ ZT and k ∈ Z+ refers to the time and iteration
axes, respectively. The input and output in k-th iteration
are denoted by uk(t) ∈ Rnu and yk(t) ∈ Rny , respectively.
Owing to the existence of non-minimal representation, the
internal state with unknown dimension is denoted as xk(t) ∈
R•. Correspondingly, (As(t),Bs(t),Cs(t),Ds(t)) represent the
unknown model matrices with appropriate dimensions. For
a reference output yd(t) ∈ Rny , ILC focuses on addressing
the output tracking issues over a specific time duration
t ∈ ZT , for which the lifting technique is widely leveraged
to introduce the supervectors as follows [6]:

Uk =
[
uT

k (0), uT
k (1), · · · , uT

k (T )
]T ∈ RnuT ,

Yk =
[
yT

k (0), yT
k (1), · · · , yT

k (T )
]T ∈ RnyT ,

Yd =
[
yT

d (0), yT
d (1), · · · , yT

d (T )
]T ∈ RnyT .

Based on these defined supervectors, the input-output rela-
tionship of (1) over the time duration ZT is represented as

Yk = GUk +Lxk(0), ∀k ∈ Z+ (2)

where the input-output transfer matrix G and initial state-
output transfer matrix L can be steadily constructed through
the model knowledge (As(t),Bs(t),Cs(t),Ds(t)) [10]. To deal
with the tracking issues over t ∈ZT , ILC recursively modifies
the input along the iteration axis in the form of

Uk+1 =Uk +∆Uk+1, ∀k ∈ Z+ (3)

where ∆Uk+1 is usually designed by exploiting the tracking
error information from past iterations. Given the repetitive
characteristics of the ILC system (1), it is required that the
system starts from an identical initial state in each iteration,
and the following assumption is commonly employed.

Assumption 1. The initial state of the ILC system (1) is
iteration-invariant, i.e., xk(0) = x0, ∀k ∈ Z+.

Of note is that Assumption 1 does not require the specific
value of x0, and it is only employed to constrain the system
(1) to commence from some identical initially stored energy
at the beginning of each iteration. With the ILC system (1)
and Assumption 1, we further introduce the definitions of
trackability and trackability set.

Definition 1. For the ILC system (1) with xk(0) = x0, ∀k ∈
Z+, a reference output Yd is said to be trackable if there exists
some input Ud such that (Ud ,Yd) fullfills (2). Moreover, the
trackability set of ILC system (1) is defined as

YYY track = {Yd |∃Ud such that (Ud ,Yd) fullfills (2)} .

Remark 1. Of note is that the definitions of trackability and
trackability set depend on the initial state x0. The necessity
of introducing the notion of trackability lies in the fact that
if a reference output is trackable, then there must exist some
controllers in the form of (3), ensuring the achievement of
perfect tracking performance

lim
k→∞

Yk = Yd . (4)

Additionally, for any untrackable reference output in RnyT −
YYY track, perfect tracking (4) can not be achieved, resulting in
a loss of tracking performance. For a untrackable reference

output, proposing strategies to compensate for its trackability
is an effective method to enhance the tracking performance.

B. Data-Based Trackability Compensation Problems

Model information is indispensable for ILC in the con-
troller design and convergence analysis. Moreover, as empha-
sized in Remark 1, once a reference output is untrackable,
ILC can only achieve conservative tracking performances.
In response to these two issues, the data-based trackability
compensation problems are formulated as follows:

Problem Statement. For the unknown ILC system (1) under
Assumption 1, let Y c

d ∈YYY c
track :=RnyT −YYY track represent some

untrackable reference output. This paper focuses on solving
the following two problems:

1) Develop an interconnection-based trackability compen-
sation strategy by leveraging the sampled data from
ILC system (1). By interconnecting the ILC system (1)
with some specifically designed system or controller,
the trackability set of the interconnected system is
modified to YYY inter

track, ensuring that Y c
d ∈ YYY inter

track.
2) For the interconnected system and originally untrack-

able reference Y c
d , design a data-based iterative learning

controller in the form of (3), ensuring that the perfect
tracking performance (4) can be achieved.

III. DATA-BASED TRACKABILITY COMPENSATION

For the scenarios where the model knowledge of the ILC
system (1) is inaccessible, this section attempts to develop a
data-based trackability compensation strategy, for which we
first construct an alternative I-O representation utilizing data.

