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Abstract— Spatial signal processing algorithms often use pre-
given coordinate systems to label pixel positions. These process-
ing algorithms are thus burdened by an external reference grid,
making the acquisition of relative, intrinsic features difficult.
This is in contrast to animal vision and cognition: animals
recognize features without an external coordinate system. We
show that a visual signal processing algorithm with content-
based addressing is not only important for animal vision, but
also fundamental for concept formation. In this paper we
start with a visual object deformation transfer experiment.
We then formulate an algorithm that achieves deformation-
invariance with relative coordinates. The paper concludes with
the implications for general concept formation.

I. INTRODUCTION

Recent developments of Large Language Models heated
up the historical debate in AI about how a machine should
generate new concepts from data corpus. Furthermore, could
the concept formation mechanism enable a thought process
via recursion? As early as 1976 the recursive formation of
abstract concepts in thought processes had been noted by the
great scientist Stanislaw Ulam:“There must be a trick to the
train of thought, a recursive formula. A group of neurons
starts working automatically, sometimes without external
impulse. It is a kind of iterative process with a growing
pattern. It wanders about in the brain, and the way it happens
must depend on the memory of similar patterns” [9].

To address this fundamental issue it might be useful to go
back to the more specific mechanism of generating concepts
from visual objects in the animal brains. When a visual
object deforms, the animal brain acquires the concepts of
the deformations such as rotation or stretching.

The animal vision system recognizes deforming objects
effortlessly, whereas machine learning algorithms have yet
to match up. The fundamental difference is that the animal
visual system does not use a fixed coordinate system to
register the positions of the receptive fields. In contrast the
computer vision algorithms use the global row and column
numbers to label the image pixel positions. The information
of these global coordinate numbers becomes baggage for
the signal processing algorithm. The invariant features of
the visual object are mixed with such baggage which then
takes layers of operations to separate if at all possible.
The animal vision system must extract the invariant features
early on for the quick recognition of deforming objects. The
necessity of local coordinate numbers for the neighborhood
relations can be met by the feature vectors that encapsulate
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the neighborhood content without involving a global coordi-
nate system. The eigenvalue vector of the Laplacian matrix
formed by the content of the image patch could serve this
purpose. However, the eigenvalues are usually mixed with
the associated eigenvectors in the spectral decomposition of
the Laplacian matrix. These eigenvectors are not invariant
even for simple rotations. To separate the eigenvalues and
eigenvectors we treat the visual signal on a small receptive
field as a linear operator acting on the state of the receptive
field. This is in contrast to most spatial signal processing
algorithms where the incoming visual signal is treated like
an initial condition for the algorithms to act on. We note that
in the real biological scenario the visual signal does indeed
act like an operator and not like an initial condition.

In this paper we propose a dynamic system model in
the above spirit to guide a computer algorithm for such
a separation. The invariance acquisition is demonstrated in
experiments of deformation transfer. The algorithm works
with more general spatial signals such as those representing
neuron activities, paving the way for general concept abstrac-
tion algorithms that are needed to form nodes in a symbolic
AI graph.

The key points are listed below.
• The signal ordering in 2D image and 1D language are

fundamentally different. The usual image-wise spatial
coordinates for the pixels for 2D image processing un-
wittingly mix the intrinsic features with the coordinate
set up;

• This prevents the processing algorithms from acquiring
global-coordinate-independent features for deforming
visual objects. Such independence is crucial in forming
the matrix representations of the deformations;

• Deformation matrix formation based on actual object
deformation images is a primitive case of abstract con-
cept formation. Since the formed matrix is in the same
format as the original visual images, further applications
of the same procedure could generate the chain of
thoughts;

• These matrix representations are nutritious and trans-
parent material for the LLM-like machines to grind on.

II. A “MENTAL ROTATION” EXAMPLE

In visual image processing one divides the image into
patches of pixels. Within each patch the pixel positions are
labeled by the row and column numbers within the patch
(henceforth refereed as the local coordinates). The order
of the patches of the image is labeled by another group
of row and column number refereed as the (global) patch
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coordinates. Both the local and the patch coordinates cause
difficulties in acquiring the invariant features. For example
in the convolutional neural network algorithm if the object
rotated 90 degrees then all the local and patch coordinates
change. The row-major convolution operation cannot co-vary
with these changes and result in bad performance. This order
issue does not exist in language models since the 1D input
data has the temporal order.

