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Abstract— Active inference (AIF) as a comprehensive theory
has been proven to be promising in state estimation and
adaptive control of uncertain systems. However, the input delay
in the controller was ignored in the normal framework. When
taking input delay into consideration in the uncertain system,
the optimal estimation state in the normal AIF differs greatly
from the real state of the system due to the accumulation of
the delay effect. Therefore, delay feedback active inference (D-
AIF) is proposed in this paper. Different from normal AIF,
the predictive state based on the delay state becomes the
expectation of the state in the generative model. Meanwhile, an
epitaxial delayed feedback Proportional-Integral (PI) control is
introduced to be the expectation of the preference controller.
The variational free energy (VFE) is extended by adding a
quadratic of control consumption. The model uncertainty and
measurement uncertainty are approximated by the Gaussian
distributions. It can be proven that the state estimation does
not depend on the given target state in D-AIF. In the simulation
experiment of the trajectory tracking of an unmanned aerial
vehicle with input delay, the results show that delay feedback
active inference control (D-AIFC) has smaller tracking error
and perceptual accuracy and shows stronger robustness when
dealing with sudden disturbance than active inference control
(AIFC).

Index Terms— active inference, predicted state, input delay,
PI control

I. INTRODUCTION

Active inference (AIF), which is also known as the free
energy principle, has been confirmed to be a theory that can
effectively mimic the human brain’s perception of external
world states and make corresponding preferences actions
[1], [2]. It is a theoretical framework integrating perception,
learning, and control which is equivalent to the combination
of a filter and a controller. The optimization objective of the
filter is to minimize the variational free energy (VFE) [3], and
the optimization objective of the controller is to minimize the
expected free energy (EFE) [4]. The mathematical form of
AIF is similar to linear quadratic Gauss (LQG) [5]. The free
energy function is the quadratic form of state prediction error
[6] and perception prediction error [7], [8]. The mathematical
form of its controller is similar to a Proportional-Integral
control (PI) controller [9].
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At present, AIF has been widely applied for state esti-
mation and adaptive control of classical uncertain systems
with model noise and measurement noise. AIF does not
need to calculate the possibility of each hidden state in
uncertain systems. An approximated distribution is used to
approximate the observed real state of the system. AIF
has advantages in fast convergence and reducing computing
consumption [10]. Dynamic expectation maximum (DEM)
plays a role in filter AIF [11], which has been proven to be
superior to classical Kalman filter in color noise processing
[12] and be used for state estimation of quadrotor Unmanned
Aerial Vehicles (UAV) under unmodeled wind power [13].
The controller in AIF was shown to be superior to the model
reference adaptive controller in adapting to internal and
external parameter perturbation in the 7 degrees of freedom
manipulator experiment [14], [15]. AIF control (AIFC) can
effectively predict the future state of the system and select
appropriate actions [16]. Meanwhile, the perceived prediction
error of the unbiased AIF device in the free energy changes
with the tracking target [17]. The hierarchical model in
deep AIF can be used for optimal path selection of robots
[18] which also shows a good prospect for more complex
environments with partial observability and high-dimensional
input summations [19], [20].

However, input delay [21], [22] is often ignored in the
estimation and control of uncertain systems based on AIF.
Because of the time of signal transmission, the controller
is often unable to act on the system in time. A small
delay has been proved to cause a large oscillation of the
system [23]. It is vital that the input delay of the controller
cannot be ignored, which will bring lots of challenges. In
the normal AIF, the state in the generative model takes
the current target state of the system as prior belief, and
the controller without clear mathematical form is given by
solving the optimization gradient of free energy with respect
to perceptual measurement, which may be not applicable to
time-delay systems

Our main contributions are given as follows
(1) We introduce a prediction state about the delay state

in AIFC to approximate the current state and propose a
new delay feedback active inference control (D-AIFC) for
uncertain systems with input delay.

(2) We introduce the delay feedback PI control as the
mean of the preference control which is modeled as a random
variable about the target state and the estimated state. The
normal free energy function is extended by adding a function
of energy consumption which is represented by the quadratic
form of control. The innovation and expansion of the theory
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provide guidance for the development and application of AIF.
The main structure of this paper is given as follows
The theoretical framework for AIF is provided in Section

II; The normal AIFC and convergence analysis for an
uncertain system in Section III; The D-AIFC based on a
prediction state is presented in Section IV ; Section V com-
pare the performance of two controllers by the simulation
of an unmanned aerial vehicle; Finally, the conclusion is
summarized in Section V I .

