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Abstract— The authors investigate the problem of generating
safe motorcycle trajectories intended to advise novice riders on
how to safely navigate commonly-encountered road geometries.
The method solves a nonlinear program using Legendre-Gauss-
Radau pseudospectral collocation with a cost function designed
to penalize trajectories that novices find challenging to follow.
Trajectories are generated for three different motorcycles nav-
igating the following scenarios: a lane change on a straight
at 130 km/h, entry and exit of a constant bend at 50 km/h,
and traversing a chicane at 80 km/h. The results are compared
with those generated by approaches in previous literature and
insights are drawn on safe maneuvering for novice riders.

Index Terms— Automotive systems, Optimal control, Opti-
mization algorithms

I. INTRODUCTION

Motorcycle riders continue to face a disproportionate risk
of injury or death compared to other motorists. This disparity
has been exacerbated by improvements in automobile safety
thanks in part to the widespread introduction of Advanced
Driver Assistance Systemes (ADAS). Motivated by closing
this gap in road safety, researchers at the IBISC laboratory
of the University of Paris-Saclay, among others, have been
investigating technologies that might one day give rise to
similar aids for riders. This concept has been coined by
industry as Advanced Rider Assistance Systems (ARAS).

A. Motivation

Looking past the accident risk factors motorcyclists share
with other motorists, such as intoxication, reckless speeding
and inattention to other road users, it becomes clear that
inexperience is a significant factor [1], particularly in bends:
A motorcycle permits a far larger lateral motion envelope
than a car hence it is less obvious to a rider where to position
themself to safely negotiate a turn. This risk is compounded
by improper cornering, with road exit accidents frequently
due to understeering and slideouts caused by overbraking [2].
One recent study [3] investigating the steering behavior of
riders of varying levels of experience performed on instru-
mented motorcycles offers some insight into a possible cause
for this improper cornering: it found that novices are hesitant
towards maneuvers involving strong lateral accelerations.

B. Problem statement

This paper investigates methods of generating motorcycle
trajectories that at once permit the vehicle to safely negotiate
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a bend while at the same time minimize the aforementioned
factors that may unsettle an inexperienced rider. The aspi-
ration is that such methods could comprise a part of an
instructive ARAS which would advise the rider on the best
trajectory to take through a bend in real-time.

C. Related works

Following his seminal 1971 paper on motorcycle stability,
Robin Sharp proposed in 2006 one of the first optimal control
schemes for motorcycles based on LQR preview control [4].
In 2010, Biral proposed a system that would alert a rider to
unsafe deviations from a previewed trajectory generated by
solving an Optimal Control Problem (OCP) [5]. This system
approximated the motorcycle dynamics to a simple rolling
wheel and minimized a cost function designed around rider
comfort, from which the costate equations were formed ana-
lytically and a Two-Point Boundary Value Problem (TPBVP)
was solved to generate the optimal trajectory.

In the mid 2010s, there was growing interest in solving
minimum lap time OCPs for cars [6]. Increasingly sophisti-
cated dynamical models formulated in curvillinear coordi-
nates on 2-D and 3-D roads were used to plan trajectories
over entire racetracks rather than on a preview horizon.

The works of Limebeer [7] applied Pseudospectral collo-
cation methods to minimum lap time OCPs, which reformu-
late TPBVP OCPs into NonLinear Programs (NLPs). These
have the advantage of faster convergence times compared
to the previous approaches which solved costate equations
numerically while still preserving their discrete first-order
optimality conditions.

In [8], a Pseudospectral collocation method is used to
solve a minimum lap time OCP for a motorcycle model
on a 3-D track. The model used here is considerably more
sophisticated than a rolling wheel and accounts for steering
kinematics and tire forces.

In summary, the current state of the art in motorcycle tra-
jectory generation is still primarily concerned with minimum
lap time racing scenarios and there is a lack of research into
applying the methods developed for these to the problem of
generating safe trajectories for riders on public roads.