We use an MNIST digit orientation transfer example to il-
lustrate our idea for dealing with this order issue. Consider an
MNIST digit 8. We would like to make it learn rotation from
some training pairs of the MNIST digit 2. Figure 1 shows
the results of learning to turn 45 degrees anti-clockwise
(center) and 90 degrees clockwise (right) from the upright
image in the left. Such “mental rotation” is often used in the

Fig. 1. “Mental Rotation” of a MNIST digit

Raven’s progressive matrix IQ test (Figure 2.) Importantly,
our algorithm does this learning without the pixel’s global
row and column numbers. A similar example of a “mental

Fig. 2. Non-verbal reasoning test example

Fig. 3. “Mental Affine Transformation” of a MNIST digit

affine transformation” is shown in Figure 3, where the left
image is the original, the center is the expected transformed
digit 8 and the right is the “mentally transformed” digit 8
as the result of learning the affine transformation from many
pairs of digit 2. Figure 4 shows a 2D deformation transfer
pipeline. The gist of the algorithm is as follows. We first
divide the digit images into small square patches of pixels.
For each patch we form a Laplacian matrix. The entry is
the absolute difference between any two pixels divided by
their distance. We then calculate the eigenvalue vectors of the
Laplacian matrices and refer them as sampler vectors. The
similarities between the sampler vectors from the original
and the deformed images are used to form a mapping matrix.
The mapping matrices for the individual training image pairs

are averaged over. The resultant mapping matrix is used to
construct the predicted image from the input image. One
can see in Figure 1 that the 90 degree rotation prediction
is almost perfect, demonstrating the effectiveness of the
mapping. The noise in the 45 degree image prediction is
due to the mismatch between the rotated image patch and the
upright scanning window, and can be reduced by increasing
the training pairs or conventional denoising if needed. In

Fig. 4. The 2D Deformation Transfer Pipeline. Given multiple input pairs
of images and their corresponding transformed images, the algorithm applies
the transformation on a new test image

the Raven’s progressive matrix test (Figure 2) there is only
one training pair, but it is enough for such simple images.
Here each sampler vector of Figure (A) is scanned by all
the sampler vectors of Figure (B) to find a sampler vector
mapping matrix. This mapping matrix compares the mapping
matrices between (C) and all the answer figures to find the
best fit. We note that this last step of finding the best fit
among the mapping matrices is treating an “abstract concept”
representation the same way as treating the “concrete” image
signals. In this way the example serves to illustrate how the
abstract thinking process is executed in the same algorithms
for image processing.

The polar decomposition theorem tells us that a linear
transformation can be represented as the product of a rotation
or reflection, and a scaling along a set of orthogonal axes.
In the animal visual system the individual receptive field is
small enough to approximate an object deformation in the
field as a linear transformation. The scaling and reflection
can be dealt with similarly as the rotations.

We note that in the above orientation transfer example the
mapping matrix is the signal representation of an abstract
concept that emerged from the training image pairs. In
general, a basic challenge for AI is to develop concept
abstraction algorithms that can acquire the invariants of
objects, whether concrete or abstract, from the instances,
to form a signal representation of the concept such as the
above mapping matrix. Once we know the representation
of the abstract concepts we can test the similarity among
them using the same algorithm for visual shape similarity
testing. In the above example the mapping matrix for a 45
degree rotation can be compared with other rotation mapping
matrices like in the Raven’s test. The topic of analogical
reasoning for relational similarity testing among ostensibly
different scenarios can be cast in this set up.

Figure 4 illustrates the pipeline of the experiment. We first
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try to learn the transformation given multiple training pairs
of the original images and their rotated counterparts. The
concept or transformation is then stored in a mapping matrix.
Once the mapping matrix is formed, it can be applied to any
number of test images. We note that our experiments are
for simple images and transforms due to the constraints of
computing resources. The principle algorithm could produce
much better illustrations. Here we present one more such
experiment in the following Figure 5, where the mapping
matrix is learned from a pair of cat images and is applied to
a dog image to produce the similarly rotated dog image.