II. PRELIMINARES

In this section, we mainly introduce the basic principle
of AIF. AIF is similar to Bayesian inference in describing
the generative model. The uncertainty in the general system
often cannot be directly obtained. Bayesian inference is a set
of posterior theories that estimate hidden state from a prior
µ through sensor measurement o. The generative model of
an uncertain system can be described as

p(µ | o,a) = p(o|µ,a)p(µ,a)
p(o,a)

, (1)

where the probability distribution p(µ|o) represents the pos-
terior probability of state µ under the condition of given
quantitative measurement data o. The probability distribution
p(o|µ) which has a mean g (µ) is a mapping from state
µ to o measurement . The target state is encoded in the
function f (µ) which is the mean of the prior probability
p(µ). Finding the belief about state µ and preference control
a based on the observations is the goal of AIF.

It is difficult to directly estimate probability distribution
p(o,a) in the generative model which describes all the
probability of the hidden states. An approximate distribution
q(z) is introduced in the AIF framework. The differences
between q(z) and p(x | y) are measured by Kullback-Leible
divergence (KL divergence) as follows

KL[q(z)p(µ | o)] =
∫
q(z) ln q(z)

p(µ|o)dx

= −
∫
q(z) ln q(z)

p(µ,o)dx+ ln p(o)

= F + ln p(o).

The state and behavior of the generative model can be
implemented by minimizing F which is called VFE. The KL
divergence is essentially the difference between approximate
distribution q(z) and joint distribution p(µ,o). Because KL
divergence is always non-negative, VFE is also called the
upper bound of ‘surprise’, which means F ≥ − ln p(o) [24].
VFE is equivalent to the negative logarithm of the marginal
likelihood of measure when KL[q(z)p(µ|o)] = 0.

III. AIFC FOR UNCERTAIN SYSTEMS

A general uncertain system can be linearized as a nominal
system plus noises as follows{

µ̇ = Aµ+Ba(t) +w
o = Cµ+ v

. (2)

The first equation is the state equation about µ including
the process noise w and the second one is the measurement
equation about o including the measurement noise v. The

( )p μ 𝛍
( )p o μ

𝐨

Fig. 1. Schematic diagram of AIF generative model.

generative model is the first step in AIF [25]. Fig. 1 shows
the factor graph of the AIF generative model.

Similar to the normal system equation, the belief model
by AIF is also a form of the nominal system plus noise.
The belief model corresponding to the system (1) is given
as follow {

ẋ = Âx+ B̂u(t) +w

y = Ĉx+ v
, (3)

where x and y are the belief of state and measurement.
Because the state of the uncertain system is mainly affected
by the external uncertainty disturbance. Â, B̂ and Ĉ which
are the coefficient matrix of the generative model in the
nominal system can be simplified by Â = A, B̂ = B
and Ĉ = C. According to the mean field theorem and
Laplace approximation [26], the model uncertainty w and
measurement uncertainty v are approximated by standard
Gaussian distribution whose covariance matrix respectively
are Σµ and Σo. The VFE of the belief model (3) which can
be written by the sum of the quadratic form is given by

F =
1

2

(∑
i

ε⊤i Σ
−1
i εi − ln

∣∣Σ−1
i

∣∣+ (m+ n) ln 2π

)
,

where i ∈ {µ,o}, and εµ = ẋ−Âx−B̂u is state prediction
error and εo = y − Ĉx is sense prediction error. Both the
state and the measured probability density can be assumed
as the following multivariate Gaussian distribution:

p(µ) =
1√

(2π)
m |Σµ|

exp

(
−1

2
εµ

TΣ−1
µ εµ

)
,

p(o | µ) = 1√
(2π)

n |Σo|
exp

(
−1

2
εo

TΣ−1
o εo

)
,

where m, n is the dimension of x and y. State estimation
in minimization VFE is divided into perceptual state x with
respect to F gradient descent scheme

