
MAPPG: Multi-agent Phasic Policy Gradient

Qi Zhang1, Xuetao Zhang1⋆, IEEE Member, Yisha Liu2, IEEE Member,
Xuebo Zhang3, IEEE Senior Member, Yan Zhuang1 IEEE Senior Member

Abstract— We propose a Multi-Agent Phasic Policy Gradient
(MAPPG) algorithm, which can assist agents to further alleviate
the non-stationarity of the environment. Different from the
existing methods, the auxiliary phase is introduced to train
the local policy directly by using the environment state, which
can be naturally integrated into other algorithms. Specifically,
the hidden layer feature sharing is proposed, which ensures
feature sharing between the global value network and the local
policy network for the first time. Meanwhile, mirror descent
is utilized to iteratively update the policy in the auxiliary
stage, which makes the policy update more robust. Through
a series of evaluations on multi-agent Particle and multi-agent
Mujoco benchmark environments, the experimental results
show that our method achieves higher rewards than state-of-
the-art benchmarks.

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) has attracted
much attention in recent years, which can be applied in
collaborative tasks, such as wave energy converters [1] and
robot swarm control [2]. As for scalability and commu-
nication limitation problems, the existing methods mainly
leverage the decentralized execution of multi-agent policies
that act only on their local observations. The most intuitive
decentralized approach is to treat other agents as part of the
environment, such as Independent synchronous Advantage
Actor-Critic (IA2C) [3] and Independent Proximal Policy
Optimization (IPPO) [4] algorithms, which perform well for
many tasks. However, due to the problem of environmental
non-stationarity in some partially observable tasks, the per-
formance still needs to be improved. Therefore, Centralized
Training and Decentralized Execution (CTDE) [5] is pro-
posed to mitigate the non-stationarity of the environment by
using additional information during training.

Strong benchmarks such as Multi-agent PPO (MAPPO)
[6] and QMIX [7] are based on the framework of CTDE,

This work was supported in part by the National Natural Science
Foundation of China under 62103077, 61973049, and U1913201, in part
by Natural Science Foundation of Liaoning Province under Grant 2022-
KF-12-05. (Corresponding author: Xuetao Zhang.)

1Qi Zhang, Xuetao Zhang, Yan Zhuang are with the Intelli-
gent Robotic Laboratory, School of Artificial Intelligence, also School
of Control Science and Engineering, Dalian University of Technol-
ogy, Dalian 116024, China. kxcqizhang@mail.dlut.edu.cn,
zhangxuetao@dlut.edu.cn, zhuang@dlut.edu.cn

2Yisha Liu is with the School of Information Science and
Technology, Dalian Maritime University, Dalian, China, 116026.
liuyisha@dlmu.edu.cn

3Xuebo Zhang is with the College of Artificial Intelligence, the Institute
of Robotics and Automatic Information System (IRAIS), Tianjin Key
Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350,
China. zhangxuebo@nankai.edu.cn

which utilize the environment state to train the global state-
action function or value function during the training phase.
Then, the value function is exploited to guide the training of
local policies. In other words, the above CTDE framework
can be regarded as a credit assignment mechanism, however,
it is still an indirect way. Naturally, it is promising to
train local policies directly using environment states, which
may further mitigate the non-stationarity of the environment.
However, environment states can not be integrated directly
since the CTDE framework needs to ensure that policy
execution relies only on its own local observations.

To maintain the independence between the policy execu-
tion and the environment state, it is necessary to ensure that
the state is only utilized for the training network, which
means it is only operated for the auxiliary training. Motivated
by single-agent algorithm Phasic Policy Gradient (PPG) [8],
the feature sharing between critic network and actor network
is without mutual interference of update targets. However,
the above feature sharing is difficult to achieve in multi-
agent tasks, because the dimension gap between state and
observation is large and there is no theoretical guarantee to
realize feature sharing in the auxiliary phase.