Fig. 5. A Cat rotates 45 degrees and a Dog follows suit

We now discuss how to form the spectral feature vec-
tors, referred as the sampler vectors, from an image. The
discussion here is tailored for the current application and
is shown in Figure 6. In short, the input image is divided
into patches, simulating the multiple receptive fields on the
retina. Then, the Laplacian matrix (referred in the Figure
as (LBM) for Laplace-Beltrami Matrix for more general
discussions) is calculated for each patch. Finally, we calcu-
late the eigenvalues of the Laplacian matrix. In our current
example the set of eigenvalues for each Laplace matrix is
called the sampler vector, and we use these sampler vectors
as features. From the results of our experiments it is clear
that the sampler vectors do indeed encapsulate the content
of each patch and this encapsulation is independent of the
global coordinate numbers and orientation of the patch. Once

Fig. 6. The Sampler Vector computation. First, we extract multiple patches
from the input image. We then compute the Laplacian of each patch and then
calculate the eigenvalues of each Laplacian matrix, generating an eigenvalue
vector: the Sampler Vector for each patch.

the sampler vectors are generated we compute the cosine
similarity between the sampler vectors of the original image

and the transformed image to find the matching patch pairs.
The cosine similarities of the matching pairs are used to form
a binary mapping matrix to predict the patch positions for
constructing the transformed test image. This works thanks
to the invariance of the eigenvalue vector against the image
rotation. A noteworthy point here is that such invariance is
achieved by the artificial order arrangement of the eigenvalue
vector components, which has been made into an implicit
universal convention in textbooks and numerical packages.
Nature would have to use other ways.

Generating a binary mapping matrix from the similarity
matrix is not as trivial as taking the argmax along each row.
This is because simply taking the argmax along the rows
could map multiple patches of the transformed image to the
same patch in the original image. To handle this we calculate
the argmax row-wise in the order of increasing entropy.
This way, the mappings for the most confident rows will
be finalized first. For later rows, if the argmax is a particular
column which has already been chosen for a previous row
then the next best mapping is chosen.

After generating the binary mapping matrix, the mapping
is applied to the patches of the new test image in the order of
decreasing entropy. This way, badly mapped patches will be
overlapped by better patches. Figures 1 and 3 are examples.
This will be further discussed in Section IV.

III. A DYNAMIC SYSTEM FOR INVARIANTS SEPARATION

In the orientation transfer example above, the distance
between two pixels in the image remains the same. In the
affine transform example such distances do not change much.
But the method of matching the sampler vectors can be
applied more generally. For example, if the deformation is a
scaling then the matching sampler vectors will live in pixel
patches with correspondingly scaled sizes. This demands the
sampler vectors be generated for multiple scales, a task that
Nature could accomplish with the receptive field additivity.
For image patches there is no such additivity and we need
to calculate the sampler vectors at multiple scales.

For general cases it is useful to consider continuous time
dynamic models to enlighten discrete computer algorithms.
Before diving into the details of the models we highlight
some useful thoughts:
• In the brain’s neural networks the visual signal elements

(pixels) cannot maintain the travel timing synchro-
nization. The spatial signal needs to be converted to
temporal signals for transmission.

• In biological brains the similarity testing for spatial
signals is hard. On the other hand the temporal signal
similarity is easy to test via resonance of signal com-
ponents.

• Visual spatial signals need to be treated as operators to
acquire deformation invariants.

• To model the saccadic motions of the eyes the training
images should be augmented with small changes. Invari-
ants of an object are a voting result from the varying
images of the object.