D. Contributions

The main contribution of this paper is a method for
generating safe motorcycle trajectories intended to advise
and instruct novices on how to safely navigate commonly
encountered road geometries. The method solves an NLP
using the Legendre-Gauss-Radau (LGR) pseudospectral col-
location method to minimize a cost function designed to
penalize trajectories that novices find challenging to follow.
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II. MOTORCYCLE MODELING

An OCP relies on a dynamic system model, balancing
fidelity with computational tractability. For safe motorcy-
cle trajectories, capturing traction, cornering, and steering
kinematics is vital. The model should accurately represent
these while tempering complexity for numerical stability and
solution time. Hence, this work focuses solely on lateral
dynamics on 2-D roads at fixed longitudinal speeds.

A. The Sharp model

Considering the above, the authors chose the Sharp model
[9]. Compared to the model in [8], it uses a linear tire model
and neglects aerodynamic loads. Despite this, [10] shows that
the Sharp model adequately captures the lateral dynamics in
constant longitudinal speed scenarios. A full derivation of
the Linear Parameter-Varying (LPV) model (1) is given in
[11]. The varying parameter is body longitudinal velocity vx.
The constant parameters of A and B are listed in Table I.

ẋ (t) = A (vx)x (t) +Bτδ (t) (1)

The states x (t) are lean φ (t), steering angle δ (t), body
lateral velocity vy (t), yaw, lean and steering rates ωψ (t),
ωφ (t) and ωδ (t), and rear and front lateral tire forces Yr (t)
and Yf (t) The control input is the steering torque τδ (t).
Henceforth, the time dependence is neglected for brevity.

x =
[
φ δ vy ωψ ωφ ωδ Yr Yf

]T
(2)

B. Curvilinear coordinates

The boundary conditions on vehicle position are not easily
expressed in Cartesian coordinates on curving roads. If one
models the road centerline as a parametric curve C = C (s)
with arclength s and instantaneous curvature κ then it is
more natural to express the vehicle’s pose with respect to
this curve. This is achieved through the introduction of the
curvilinear coordinates s, the lateral offset d and relative
heading ξ (see Fig. 1). The dynamics of these new states
are obtained by expressing the motorcycle’s body velocity
in ℜrd, noting that ξ̇ = ωψ − κṡ and solving for their rates.

An OCP is considerably easier to solve when the boundary
values of the independent variable are given. While this is
not convenient with time t, when planning trajectories across
fixed road geometries it is straightforward with s. For any
state q, [12] shows that q (s) = q (t) and by the chain rule
q̇ = ṡq′ where q′ is the rate of q with respect to s.

ṡ = −vx cos (ξ)− vy sin (ξ)

dκ− 1
(3)

ḋ = vy cos (ξ) + vx sin (ξ) (4)

ξ̇ = ωψ +
κ (vx cos (ξ)− vy sin (ξ))

dκ− 1
(5)

Fig. 1: Curvilinear coordinates: ℜrd is a Frenet-Serret frame
following ℜb whilst constrained to C. The East axis of ℜrd
is normal to C and always points to the origin of ℜb. The
shortest distance between the origins of ℜb and ℜd is d and
ξ = ψ−ψrd. Hence, the angular velocity of ℜrd is ωrd = κṡ.