A. Input-Output Representation Based on Sampled Data

As emphasized in Section II-A, the state space model (1)
is somewhat unreliable in model-free scenarios owing to the
presence of non-minimal representation [11]. Therefore, an
I-O representation is preferred. To collect a sufficient amount
of I-O data, offline I-O tests need to be conduct. To address
the output tracking problems over the time duration ZT , at
least nuT +1 times I-O tests are required. In each I-O test, the
initial state is fixed as x0 which may be unknown. In the i-th
I-O test, the system (1) is applied with the input U i ∈ RnuT

over the entire time duration ZT , and corresponding response
Y i ∈ RnyT is obtained. The inputs and outputs are collected
into data matrices as

UUUTest =
[
U1, U2, · · · , UnuT+1

]
∈ RnuT×(nuT+1),

YYY Test =
[
Y 1, Y 2, · · · , Y nuT+1

]
∈ RnyT×(nuT+1).

To guarantee the sufficiency of the sampled data, additional
constraints need to be imposed on the test inputs as follows:

Offline Test Principles. In the offline I-O tests, the follow-
ing two test principles are executed:

1) In the first I-O test, the input is designed as

U1 =
[
0T

nu , 0T
nu , · · · , 0T

nu

]
∈ RnuT ; (5)

2) In later nuT tests, the inputs are designed to satisfy

rank
([

U2, U3, · · · , UnuT+1
])

= nuT. (6)
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Let the vector consisting of the test I-O pair be denoted as
wi = col

(
U i,Y i

)
. Because of the identical initial state x0, it

is convincing that each wi satisfies (2). From the offline test
principle (6), the inputs

{
U2, U3, · · · , UnuT+1

}
form a set

of bases of RnuT . Without the loss of generality, the sampled
data are supposed to satisfy the following assumption.

Assumption 2. The offline sampled data (UUUTest,YYY Test) sat-
isfy the offline test principles (5) and (6).

With the application of the offline sampled data, a data-
based I-O representation can be constructed, which will be
detailedly interpreted in Lemma 1.

Lemma 1. For the unknown system (1) under Assumption
1, let Assumption 2 hold. Then (Uk,Yk) satisfies (2) if and
only if there exists some gk ∈ RnuT+1 such that1T

nuT+1
UUUTest
YYY Test

gk =

 1
Uk
Yk

 . (7)

Proof. Sufficiency: Under the Assumptions 1 and 2, each pair
of the offline I-O data

(
U i,Y i

)
, i ∈ ZnuT+1\{0} satisfies the

following non-homogeneous linear algebraic equation[
−G, InyT

]
wi = Lx0. (8)

From this LAE, an insightful conclusion is that the affine
combinition of any two pairs of offline I-O data, denoted by

αwi +(1−α)w j, ∀α ∈ R, ∀i, j ∈ ZnuT+1\{0}

still satisfies the same equation (8), or equivalently, fullfills
(2). From the first equation of (7), it can be readily concluded
that ∑

nuT+1
i=1 gk,i = 1, where gk,i represents the i-th element of

gk. Consequently, under the constraints of the first equation,[
UUUT

Test, YYY T
Test

]T gk exactly represents the affine combination
of wi for all i ∈ZnuT+1\{0}. Therefore, (Uk,Yk) satisfies (2).

Necessity: From the offline test principles (5) and (6), the
test inputs

{
U2,U3, · · · ,UnuT+1

}
form a set of bases of RnuT .

This fact indicates that, for any input Uk, there must exist a
series of real number gk,i ∈ R, k ∈ ZnuT+1\{0} such that

Uk =
nuT+1

∑
i=2

gk,iU i +gk,1U1. (9)

Since (Uk,Yk) satisfies (2), by designing gk,1 = 1−∑
nuT+1
i=2

and leveraging (9), the corresponding output can be likewise
expressed as

Yk =
nuT+1

∑
i=2

gk,iY i +gk,1Y 1 −
nuT+1

∑
i=1

gk,iLx0 +Lx0

=
nuT+1

∑
i=2

gk,iY i +gk,1Y 1.