We now discuss these in more detail.
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A. Treating visual signal as an operator

Conventional object recognition and tracking treat the
image matrix as a passive signal source waiting to be
processed. But in animal visual systems the light signal is
actually an operator acting on the sensor panel. Since in the
brain the neural circuit of surrounding-center receptive field
automatically executes a Laplace action, the image matrix
should be converted to a Laplace matrix. This Laplace matrix
of the image is more analogous to the system matrix A of
a linear system ẋ(t) = Ax(t) than to the initial state x(0),
where the vector x(t) is the sensor panel state. If the image
matrix has a spectral decomposition A =

∑n
k=1 λkφkφ

ᵀ
k then

the state x(t) =
∑n
k=1 e

λktφkφ
ᵀ
kx(0). One can see that the

eigenvalues λk and the eigenvectors φk play separate roles.
This has desirable implications. For example, the eigenvalue
vector λ = [λ1, · · · , λN ] of the signal matrix A can be
arranged as a permutation invariant vector. When A is the
Laplace matrix of a small image patch, the vector λ could
be used as a local feature encapsulating the patch content
and is a simple version of the “sampler vector” of the patch.
In this way an object could be represented as a set of such
eigenvalue vectors. When two such sets match well we can
infer they are probably the same object. Note again that this
process is independent of the global coordinate system used
to label the image pixel positions.

Note also that in real visual systems the additivity of
the receptive field provides sampler vectors for multiple
resolutions to enable “cross resolution” mapping for general
deformations.

B. Sampler vectors for matrix images

We first restrict to matrix image deformations that can be
modeled by the pixel position changes. Consider an image
matrix I with pixel (i, j) at the ith row and jth column.
When a deformation happens we have (i, j)→ (i′, j′), which
implies that the corresponding Laplacian matrix L becomes
L′:

L′ = PLP−1

where the permutation matrix P permutes the ij row and
column to i′j′ row and column. The eigenvalues of L,
λk, k = 1, · · · , N , arranged in the conventional ascending
order, are invariant to this permutation. The eigenvector
permutes its components as φk = Pφk, k = 1, · · · , N . We
note the component sum of the eigenvectors sl =

∑
l φk(l)

is also invariant. The sampler vector of I is a column vector

vk(I) = [λ1, · · · , λN , s1, · · · , sN ]ᵀ.

For small image patches the eigenvector sum component
of the sampler vectors can be omitted for computational
convenience. These sums are similar to the phase shifts
of the Fourier basis in Fourier analysis. For small image
patches these are not as important as the eigenvalues which
correspond to the component magnitudes in the spectral
decomposition of L.

The sampler vectors v1, · · · , vN reconstruct the Laplacian
matrix L up to a similarity transformation. An object consists

of many small regions. Reconstructions of each small region
would be enough for recognizing the object. Now consider
a linear differential equation driven by the image matrix I
with a uniform initial condition ψ(x, 0)

ψ̇(x, t) = Lψ(x, t).

Suppose that L has the spectral decomposition

L =
∑
k

λkφkφ
ᵀ
k.

We have

ψ(x, t) =
∑
k

eλktφk(x)φᵀk(y)ψ(y, 0).

If we sum up the state function ψ(x, t) over a region D of
x and call it h(t) we have (assuming that ψ(x, 0) = 1 ∀x)

h(t) =
∑
x

ψ(x, t)

=
∑
k

eλkt
∑
x

φk(x)φᵀk(y)ψ(y, 0)

=
∑
k

eλkt

(∑
x

φk(x)

)
(φᵀk(y)ψ(y, 0))

=
∑
k

eλkts2k

We see that the sampler vector completely determines h(t)
and that the time function h(t) reconstructs the system matrix
L up to a similarity transform from the expansion

h(t) =
∑
n

∑
x

eLtψ(x, 0) =
∑
n

1

n!

∑
x

(Lt)n.

By comparing the values of h(t) in the first formula where
h(t) is determined by the sampler vector components to the
second formula where h(t) is determined by the matrix L
and its powers, one can see that under mild conditions the
sampler vector determines the entries of the matrix L. We
note that this conversion between the temporal and the spatial
representations of the same information can be useful for
parallel processing of sequential data.

The component magnitude λk in the spectral decompo-
sition of L is reflected as the frequency of the “carrier”
time function eλkt. As mentioned, the phase information is
not important for small regions and the coefficient s2k can
be taken as 1, similar to the spectrogram representation of
speech signals.