ẋ =
d

dt
x− κx

∂F

∂x
=

d

dt
x+ κx

(
ÂTΣ−1

µ εµ + ĈTΣ−1
o εo

)
,

(4)
where κx is the learning parameter. AIFC does not depend
on estimated states but on measurement. The form of the
controller is a linear optimization iteration format as follows

u̇ = −κu
∂F

∂u
= −κu

∂F

∂y

∂y

∂u
= −κuĈTΣ−1

o εo
∂y

∂u
, (5)

where κu is the learning parameter. For a motion system
with displacement yp and velocity yṗ included in general
measurements, AIFC is given by an approximate PI control
form as follows

u̇ = −κp
[
Σ−1

yp
εp +Σ−1

yṗ

d

dt
εp

]
, (6)
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where κp is the learning parameter. Assuming that the system
is a simple first-order linear uncertain system, the mean of
the probability distribution p(o | µ) is g (x) = x, the mean
of the prior probability p(µ) is f (x) = x̄ − x, where x̄ is
the target state. The VFE can be transformed to the function
as follows

F = 1
2

[
Σ−1

µ (ẋ− x̄+ x)
2
+Σ−1

o (y − x)
2

− ln
∣∣Σ−1

µ

∣∣− ln
∣∣Σ−1

o

∣∣+ 2 ln 2π
]
.

The optimal state can be obtained by solving the derivative of
the free energy with respect to the estimated state as follows

∂F

∂x
= −Σ−1

µ (ẋ− x̄+ x) + Σ−1
o (y − x) = 0,

x =
Σ−1

o y +Σ−1
µ x̄− Σ−1

µ ẋ

Σ−1
µ +Σ−1

o

. (7)

It can be seen from the formula (7) that the optimal state
depends on the priors of the measurement and target states
when minimizing VFE. Meanwhile, state estimation by AIFC
depends on measurement error due to it is often affected
when sensor failure occurs. Taking the input delay of control
into consideration, only the delayed state can be obtained
at the current moment, but the real-time state. In this case,
the optimal solution obtained by AIFC will be biased.
Therefore, extending AIF to time-delay uncertain systems
will be studied in the next section.

IV. D-AIFC FOR UNCERTAIN SYSTEMS WITH
INPUT DELAY

The input delay in an uncertain system is caused by signal
transmission and only the delayed signal can be obtained by
the sensor. As a result, the measure-based controllers found
in conventional AIF are no longer suitable for such a system
with input delay τ as follows{

µ̇ = Aµ+Ba(t− τ) +w
o = Cµ+ v

. (8)

Therefore, the delayed state information is used to obtain
the approximate predicted state at the current time which
becomes the expectation of the state in the D-AIF generative
model. At the same time, the delayed feedback PI control
based on the predicted state is introduced as the expectation
of the preference control, and the probability model is
approximated to the multivariate Gaussian distribution by the
mean field approximation and Laplace transform. Finally, the
control consumption which is described by the quadratic term
of control is added to the free energy function to implement
state estimation and optimal control by minimizing the free
energy. The structure of delay feedback active inference is
shown in Fig. 2.

As shown in Fig. 3, the prior of the instant state is encoded
in the control distribution. The posterior of the state and the
preference control can be obtained by minimizing the free
energy. The joint variational distribution of state and control
p (at−τ , µt) can also be approximated by multivariate gaus-
sian distribution according to the mean-field approximation
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Target state
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Fig. 2. Diagram of the structure of delay feedback active inference.
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Fig. 3. Schematic diagram of D-AIF generative model.

and Laplace approximation. The D-AIF generative model of
the system (8) is given by

p (µt,ot,at−τ ) = p (at−τ | µt) p (ot |µt ) p (µt) . (9)

The belief of state µt ,measurement ot and control at−τ

are respectively x , y and u. The prediction belief about
the current state is obtained based on the delayed state as
follows

µ̂(t) = eAτµ(t− τ) +

∫ t

t−τ

eA(t−s)Ba(s− τ)ds. (10)

The complex integrals Γ(t) =
∫ t

t−τ
eA(t−s)Ba(s− τ)ds can

be calculated according to [28]

Γ(t) =
∫ t

t−τ
eA(t−s)Ba(s− τ)ds

=
∫ 0

−τ
e−AsBa(s+ t− τ)ds

=
∫ −(N−1)T

−(NT−η)
e−AsBa(s+ t− τ)ds

+ . . .+
∫ 0

−T
e−AsBa(s+ t− τ)ds

= eA(NT−η)
∫ T−η

0
e−AsdsBa(t− 2NT + η)

+ . . .+ eAT
∫ T

0
e−AsdsBa(t− (N + 1)T + η).

Let φ1(ζ) = eAζ φ2(ζ) =
∫ ζ

0
e−AsdsB , then:

Γ(t) = φ1(NT − η)φ2(T − η)a(t− 2NT + η)
+φ1(NT − 1)φ2(T )a(t− 2NT + T + η)
+ . . .+ φ1(T )φ2(T )a(t−NT − T ).