(10)

By simultaneously taking into account (9) and (10), for any
(Uk,Yk) satisfying (2), there always exist some vector gk =[
gk,1, gk,2, · · · , gk,nuT+1

]T such that (7) holds. ■

Remark 2. By employing the I-O data collected under the
offline test principles (5) and (6), Lemma 1 has established
a data-based I-O representation to equivalently characterize
the dynamics of the original ILC system (1). In the absence

of model knowledge, (7) can serve as an alternative data-
based model. Following the established representation (7), a
data-based criterion for trackability can be further developed.

Remark 3. From Lemma 1, another inspirative result is that
the set involving all possible I-O pairs, which is defined as

Bx0 = {w = col(U,Y ) |(U,Y ) satisfies (2)}

constitutes an affine set. Additionally, this affine set can be
decomposed into the sum of subspace and offset components,
which can be constructed from the sampled data as

Bx0 = W +w1,

W = span(H) ,

H =
[
w2 −w1,w3 −w1, · · · ,wnuT+1 −w1

]
.

(11)

It is quite obvious that the subspace W is exactly the kernel
space of the matrix

[
−G, I

]
, and the columns of H constitute

a set of bases of W .

Corollary 1. For the unknown system (1) under Assumption
1, let the sampled data (UUUTest,YYY Test) satisfy Assumption 2.
A reference output Yd is trackable if and only if there exists
a vector g̃ ∈ RnuT+1 such that[

1T
nuT+1
YYY Test

]
g̃ =

[
1

Yd

]
. (12)

Proof. Sufficiency: Due to the existence of the vector g̃, we
adopt the control input Ud =UUUTestg̃ and can readily deduce1T

nuT+1
UUUTest
YYY Test

 g̃ =

 1
UUUTestg̃

Yd

 .

With the application of Definition 1 and Lemma 1, it can be
concluded that Yd is trackable.

Necessity: From Definition 1, the output Yd is trackable if
and only if there exists some Ud such that (Ud ,Yd) satisfies
(2) or (7). By leveraging Lemma 1, there must exist some
gk ∈ RnuT+1 such that (7) holds. Therefore, (12) holds by
simply choosing g̃ = gk. ■

Remark 4. By exploiting the data-based I-O representation
presented in Lemma 1, Corollary 1 further develops an data-
based trackability criterion. Once a reference output Yd is
trackable, then adopting the conventional data-based ILC can
achieve the perfect tracking performances [12]. Otherwise,
for the untrackable reference output Y c

d , a trackability com-
pensation strategy and modified ILC need to be developed.

B. Trackability Compensation via Interconnection
To further enhance the tracking performances of ILC when

confronted with untrackable reference outputs Y c
d ∈ YYY c

track,
we attempt to interconnect the ILC system (1) with another
system or controller, thus modifying the trackability set of the
interconnected system, which is denoted by YYY inter

track. Through
such compensation, it is expected that Y c

d ∈ YYY inter
track. Such a

trackability compensation strategy can be interpreted from a
geometric perspective, as shown in Fig. 1. From Corollary
1, the trackability set YYY track constitutes an affine hyperplane
in Euclidean space. For an untrackable reference Y c

d , it must
lie outside of this affine hyperplane. Nevertheless, through
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the trackability compensation strategy, the trackability set is
modified to another affine hyperplane YYY inter

track ensuring Y c
d ∈

YYY inter
track, such that ILC can achieve perfect tracking.

Fig. 1. A geometric interpretation for trackability compensation strategy.

Consider an auxiliary system whose input-output relation-
ship over the time duration ZT can be described as

Σ : Y k = GΣUk, ∀k ∈ Z+ (13)

where the dimensions of Uk and Y k, denoted by nuT and nyT ,
depend on the specific interconnection structure. We consider
two fundamental interconnection structures: feedforward and
feedback, as shown in Figs. 2 and 3. Despite the differences

Fig. 2. Feedforward interconnection structure.