C. The sampler equation

Note that in h(t) the component sum of the kth eigen-
vector is “carried” by the corresponding time function eλkt

to provide the information of the sampler vector for the
downstream receivers. The carrier signals eλit are decayed
exponential functions of time and are hard to differentiate by
the receivers. Second order temporal dynamics would lead
to oscillatory carrier signals and the resultant sampler vector
would be much more distinguishable by resonators. This
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motivates the following sampler equation in the continuous
spatial domain:

ψtt(x, t) + γψt(x, t) = (α∆ + V (x))ψ(x, t), (1)

h(t) =

∫
Ds

ψ(x, t)dx. (2)

Here ψ(x, t) is a function of the location vector x and
time t. V (x) is the image and γ, α are real constants. Ds

is a small region for the sampler to gather information
of the spatial signal with the Laplacian ∆. This sampler
converts the spatial signal V (x) into an oscillatory temporal
signal h(t) for communication and similarity testing. We
note that V (x) can be a time varying V (x, t) to model
the eye and image movements. The equations are based on
physical mechanisms. We treat the light signal of the image
as an operator acting on the retina and the center-surround
receptive field as a Laplacian. One can also imagine that
the memory network is an array of resonators connected
to the samplers. These resonators sift the time signals from
the visual signal receptive fields according to the resonator
frequencies.

We also note that according to the Lie product formula

eA+B = lim
n→∞

(eA/neB/n)n

the two operators in (α∆ + V (x)) can be understood as
alternatively acting on the resultant state of the previous
steps over very small time intervals, leading to the effect
that they are acting simultaneously. In computer algorithms
we approximate (α∆ + V (x)) with the Laplacian matrix of
the image patch.

Signal conversion via the above equations can be seen with
separation of variables for the dynamic state ψ(x, t):

ψ(x, t) = X(x)T (t). (3)

Substituting into (1) one has :

X(T ′′ + γT ′) = (α∆ + V (x))XT. (4)

If T ′′ + γT ′ = λT and (α∆ + V (x))X = λX then the
equation is satisfied. The equation for the spatial variable
X(x) looks for the spectral decomposition of the operator
(α∆ + V (x)):

(α∆ + V (x))X = λX. (5)

The time variable T (t) obeys

T ′′ + γT ′ = λT (6)

whose solution is an exponentially decayed sinusoidal func-
tion (EDS). The spatial eigenvalue λ and the parameter γ
jointly determine the frequency of the temporal sinusoid.
The output time function hDs(t) is then the sum of many
terms where each term has an EDS signal with the above
frequency. The coefficients and the frequencies of these terms
are the components of the sampler vector. They encapsulate
the content of the visual signal in the sampling domain Ds.
Indeed, the realization theory of linear dynamic systems
confirms this. If we approximate α∆ + V (x) by a large

matrix and double the state space to make the equation
first order in time we have a first order linear system like
ẋ(t) = Ax(t), y(t) = Cx(t). The output time function
“realizes” the system matrix up to a similarity transform.

D. Invariance of sampler vectors against image deformation

Use of spectral invariants has a long history in computer
vision. However most of the work uses a global coordinate
system to set up the analysis.

Consider a square image f(x) with the coordinate grid x
and an invertible linear transform A. We have

Ff(Ax) =
1

|detA|
F(f)(A−ᵀξ)

where F denotes the Fourier transform operator, F(f)
denotes the frequency domain function resulted from the
Fourier transform acting on the spatial function f , and ξ
is the Fourier frequency. The scaling factor |detA| can be
removed with pixel size changes and/or frequency channel
scanning. Apart from this scaling factor, the set of functions
Ff(Ax) is invariant against the change of A in the sense
that if A→ Ã, then one can find the values of F(f)(A−ᵀξ)
at another place (Ã−ᵀξ). In other words, if we sample the
function F(f) to form a discrete approximation vector, then
in the transformed image we can find a component-wise
equivalent vector at the frequencies ξ′1, ξ

′
2, · · · , ξ′n that are

related to the original frequencies ξ1, ξ2, · · · , ξn according
to the transform. Consequently, if one can scan the whole
frequency range for similarities between the two sets of
vectors, and if each set is consisted of mostly distinguishable
vectors, then the change of A → Ã would not affect the
recognition of the original spatial function f .

It might be more direct to see this from

F(ξ) =

∫
f(x)e−iξ

ᵀxdx,

F(A−ᵀξ) =

∫
f(Ax)e−i(A

−ᵀξ)ᵀAxd(Ax).