If η = 0 , Γ(t) can be simplified as:

Γ(t) = φ1(NT )φ2(T )a(t− 2NT )
+φ1(NT − 1)φ2(T )a(t− 2NT + T )
+ . . .+ φ1(T )φ2(T )a(t−NT − T ).

The mean of the control distribution is u (t) which can be
selected as the PI control. With the target state µ̃(t) as the
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input, the tracking error is ψ(t) = µ(t) − µ̃(t). The state
equation in the generative model can be transformed into a
new error equation as follows

ψ̇(t) = Aψ(t) +Ba(t− τ) + ω(t) + σ(t), (11)

where σ(t) = Aµ̃− ˙̃µ. For the system with time delay, it is
necessary to transform the time-delay system into a delay-
free one through the following integral transformation

Φ(t)=ψ(t) +

∫ t

t−τ

e−A(s−t+τ)[Ba(s) + σ(s+ τ)]ds,

where Φ(t) and ψ(t) satisfy ψ(t + τ) = eAτΦ(t). A new
delay-free system is given as follows

.

Φ(t) = AΦ(t) +B0a(t) + e−Aτσ(t+ τ), (12)

where B0 = e−AτB. The PI control law for tracking error
is given by

˙̄a (t) = −k1Φ(t)− k2Φ̇(t). (13)

The corresponding delay feedback PI control is

˙̄a (t− τ) = −k1Φ(t− τ)− k2Φ̇(t− τ). (14)

The VFE of D-AIF is

F =
1

2

(∑
i

ε⊤i Σ
−1
i εi − ln

∣∣Σ−1
i

∣∣+ (m+ n+ l) ln 2π

)
,

where i ∈ {µ,o,a}, εµ = x − µ̂, εo = y − Cx and
εa = u − ā. The probability density of state, measurement,
and control are also assumed as the following multivariate
Gaussian distribution

p(µ) =
1√

(2π)
m |Σµ|

exp

(
−1

2
εµ

TΣ−1
µ εµ

)
,

p(o | µ) = 1√
(2π)

n |Σo|
exp

(
−1

2
εo

TΣ−1
o εo

)
,

p (a | µ) = 1√
(2π)

l |Σa|
exp

(
−1

2
εa

TΣ−1
a εa

)
,

where m, n and l are the dimension of vector x, y and u.
For a first-order linear uncertain system, the VFE can be
transformed to the function as follows

F = 1
2

[
Σ−1

µ (x− µ̂)
2
+Σ−1

o (y − x)
2
+Σ−1

u (u− ā)
2

− ln
∣∣Σ−1

µ Σ−1
o Σ−1

a

∣∣+ 3 ln 2π
]
.

The optimal prediction belief and the optimal control belief
of the state can be obtained by minimizing the free energy
as follows

ẋ = −κx
∂F

∂x
= −κx

(
Σ−1

µ (x− µ̂)− Σ−1
o (y − x)

)
,

u̇ = −κa
∂F

∂u
= −κaΣ−1

a (u− ā). (15)

The optimal state can be obtained by solving the derivative of
the free energy with respect to the estimated state as follows

∂F

∂x
= Σ−1

µ (x− µ̂)− Σ−1
o (y − x) = 0,

x =
Σ−1

0 y +Σ−1
µ µ̂

Σ−1
µ +Σ−1

o

. (16)

In addition, the formula (16) shows that the expectation of the
system state depends on the predicted state but has nothing
to do with the target state.

V. SIMULATION
The diagram of an unmanned aerial vehicle following a

path under external disturbance is shown in Fig. 4. The
vehicle starts from the initial position (−3,−3). The position
of it at time t is (X,Y ). The model uncertainty WX and
measurement uncertainty WY of the system equation cannot
be ignored because the vehicle may be disturbed by wind
and electromagnetic during flight. By differentiating it, the
following velocity equation can be obtained{

Ẋ = V cos (φ) +WX

Ẏ = V sin (φ) +WY
. (17)

The lateral velocity V and longitudinal velocity φ of the

X

Y
𝑿, 𝒀

D(t)

V

horizontal baseline

target trajectory

𝝋 𝒕

natural disturbances

uncertainty

Fig. 4. Trajectory tracking diagram of unmanned aerial vehicle.

unmanned aerial vehicle can be calculated from the forward
velocity and yaw angle. It is supposed that the path of the
tracked target is a straight line: alX + blY + cl = 0. The
immediate tracking error is

D (t) =
alX (t) + blY (t) + cl√

al2 + bl
2

.