Fig. 3. Feedback interconnection structure.

in the interconnection structures, we may attempt to establish
a unified framework to further analysis the input-output rela-
tionship of the interconnected system. Let wk = col(Uk,Yk),
wk = col(Uk,Y k), and winter

k = col
(
U inter

k ,Y inter
k

)
denote the

I-O pairs of the ILC, auxiliary, and interconnected systems,
respectively. Without loss of generality, we assume that nu =
nu in the feedforward interconnection, hence maintaining
the dimensions of the inputs and outputs regardless of the
structures of interconnection. Then, there must be

winter
k = K1wk +K2wk (14)

subject to addition structral constraint

S1wk +S2wk = 0. (15)

For different interconnection structures, S1, S2, K1, and K2
possess different meanings as follows:

1) In the feedforward interconnection:

K1 = blkdiag
(
0nuT×nuT , InyT

)
, S1 =

[
InuT 0nuT×nyT

]
,

K2 = blkdiag
(
InuT ,0nyT×nuT

)
, S2 =

[
0nuT×nuT − InuT

]
;

(16)

2) In the feedback interconnection:

K1 = blkdiag
(
InuT , InyT

)
, S1 =

[
0nyT×nuT InyT

]
,

K2 =

[
0nuT×nyT −InuT
0nyT×nyT 0nyT×nuT

]
, S2 =

[
−InyT 0nyT×nuT

]
.

(17)
Other more complex interconnection structures can always be
decomposed into combinations of feedforward and feedback
interconnections, and corresponding interconnection param-
eter matrices can be derived from (16) and (17). Afterward,
the data-based I-O representation of the interconnected sys-
tem needs to be explored. Similar to Remark 3, let span(HΣ),
where HΣ is of full column rank, represent the subspace
ker

([
−GΣ, I

])
. Specifically, rank(HΣ)= nuT in feedforward

interconnection, and rank(HΣ) = nyT for the feedback inter-
connection. Let K1,1 and K2,1 represent matrices composed of
the first nu rows of K1 and K2, repsectively. Correspondingly,
the matrices composed of the last ny rows are denoted by
K1,2 and K2,2. Then the I-O relationship of the interconnected
system is given through the following theorem.

Theorem 1. For the unknown ILC system (1) under As-
sumption 1, let sampled data (UUUTest,YYY Test) satisfy Assump-
tion 2. By interconnecting the systems (1) and (13) via some
interconnection structure,

(
U inter

k ,Y inter
k

)
is an I-O pair of the

interconnected system if and only ifU inter
k

Y inter
k
0

=

K1,1H K2,1HΣ

K1,2H K2,2HΣ

S1H S2HΣ

αk +

K1,1w1

K1,2w1

S1w1

 (18)

holds for some vector αk.

Proof. Inspired by Remark 3, for any wk = col(Uk,Yk), there
always exist some vector αk,1 ∈RnuT such that wk =Hαk,1+
w1. Likewise, any wk that satisfies (13) can be expressed as
wk = HΣαk,2. Therefore, (14) and (15) can be rewritten as

winter
k = K1Hαk,1 +K1w1 +K2HΣαk,2,

0 = S1Hαk,1 +S1w1 +S2HΣαk,2.

By designing a vector as αk = col
(
αk,1,αk,2

)
, it is concluded

that
(
U inter

k ,Y inter
k

)
is an I-O pair of the interconnected system

if and only if (18) holds. ■

Following the established I-O representation of the inter-
connected system, the trackability of Y c

d for interconnected
system can be immediately determined through Corollary 2.

Corollary 2. For the unknown ILC system (1) under As-
sumption 1, let the sampled data (UUUTest,YYY Test) satisfy As-
sumption 2, and let Y c

d be a untrackable reference output for
(1). Through the interconnection presented in Theorem 1,
Y c

d ∈YYY inter
track holds if and only if there exists some α̃ such that[

Y c
d
0

]
=

[
K1,2H K2,2HΣ

S1H S2HΣ

]
α̃ +

[
K1,2w1

S1w1

]
. (19)

Proof. A direct consequence of Theorem 1. ■

Remark 5. Even if the reference output output Y c
d is untrack-

able for the original ILC system (1), Corollary 2 proposes a
trackability compensation strategy to render Y c

d is trackable
for the interconnected system, i.e., Y c

d ∈YYY inter
track. To ensure that
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Y c
d satisfies (19), the interconnection parameters K1, K2, S1,

S2 and controller-related parameters HΣ need to be designed.
Based on the proposed trackability compensation strategy,
ILC can achieve perfect tracking of Y c

d .