The above “global” Fourier analysis does not solve the
invariance problem in real vision systems. In a global Fourier
transform any local change would affect the transformed
values everywhere. In Nature or in computer algorithms one
uses small receptive fields or image patches to localize the
signal processing. In our setting we use the sampler vectors,
which are formed from the spectral analysis of the sampler
patches. These patches could be combined at different sizes
to reflect the various resolutions of analysis.

In Figure 7 we schematically illustrate a grid of samplers
where a curved edge is sampled with the Laplacian samplers
shown in yellow. This group of samplers would generate the
invariants since they are “covarying” with the edge image.
Note that the position labels are based on a pre-fixed global
coordinate system which does not matter to us. Only the
relative positions of the excited samplers should be in the
analysis and the algorithm.

This model reflects the physical process of the visual
signal processing. The Laplacian sampler has been acknowl-
edged to model the center-surround receptive fields. In the
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continuous model it is additive when covering larger visual
fields. In the simplified case of the edge image in Figure
7, the number of Laplacian samplers would covary with the
deformed edge length. In the 2D case the samplers would
sample all light signals, not just the edges, but the covarying
mechanism is the same.

Fig. 7. Laplacian sampler sets co-vary with the visual scene deformation

We now describe the invariants acquired in the output time
function of the sampler. The sampler equation for the initial
visual scene V (x) is:

ψtt(x, t) + γψt(x, t) = (α∆xx + V (x))ψ(x, t), (7)

hDs(t) =

∫
Ds

ψ(x, t)dx, (8)

where V (x) is the spatial signal, h(t) the temporal signal,
and Ds the sampling area.

The sampler equation for the deformed visual scene
U(x̃) = V (x) (pixel value at x moves to at x̃) is (with
∆̃ representing the Laplace-Beltrami operator on a manifold
[7] at x̃ region):

ψtt(x̃, t) + γψt(x̃, t) =
(
α∆̃x̃x̃ + U(x̃)

)
ψ(x̃, t), (9)

h̃(t) =

∫
Ds̃

ψ(x̃, t)dx̃. (10)

The “Helmholtz equations” and the sampler output functions
for the spetral analysis of the original and the deformed
images are respectively:

(α∆xx + V (x))φk(x) = λkφk(x), (11)

h(t) =
∑
k

Tk(t)

∫
Ds

φk(x)d(x), (12)

and (
α∆̃x̃x̃ + U(x̃)

)
χl(x̃) = µlχl(x̃), (13)

h̃(t) =
∑
l

Tl(t)

∫
Ds̃

χl(x̃)dx̃. (14)

In the visual systems, the samplers are very dense with
small sampler regions and therefore allow linear models. As
illustrated in Figure 7, the set of active samplers adapts to
changes in the scene. That is, the sampling is covariant with
spatial deformations U(x̃) = V (x). The two output functions
have the same “carrier” frequencies thanks to the covariance
of the “coordinate grid” (including the sampler domina D∗)
and the visual signal. In other words the “carrier” time
functions T∗(t) only differ on the “carried” coefficients. The

sampler vector consisting of the “carrier” frequencies and the
eigenvector sums are invariant. For small sampler domains
we can ignore the eigenvector sums.

IV. MULTIPLE PAIRS OF TRAINING SAMPLES IMPROVE
DEFORMATION TRANSFER

Consider a vision task to transfer the deformation from
one object (source) to another (target). One can view this
deformation acquisition as a primitive case of concept for-
mation. In a real vision situation the images of the source
object are always subject to small variations due to small
motions of the object, the environment, and the eyes. The
deformation we consider is a relatively large motion such as
a 45 degree rotation. We try to understand how to form the
concept of, say, a 45 degree rotation and apply it to another
object. We presented a demo case in Section II.

Assuming that we have n noisy image pairs of an object
and its deformation. If we simply take the average of the
noisy images of the source object before the deformation and
after the deformation, and then proceed with calculations to
determine the deformation, we would not get good result.
This is primarily because the averaging of the source object
image could easily destroy the image features of the object.

Instead we can average the similarities of sampler vectors
for denoising. We use data augmentation to generate multiple
pairs of the source and target object and then average
the sampler vector similarities for patches with the same
the origins. The source-target object pairs should be “co-
varying” during the data augmentation. Note that this is
to mimic Nature who uses eye movements for accurate
recognition.