C. Curvilinear Sharp model

Combining (1) with (4-5) and exchanging t for s yields
the Curvilinear Sharp model x′ = f (x,u,p) with the
augmented state vector x =

[
d ξ xT τδ

]T
. Note τδ is

now a state. This is because the control for the model is
the steering torque rate u = jδ = τ̇δ for reasons explained
later. The varying parameters p now include κ as well as
vx. Finally, the rates with respect to s are found by dividing
through the system dynamics by (3):

f (x,u,p) =



− (dκ− 1) (vy cos (ξ) + vx sin (ξ))

vx cos (ξ)− vy sin (ξ)
ωψ − dκωψ

vx cos (ξ)− vy sin (ξ)
− κ

1

ṡ
(A (vx)x+Bτδ)

− jδ (dκ− 1)

vx cos (ξ)− vy sin (ξ)


(6)

III. SAFE MOTORCYCLE TRAJECTORIES

Consider the OCP cost function (7) where M is the
terminal cost or Mayer term penalizing the initial and final
states and times while L is the running cost or Lagrange
term penalizing the states and controls over the trajectory:

J = M (t0,x0, tf ,xf ) +

∫ tf

t0

L (x,u, t) dt (7)

The initial and final states are known in the scenarios
considered in Section V. Additionally, recall from Section II-
A that vx is constant hence there is no need to numerically
motivate the motorcycle to reach the final state. Thus, the
Mayer term is neglected and after a change of independent
variable to s the Lagrange term becomes L = L (x,u, s).
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A. Lateral tire forces

The safest trajectory minimizes the risk of loss of control
of the vehicle. Recall from Section I-A that new riders
avoid strong lateral accelerations to the detriment of proper
cornering. In motorcycles, lateral acceleration is generated by
the lateral tire forces Yr and Yf . The authors first attempted
to implement a simple quadratic cost on Yr and Yf . However,
it was observed that this resulted in peak magnitudes higher
than if this cost was not included. This is undesirable for
traction even if the average magnitude is lower. Hence, the
authors propose instead to penalize the force rates Ẏr and
Ẏf whose values are obtained from (1). These rates must
be reformulated to match the independent variable using (3).
Note that using rates with respect to s necessitates that κ is
now a variable in the cost function (15) as it is for (6).

LY = QY

(
(Y ′
r )

2
+
(
Y ′
f

)2)
(8)

B. Understeering and oversteering

Another accident risk mentioned in Section I-A is under-
steering and oversteering. In both the relaxation length and
the more ubiquitous Pacejka tire models, lateral tire force is
a function of the rear and front tire slip angles, αr and αf , as
well as the rear and front camber γr and γf . Sharp provides
approximations for the former where b is the aft wheelbase
given in Table I and l is the forward wheelbase derived from
the Sharp parameters as l = (a− an) / cos (ε).

αr =
bωψ − vy

vx
(9)

αf = δ cos (ε)− vy + lωψ − anωδ
vx

(10)

Cossalter hypothesizes the following conditions (11-13) to
determine the steering behavior of a motorcycle [13]. The last
condition is the slip angles are equal and the motorcycle is
said to be steering kinematically, meaning cornering behavior
is determined only by the rider’s steering torque inputs.

αr ≤ αf ∴ understeering (11)
αr > αf ∴ oversteering (12)
αr = αf ∴ neutral steering (13)

While experienced riders can exploit oversteer for faster
cornering, a novice will prefer the predictability of kinematic
steering. Hence, the authors propose a second running cost
on the lateral slip where ∆α = αr − αf :

Lα = Qα∆α
2 (14)

C. Cost function

Gathering (8-14) and summing yields the total running
cost L (x,u) where the constants QY , Qα and Qu are the
weights assigned to each term.

L (x,u,p) = QY

(
(Y ′
r )

2
+
(
Y ′
f

)2)
+Qα∆α

2 (15)

D. Rejected cost functions

Other cost functions were considered and rejected beyond
the aforementioned cost on Yr,f . A cost on lean rate ωφ was
considered in order to penalize sudden leaning maneuvers,
however in tests this resulted in violent oscillations across
trajectories. A direct cost on lateral velocity to minimize the
magnitude of body slip had a similar effect on tire force
peak values as rejected lateral force cost. Other costs were
found to be redundant: it is common to include a cost on the
control input, however the use of lateral tire force rates in
(8) already incorporates this term.