C. Modified Data-Based ILC
After completing the trackability compensation, we further

design the required data-based iterative learning controller
for the interconnected system, such that the perfect tracking
of Y c

d can be achieved. Taking optimization-based ILC as an
demonstration, the controller is designed as

U inter
k+1 =U inter

k +∆U inter
k+1

where ∆U inter
k+1 is derived through minimizing the designed

cost function. Nevertheless, such optimization-based ILC
strategies depend on precise model knowledge. To release the
dependence on system model, we adopt the alternative data-
based representation in (18), and the control updation can be
obtained by solving the convex optimization as follows:

minimize Jk+1 =
∥∥∥Y c

d −Y inter
k+1

∥∥∥2

2
+
∥∥∥∆U inter

k+1

∥∥∥2

2
subject to (18) holds.

(20)

To present the controller design more clearly, we define[
M1 M2

]
=

[
K1,1H K2,1HΣ

S1H S2HΣ

]†

where the dimensions of M1 and M2 rely on the interconnec-
tion structure. Following this, the iterative learning controller
is developed via the following theorem.

Theorem 2. For the unknown ILC system (1) under As-
sumption 1, let

1) The sampled data (UUUTest,YYY Test) satisfy Assumption 2;
2) Y c

d ∈ YYY c
track be a untrackable reference output for (1);

3) Y c
d ∈ YYY inter

track be trackable for the interconnected system
(18) via the trackability compensation in Theorem 1.

By solving the convex optimization (20), the required itera-
tive learning controller is designed as

∆U inter
k+1 =

(
I +MT

1
[
K1,2H K2,2HΣ

]T [K1,2H K2,2HΣ

]
M1

)−1

×MT
1
[
K1,2H K2,2HΣ

]T E inter
k .

(21)

Proof. From (18), it is concluded that for any
(
U inter

k ,Y inter
k

)
and

(
U inter

k+1 ,Y
inter
k+1

)
, there must exist αk and αk+1 such that −∆U inter

k+1
Y inter

k −Y inter
k+1

0

=

K1,1H K2,1HΣ

K1,2H K2,2HΣ

S1H S2HΣ

(αk −αk+1) .

Consider the following homogeneous algebraic equation as[
−∆U inter

k+1
0

]
=

[
K1,1H K2,1HΣ

S1H S2HΣ

](
α
∗
k −α

∗
k+1

)
.

This equation must be solvable since I-O pairs
(
U inter

k ,Y inter
k

)
and

(
U inter

k+1 ,Y
inter
k+1

)
satisfy (18), and its least square minimal

norm solution can be expressed as

α
∗
k −α

∗
k+1 =

[
M1 M2

][−∆U inter
k+1

0

]
. (22)

By exploiting (22), the difference in output along the iteration
axis can be represented as

Y inter
k −Y inter

k+1 =
[
K1,2H K2,2HΣ

][
M1 M2

][−∆U inter
k+1

0

]
=−

[
K1,2H K2,2HΣ

]
M1∆U inter

k+1 .

Therefore, the cost function in (20) can be rewritten as

Jk+1 =
∥∥∥Y c

d −Y inter
k+1

∥∥∥2

2
+
∥∥∥∆U inter

k+1

∥∥∥2

2

=
∥∥∥E inter

k −
[
K1,2H K2,2HΣ

]
M1∆U inter

k+1

∥∥∥2

2
+
∥∥∥∆U inter

k+1

∥∥∥2

2
.

Hence, the cost function Jk+1 is strictly convex with respect
to ∆U inter

k+1 , and its derivative to ∆U inter
k+1 is calculated as

dJk+1

d∆U inter
k+1

=2MT
1
[
K1,2H K2,2HΣ

]T [K1,2H K2,2HΣ

]
M1∆U inter

k+1

+2∆U inter
k+1 −2MT

1
[
K1,2H K2,2HΣ

]T E inter
k .

By setting this derivative to zero, the required iterative learn-
ing controller can be derived, and the proof is completed. ■

Remark 6. Once the cost function takes the form of (20) and
the reference output Y c

d is trackable for the interconnected
system, the convergence properties of the optimization-based
ILC have been extensively proven (see Proposition 1 in [13]),
and we will not elaborate further on them. Therefore, by
compensating the trackability of the original ILC system (1)
and leveraging the controller in (21), ILC can achieve perfect
tracking performances for Y c

d ∈ YYY c
track.