V. RELEVANCE TO HUMAN COGNITION PUZZLES

A. Small number sense

In [1] Francois Chollet discusses a benchmark of tasks
for machine intelligence challenge, the Abstraction and Rea-
soning Corpus (ARC), “built upon an explicit set of priors
designed to be as close as possible to innate human priors”.
One of the examples is shown below in Figure 8. The task
is to figure out the rule in the three examples shown in the
left, and use the rule to solve the challenge on the right. The
solution rule is to pick the shape with the most repetitions.
This requires a machine algorithm to recognize the numbers
of the same shapes in the images. Many animals are capable
to sense the difference among the small numbers from one
to five. It is far from clear how they do that. In fact, Albert
Einstein had used small number sense as an example of
concept emergence. “’Three trees’ is something different
from ’two trees’. Again ’two trees’ is different from ’two
stones’. The concepts of the pure numbers 2,3,4,..., freed
from the objects from which they arose, are creations of the
thinking mind which describe the reality of our world.”

Research literature has confirmed this. The Wikipedia
article on parallel individuation system said the following.
“The evidence for parallel individuation system comes from
a number of experiments on adults, infants and non-human
animals. ” “Parallel individuation system in animals was
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Fig. 8. An ARC task that needs small number sense

demonstrated in an experiment in which guppies were tested
on their preference of social groups of different size, under
the assumption that they have a preference for bigger size
groups. In this experiment, fish successfully discriminated
between numbers from 1 to 4 but after this number their
performance decreased.”

The sampler equation (1) could provide an algorithmic
explanation of this. Here the receptive field Ds is the entire
visual field. This large Ds is available since the integration
is the sum of the parts. The Laplacian matrix formed from
an image with three distinct objects is a block diagonal
matrix with three blocks. Matrix theory tells us that for such
a Laplacian matrix, the multiplicity of the zero eigenvalue
equals to the number of blocks regardless of the block sizes.
Due to the image background, the Laplacian matrix has non-
zero small numbers as the off-block entries. Consequently
the output time function for the image that has three objects
will contain three close-to-zero frequency components that
are separated from the other eigenvalues. Therefore the visual
scenes contain 2, 3 and 4 objects would form distinct neuron
clusters. The similarity testing algorithm using the sampler
vectors for such clusters would form the concepts of 2,3,4.
As noted by Burr and Ross (2008): “We propose that just
as we have a direct visual sense of the reddishness of half
a dozen ripe cherries, so we do of their sixishness. In other
words there are distinct qualia for numerosity, as there are
for color, brightness, and contrast.”

Further more, repeated appearances of the changes from
two objects to three objects would allow a brain to form
the relational matrix between 2 and 3. The process is to fire
the neural clusters representing 2 and 3 together. Then the
Spike Timing Dependent Plasticity (STDP) would form a
cluster representing the concept “2 to 3”. This cluster is also
formed for 3 to 4. Similarity of the clusters “2 to 3” and “3
to 4” would form a new cluster representing the concept of
“plus one.” Now the brain has enough material to form the
thought of applying this cluster to “4” and call the result “5”.
This is a “pure mechanical” explanation of the invention of
integers. This iterative process of forming abstract concepts
using similarity testing of sampler vector sets generated from
neuron clusters could continue further to develop arithmetics
and advanced logic systems. As Leopold Kronecker put it:

”God made the integers; all else is the work of man.”
The importance of understanding the mechanical and

algorithmic ways of generating concepts is to confirm that
higher intelligence is essentially the same as lower intelli-
gence. As Steven Pinker [4][5] puts it: “We are made to
be gatherers and hunters not scientists”.“The genius creates
good ideas because we all create good ideas; that is what
our combinatorial, adapted minds are for.”