When the natural disturbances are ignored, a nominal equa-
tion about acceleration can be obtained by differentiating the
equation (17){

Ẍ = V̇ cosφ− V sinφφ̇ = V̇ cosφ− Ẏ φ̇

Ÿ = V̇ sinφ+ V cosφφ̇ = V̇ sinφ+ Ẋφ̇
. (18)

Because the motion of unmanned aerial vehicles such as
fixed-wing drones mainly depends on the forward driving
force, the yaw angle changes very slowly in general. There-
fore, in order to simplify the model, it is assumed that
yaw angular velocity changes with constant acceleration
0.005rad/s2, and the term containing forward acceleration
V̇ is the control with input delay τ .

The target trajectory is selected which satisfies −X+Y +
1 = 0. It is assumed that the target states of horizontal
and longitudinal displacement a

(
X̄, Ȳ

)
=
(√

2
2 t,

√
2
2 t− 1

)
.
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The input delay of the D-AIFC is 0.1s and the total time is
30s. The iterative parameters of state estimation and control
update are κµ = 100 and κu = 200 respectively, and
the coefficients of PI controller in D-AIFC are k1 = 200
and k2 = 500. The model uncertainty and measurement
uncertainty are assumed to be a standard Gaussian distri-
bution with 0.001 variances. It is assumed that the vehicle
is subjected to a large disturbance with the size of [40, 50]
in the direction of against from 5s to 7s which may come
from strong airflow in the wind or sudden electromagnetic
signal interference. In this case, we respectively compare the
control performance of AIFC and D-AIFC.
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;---1 一二

。 5 10 
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--- 多多
多-

-- 多

15 20 25 

Fig. 5. The diagram of motion trajectory.

Fig. 5 shows that the motion of the system based on the
AIFC has an obvious devious phenomenon caused by the
untimely power input, which is nonnegligible consumption.
Because of the delay of the control input, only the delay
state can be obtained to be the expectation of the state in the
AIF generative model. With the accumulation of delay effect,
once the system is subjected to sudden external disturbance,
the system is prone to instability. However, the prediction
state about the current moment is taken as the expectation
of the state, and the delayed feedback PI control as the
expectation of the control input in the D-AIF generative
model, so the system has shown stronger robustness.
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Time
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o
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D-AIFC

Fig. 6. Time history diagram of control.

As can be seen in Fig. 6 due to input delay, the sensor fails
to obtain the state of the current moment in time which may
result in the delay of the sensor data by AIFC. Therefore,
when the system is subjected to a sudden disturbance,
the controller gradually becomes larger so that it needs to

compensate not only for the external disturbance but also for
the delayed loss of the previous time in order to maintain its
own stability. However, the system requires less energy input
because delay losses are compensated by D-AIFC.
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Fig. 7. Time history diagram of SPE.
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Fig. 8. Time history diagram of tracking error
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Fig. 9. Time history diagram of free energy.

Because no timely state prediction is made up for the input
delay, it can be seen from Fig. 7 and 8 that the perceived
prediction error and tracking error of AIFC are not very
smooth compared with D-AIFC. In the fifth second, due to
the effect of large error accumulation in the square, Fig. 9
shows that the free energy function of AIF also has a large
fluctuation since it’s the sum of the perception prediction
error and the state prediction error.

At the same time, the changes in sense prediction error of
unmanned aerial vehicles under the D-AIF framework with
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different input delays are shown in Fig. 10. When the input
delay increases from 0.1s to 0.5s, the sense prediction error
barely changes. It may lie in that no matter how large the
delay is, the predicted state can well approximate the current
state, so as to make up for the influence of input delay in
the controller.
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Fig. 10. Time history diagram of SPE for different delay.

VI. CONCLUSION

In this paper, due to the rarely considered input delay
in the normal AIFC, the predicted state based on the delay
state is introduced to be the expectation of the state prior.
At the same time, the delay feedback PI control about the
predicted state is designed to be the expectation of the
preference control. Finally, the D-AIFC for delay uncertain
system is proposed. The AIFC and D-AIFC are respectively
used for the trajectory tracking problem of an unmanned
aerial vehicle. The simulation results show that compared
with the normal AIFC, the D-AIFC has smaller tracking error
and perceptual accuracy and shows stronger robustness when
dealing with sudden disturbance
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