To summarize the main contributions of this paper, we
organize the proposed trackability compensation strategy and
the modified data-based ILC into Algorithm 1.

Algorithm 1 Trackability compensation and data-based ILC
Offline I-O Tests:
1: Apply the test inputs UUUTest satisfying (5) and (6) to (1);
2: Collect the offline I-O data in (UUUTest,YYY Test);
3: Construct the data-based I-O representation (7);
Trackability Compensation and Modified ILC:
4: Check the trackability of Y c

d for the original ILC system
(1) through (12)

If Y c
d is untrackable, then go to step 5;

Else, quit and apply conventional ILC.
5: Choose interconnection parameters K1,K2,S1,S2 and

auxiliary system parameter HΣ such that (19) holds;
6: Solve the constrained optimization (20) and obtain (21).

IV. SIMULATION EXAMPLES

In this section, we provide simulation examples to illus-
trate the effectiveness of the proposed data-based trackability
compensation strategy. Consider an ILC system in the form
of (1) whose model matrices are presented as follows [14]:

As(t) =

1.607+0.05t −0.6086 −0.9282
1 0.05t 0
0 1 0.05t

 ,

Bs(t)≡

1.2390
0
1

 , Cs(t)≡

1
0
0

T

, Ds(t)≡ 0.
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The initial states are fixed as xk(0) =
[
0.500, 0, 1

]T for all
k ∈ Z+. Here we present the model information solely for
clearly elaborating the simulation settings, and it will not be
leveraged in the trackability compensation and ILC synthesis.
The control objectives are to track two reference outputs over
the time duration Z24, and the reference outputs are given as

yc,1
d (t) = sin

(
π

6
t
)

yc,2
d (t) = e−0.1t sin

(
π

4
t
), t ∈ Z24.

In order to collect sufficiently many I-O pairs, the offline I-O
tests need to be executed for at least 26 times, where the test
input UUUTest is designed as

U1 = 025,
[
U2, U3, · · · , U26

]
= I25.

Corresponding test outputs are collected in the matrix YYY Test =[
Y 1, Y 2, · · · , Y 26

]
. With the designed test inputs, the offline

test principles (5) and (6) are satisfied. By leveraging the
data-based trackability criterion in (12), it directly follows
that both yc,1

d and yc,2
d are untrackable, thus existing ILC can

only achieve consevative tracking performances. To further
enhance the tracking performances of ILC, the trackability
compensation strategy is leveraged. By choosing the inter-
connection parameters as

K1 =

[
I25 025×25

025×25 I25

]
, K2 =

[
025×25 −I25
025×25 I25

]
S1 =

[
025×25 I25

]
, S2 =

[
I25 025×25

]
the interconnection structure is depicted as in Fig. 4. Through
such an interconnection structure, by designing the appropri-
ate controller parameters HΣ, both yc,1

d and yc,2
d are trackable

for the interconnected system. In order to demonstrate the

Fig. 4. Interconnection structure corresponding to the chosen parameters.

effectiveness of the modified ILC in enhancing tracking per-
formances, we apply both conventional optimization-based
ILC and modified ILC presented in (21) to the original ILC
system and the interconnected system, respectively. After
1000 iterations, the tracking performances are depicted in
Fig. 5. From Fig. 5, it can be observed that although yc,1

d (t)
and yc,2

d are untrackable for the original ILC system (1), we
can find the required controller parameters HΣ by utilizing
the interconnection structure presented in Fig. 4. As a result,
by exploiting the modified data-based ILC in (21), the perfect
tracking performances for yc,1

d and yc,2
d can be achieved.

V. CONCLUSIONS

This paper has developed a data-based trackability com-
pensation strategy via interconnection to compensate for the

0 4 8 12 16 20 24
-1

-0.5

0

0.5

1
0 4 8 12 16 20 24

-1

0

1

Fig. 5. Tracking performances of conventional and modified ILC.

trackability set of ILC systems. In the absence of model
knowledge, the I-O representations of ILC systems have
been constructed leveraging the sampled data, based on
which a data-based trackability criterion has been developed.
Afterward, by interconnecting the original ILC system with
an auxiliary system, the trackability set of the interconnected
system has been modified. As a result, even when confronted
with untrackable references, the modified ILC has achieved
perfect tracking performances.
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