B. Commonsense psychology example

Fig. 9. Commonsense psychology experiment

In a recent paper [2], the authors argued that infants’
common sense psychology are foundational to human social
intelligence and could thus inform better common sense
AI. They experimented with infants and state-of-art AI
algorithms and showed that infants are able to pick up the
agent intentions while the AI algorithms failed. In Figure 9
the upper row are snapshots of two out of the eight training
videos. During training the agent (gray object with red arrow
added by us to indicate the motion direction in the videos)
moved from the house to the target (green object). Then the
infants were shown the bottom row videos. The infants were
surprised at the unexpected move of the agent going to the
non-target (blue object) while not surprised when the agent
is shown to move to the target (green object) despite the
location swapping.

This scenario is quite similar to our mapping matrix
acquisition experiments. Firstly, in our algorithm there is
no global coordinate system to register the object location.
Disregarding the global location of objects is a trivial conse-
quence. Secondly, we can form the mapping matrices based
on snapshots of the motion videos. The similarities and
differences among these mapping matrices would then lead
to reactions consistent with the experiment that the intentions
are picked up during the training phase.

VI. TOWARDS RELATIONAL CONCEPT GENERATION

The algorithm of mapping matrix generation is intended
as a prototype for general concept formation. The recent
discussions about the LLMs are very related. Steven Pinker,
a leading scholar in human language and psychology, com-
mented that ”There are patterns of patterns of patterns of
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patterns in the data that we humans can’t fathom. It’s impres-
sive how LLMs can generate plausible prose, relevant and
well-structured, without any understanding of the world —
without overt goals, explicitly represented facts, or the other
things we might have thought were necessary to generate
intelligent-sounding prose. And this appearance of compe-
tence makes its blunders all the more striking”[6]. Stephen
Wolfram, a famous scientist and an expert in the compu-
tational intelligence, commented that the success of LLMs
is suggesting there to be major new “laws of language”—
and effectively “laws of thought”— out there to discover and
that ”if we could somehow make the laws explicit, there’s
the potential to do the kinds of things LLMs does in vastly
more direct, efficient—and transparent—ways”[10].

Both experts have emphasized the importance of realizing
the “hidden patterns/rules” in human language and human
thought processes. The formation of these hidden patterns
have “purely mechanical explanation” [8]. The mapping
matrix in our experiments shows a prototype. The mapping
matrices learned from the deformation pairs of images are
themselves matrices and can be treated as images. The
algorithm for learning the “first level” mapping matrix be-
tween images could be applied to pairs of these first level
mapping matrices and generate some “second level” mapping
matrices. Figure 10 illustrates this idea. In the Figure we

Fig. 10. A Tower of Relational Concepts

use capital “R” to indicate that the mapping matrices are
relational matrices. The bottom blocks marked by A, B, X,
Y, C, D, U, V are images. RAX is the mapping matrix
between the image pair A and X, and so on. The top equation
is an example to check if the mapping RRCURDV

is an
inverse of the mapping RRAXRBY

. For example, if RAX
and RBY are 20 and 50 degree clockwise rotations, RCU
and RDV are 20 and 50 degree anti-clockwise rotations.
Then RRAXRBY

and RRCURDV
are clockwise and anti-

clockwise rotation of 30 degree respectively. The equation
would hold since these two rotations would move the pixels
back to their original positions. This could tell if the right
side transformation compositions would give an inverse to
the left side transformations.

We believe this explains an aspect of the emergence of
logic reasoning capability in animal brains. When many
such mapping matrices accumulate in the brain circuits they

could form various compositions as thoughts. To this end we
note that Alan Turing discussed about the “purely mechan-
ical explanation” of analogical thinking in an interview on
October 27, 1949 [8], since it could be achieved with the
similarity testing of the mapping matrices. The current large
language models achieve some of these capabilities by form-
ing weight groups reflecting the more frequent patterns (See
the figurative illustration in Figure 11). This is accomplished
with minimizing the next token error. However, as noted,
similarity with no objective is the source of universality
and creativity.

Fig. 11. Weight groups reflecting more frequent patterns

VII. CONCLUSIONS

Lastly we recall the famous quote of Plato that “Forms
(abstract objects) possess a higher degree of reality than
do things in the world, which are changeable and always
coming into or going out of existence.” We could apply
this principle to neural networks where the more abstract
objects are easier to reflect in some weight groups since
they are more frequently repeated in the neural network
weight-adjusting processes. Our mapping matrix extraction
algorithm provides some such objects since the mapping
matrices are representations of relations. See also [3].
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