IV. DIRECT COLLOCATION

A Direct collocation (DC) method reformulates an OCP
as an NLP where the state and control are transcribed into
a set of decision variables evaluated at discrete intervals of
the independent variable called collocation points:

t→ t0, t1, . . . , tN (16)
x (t) → x0,x1, . . . ,xN (17)
u (t) → u0,u1, . . . ,uN (18)

For review, consider the general Hamitonian of an OCP
(19) where λ are the Lagrange multipliers called costates
involved in minimizing (7) subject to the plant dynamics:

H (x,u,λ, t) = L (x,u, t) + λTf (x,u, t) (19)

Excluding transversality conditions for brevity, the neces-
sary conditions for optimality as mentioned in Section I-C
are the Hamilton canonical equations:

ẋ =
∂H (x,u,λ, t)

∂λ
(20)

λ̇ = −∂H (x,u,λ, t)

∂x
(21)

0 =
∂H (x,u,λ, t)

∂u
(22)

Where the optimal control u⋆ obtained from (22) is some
function of the states and costates. The main advantage of
DC methods over indirect methods, such as shooting methods
and dynamic programming, is that they do not need to
solve for nor require an initial guess of costate trajectories
assuming no analytical solution to (20-22) exists.

A. Pseudospectral collocation

The state of the art in DC are the PseudoSpectral (PS)
methods. Especially popular are the Legendre family of
methods [14], whose collocation points τ ∈ [−1, 1] are the
roots of a function of Legendre polynomials PN (τ).

PN (τ) =
1

2N

⌊N/2⌋∑
k=0

(−1)k
(
N
k

)(
2 (N + k)

k

)
τN−2k (23)
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This family comprises the original Legendre-Gauss (LG),
the Legendre-Gauss-Radau (LGR) and the Legendre-Gauss-
Lobatto (LGL) methods. These methods differ primarily on
which points on τ are collocated [15]. Conversion from this
interval to s ∈ [s0, sf ] is possible using the following:

s =

(
sf − s0

2

)
τ +

s0 + sf
2

(24)

The authors implemented all three for the scenarios de-
scribed in Section V: LG converged to smooth trajectories
in all cases but did so slowly in some instances. LGL failed to
converge in many cases. Possible explanations are provided
in [16] where LG requires additional quadrature constraints
to satisfy in order to incorporate the final state while the
LGL Gauss Pseudospectral Differentation (GPD) matrix is
singular. For these reasons, the authors selected LGR for the
remainder of this work.

B. Legendre-Gauss-Radau collocation

Each state in x is approximated by a Lagrange polynomial
with basis lk = l (τk) where k ∈ [1, N ]. An efficient way
to compute all the bases L =

[
l1 · · · lN

]
is using the

Vandermonde matrix V up to τN+1 = 1. Hence, it becomes
trivial to obtain the GPD matrix D by differentiation of L
with respect to τk:

V =


1 τ1 τ21 · · · τN1
1 τ2 τ22 · · · τN2
...

...
...

. . .
...

1 τN+1 τ2N+1 · · · τNN+1

 (25)

L = V−T


1 1 · · · 1
τ0 τ1 · · · τN
τ20 τ21 · · · τ2N
...

...
. . .

...
τN0 τN1 · · · τNN

 (26)

D = V−T


0 0 · · · 0
1 1 · · · 1
2τ0 2τ1 · · · 2τN

...
...

. . .
...

NτN−1
0 NτN−1

1 · · · NτN−1
N

 (27)

Now the decision variables X =
[
x1 · · · xN

]
and

U =
[
u1 · · · uN

]
, as well as the transcribed varying

parameters P =
[
p1 · · · pN

]
, are gathered. Define

the augmented state matrix X =
[
x1 · · · xN+1

]
. Now

assemble the collocation constraints using (27) and the plant
dynamics where ∆s = (sf − s0) /2:

XD = ∆sF (X,U,P) (28)

Gauss-Radau quadrature is used to compute the running
cost where w are the weights for all k as listed [15]:

J (X,U) = ∆swTL (X,U,P) (29)

Upon solving the NLP, the trajectories are interpolated
across the whole (continuous) interval τ ∈ [−1, 1] with the
same method used in (26) i.e. x (τ) = Xl (τ).

C. Nonlinear program

Some risks are mitigated by imposing boundary conditions
on certain states e.g. requiring that the vehicle stays on the
road is accomplished by imposing a maximum lateral offset
dmax. The tire profiles permit a maximum lean φmax. A
rider can only apply so much steering torque τδmax

. Thus,
the complete NLP is as follows:

min J (X,U) = ∆swTL (X,U,P) (30)

s.t. XD = ∆sF (X,U,P) (31)
x0 = x (s0) (32)
xN+1 = x (sf ) (33)

−dmax ≤ d ≤ dmax (34)
−φmax ≤ φ ≤ φmax (35)
−τδmax ≤ τδ ≤ τδmax (36)

V. DRIVING SCENARIOS

Three scenarios were chosen (see Fig. 4). All roads have
boundaries of ∓3.5m. The first is a lane change ∓1.75m
over a 125m straight at 130 km/h. The second is a 90◦ bend
of radius 50m with a 50m straight at each end entered and
exited with zero offset at 50 km/h. The third is a chicane
composed of two connected 100m clothoids with infinite
end radii and 150

π m radii at their connection (see Fig. 4c).
The motorcycle enters and exits with zero offset along 25m
straights at 80 km/h. For the latter two scenarios, the initial
and final lateral offset were left free to be optimized.

A. Motorcycles

Three motorcycles were used in each scenario. Their
physical parameters were adapted from models provided in
BikeSim®. These models are of interest as their parameters
have been selected to resemble typical examples of real
motorcycles. The values for each are given in Table I.

The first motorcycle shown in Fig. 3a is the Big sports
type. It has the smallest caster angle ε of the three which
should render it the most maneuverable. The second shown
in Fig. 3b is the Cruiser type. It has the largest caster and
trail an inferring that it is the least maneuverable but the
most stable. The last shown in Fig. 3c is the Touring type. It
is the heaviest with caster and trail comparable to Big sports.

VI. RESULTS

The NLP was implemented in MATLAB and solved using
CasADI with IPOPT. The degree of polynomial selected
for each scenario was N = 38, the highest the implemen-
tation could achieve without numerical rootfinding issues.
The authors decided against a multistage approach to LGR
collocation due to the simple road geometries and to avoid
discontinuities in the generated trajectories. With constant vx,
the only varying parameter provided to the solver τk is the
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(a) Straight trajectories
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(b) Arc trajectories
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(c) Chicane trajectories

Fig. 2: Trajectories for each motorcycle type in each scenario: Dots represent collocation points.

(a) Big sports (b) Cruiser (c) Touring

Fig. 3: Motorcycles used in the scenarios

TABLE I: Sharp parameters for the three motorcycles

Parameter Big sports Cruiser Touring
Cδ 12.6738 12.1582 12.1582
Cf1 20566 18022 24931
Cf2 908.1083 745.0421 1745
Cr1 20174 21959 24689
Cr2 648.8377 762.6843 1131.3
Crxz -2.1731 -3.152 4.8623
Ifx 1.8204 2.6789 3.454
Ifz 0.6908 1.4436 1.8398
Irx 19.6528 17.4187 38.4762
Irz 30.9076 26.3416 65.834
Zf -1357.8 -1625.9 -2371.3
a 0.7525 0.9287 0.7658
an 0.0882 0.1279 0.0657
b 0.6429 0.573 0.8636
e 0.0253 0.0499 0.0563
f 0.2344 0.2125 0.2653
g 9.81 9.81 9.81
h 0.575 0.5592 0.4505
ify 0.484 0.484 0.6
iry 0.638 0.638 0.9
mf 24.24 24.24 27.24
mr 257.06 257.19 495.3600
rf 0.282 0.318 0.313
rr 0.297 0.321 0.313
σ 0.1979 0.098 0.1949
ε 0.4189 0.5934 0.5061

road curvature i.e. P =
[
κ1 · · · κN

]
(see Section IV-B).

The cost function weights from Section III-C were chosen
first to scale the state units with subsequent modifications
to improve the trajectory smoothness. They were set to
QY = 1e − 9 and Qα = 1e5 respectively.

A. Straight scenario

Examining Fig. 2a, Touring has the highest lateral ve-
locity indicating it is slipping the most, perhaps due to
its significantly larger mass. Note in the steering torque
for all three motorcycles that the optimal control is the
countersteering maneuver where the rider steers away from
the intended direction of travel at the start and the end of the
maneuver. Cruiser’s torque lags Big sports and Touring and
is compressed towards the end which is an expected result
of the large caster and trail mentioned in Section V-A.

B. Arc scenario

A racing line profile is evident when examining Fig. 4b
and Fig. 2b. However, unlike a pure racing line, the lean
trajectories here adopt a slightly triangular form. The lean
rates hint toward a more bang-bang profile, especially notable
for Touring. Big sports slips the least and requires the least
steering torque, an expected result due to its smaller caster.
Cruiser copes the worst in this scenario with the highest slip
and twice the required steering torque compared to Touring
despite weighing half as much.

C. Chicane scenario

A racing line path is once again observed in the Chicane
scenario as shown in Fig. 4c. Countersteering is less apparent
here due to the smooth transition curve properties of the
clothoid segments. Touring slips the most as in the straight
scenario shown in Figure 2a.
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(a) Straight scenario (b) Arc scenario (c) Chicane scenario

Fig. 4: Road geometries for each scenario with superimposed lean and offset profiles for each motorcycle

VII. DISCUSSION

A noteworthy result across scenarios is similar offset and
lean, inferring that the safest of these profiles do not vary
greatly from one motorcycle to the next. One explanation is
that each vehicle has a similar rear chassis mass center height
h: If the motorcycle is approximated as a traveling inverted
pendulum then the lean dynamics are far more sensitive to
differences in h than in inertial parameters.

A. Comparison with related works

The results concur with [8] demonstrating the racing line.
This is not unexpected: The racing line maximizes turning
radius therefore minimizing the centripetal forces acting on
the tires. Furthermore, converting from time to arclength
in (8) has implicitly introduced the term 1/ṡ into the cost
function which is what one would seek to minimize when
optimizing for minimum time. However, there are important
differences: Minimizing lateral force rates rather than input
torques as in [8] has resulted in reductions of peak values
of up to 20 N. When the slip cost (14) is added this saving
can reach 100 N. The results also differ greatly from those in
[5] whose simple model follows the spine of the road despite
also having a cost function designed around rider safety.

VIII. CONCLUSION

This work has addressed a gap in motorcycle trajectory
generation research. The authors considered recent studies
into the steering behavior of novice riders and consulted
theory to develop a cost function prioritizing rider safety. The
OCP was solved using pseudospectral collocation for a range
of motorcycles and scenarios. The implementation generated
smooth trajectories that converged in under 1 s and were
consistent with theoretical understanding. The results provide
insights into where novices should position themselves on the
road and how they should lean to stabilize a turn.

A. Future work

The trajectories generated here should be evaluated on a
nonlinear plant with a Pacejcka tire model in BikeSim®.
Longitudinal dynamics should be introduced into the model
to investigate the safety of overtaking manoeuvers. Since no
rider is capable of perfect tracking, reachability of the tra-
jectories should be investigated to determine how far a rider
can stray from the recommended path before endangering

themselves. This future study will aim to compute a tube-
like safety envelope for the rider to remain within to provide
a more robust recommendation.
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