Motivated by these observations, we propose a MAPPG
algorithm, which trains the local policy directly by using the
environment state, assisting agents to further alleviate the
non-stationarity of the environment. In detail, independent
networks are utilized to express the value function and policy
to avoid the influence between the optimization objectives.
Moreover, an auxiliary phase is introduced to realize that the
policy network learns useful features from the value network.
To conclude, our contributions are summarized as follows:

• We propose a MAPPG algorithm to integrate the hidden
layer feature sharing to ensure feature sharing between
the value network and the policy network, which can
further mitigate the non-stationarity of the environment.
It should be noted that the proposed framework can be
applied to all the CTDE systems.

• An additional auxiliary phase is introduced to update
the policy, and the general mirror descent method is
utilized to formulate the auxiliary policy update into a
trust region optimization problem, which can improve
the robustness of the update.

• The experimental results show that our proposed
method has obtained the higher average rewards in
multi-agent particle (MPE) and multi-agent MuJoCo
(MAMuJoCo) environments, surpassing the bench-
marks of MAPPO and MADDPG.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 2366

II. RELATED WORK

It has always been the development trend of multi-agent
algorithms to extend the existing single-agent algorithm to
the multi-agent domain, which is mainly divided into the
value decomposition method [7], [9], [10] and the multi-
agent policy gradient (MAPG) method [3], [6], [11].

The value decomposition method can actually be regarded
as combining the value functions in several single-agent
algorithms into global value function through functional
relationships, to obtain the overall information and ensure
scalability. For example, VDN [9] is the sum of local Q-
functions of several DQN networks to represent the global
Q-function, QMIX [7] is to add mixed networks to ensure
monotonicity constraints, and FACMAC [10] is to replace the
underlying DQN with DDPG [12]. However, it is faced with
the problem of relative over generalization, which converges
to the local optimal solution incorrectly. In contrast, the
MAPG method does not add monotonicity constraint, and
its expression is not restricted.

Due to the theoretical guarantee of multi-agent policy
gradient theorem [13] and excellent effect in continuous
action space, MAPG algorithm has been a research hotspot.
Particularly, MADDPG [11] extends DDPG algorithm by
adding inference to other agent policies, MAPPO develops
PPO [14] algorithm by using techniques such as value func-
tion standardization and removal of overlapping features, and
HAPPO [15] inherits PPO algorithm by employing multi-
agent advantage decomposition lemma and the sequential
policy update scheme. However, the above algorithms use
environmental states to train the global value function and
then guide local policies through the value function, not
in a direct way. To train local policies directly using envi-
ronmental states, the proposed MAPPG algorithm extends
the PPG algorithm which designs a hidden layer feature
sharing mechanism to solve the problem of dimensionality
inconsistency, achieving the higher average rewards in both
MPE [16] and MAMuJoCo [17] environments.

The technique of parameter sharing is widely applied
in multi-agent algorithms [6], [7], [9], [18]. For instance,
the MAPPO method uses agent sequence number as a
distinguishing way to share parameters of all local policies.
In general, the most commonly approach is to fully share
model parameters among agents. However, to the best of
our knowledge, research on the sharing between global value
functions and policy networks in multi-agents is rarely done.
Our proposed MAPPG method can remedy this defect, which
is the first feature sharing mechanism between the global
value network and the local agent policy network.

III. BACKGROUND
This work is dedicated to solving a fully cooperative

multi-agent task. It can be typically formulated as a de-
centralized partially observable markov decision process
(Dec-POMDP) [19], which is expressed as a tuple G =
⟨N,S,U , P, r, Z,O, γ, d⟩, where N = {1, ..., n} denotes
the set of agents, S is the finite state space, γ ∈ [0, 1)
represents the discount factor and d stands for the initial state

distribution. At each time step t, each agent i ∈ N obtains
its a partial observation oit according to the observation
function O(st, i) : S × N → Z and takes actions ait ∈ U i

according to its policy πi(·|oit). The actions of all agents
form a joint action at = (a1t , ..., a

n
t) ∈ U to interact with

the environment. Then, the next state is obtained according
to the state transition function P (s′t|st,at), and the reward is
obtained according to the shared reward function r(st,at).
For convenience, we define the state distribution as ρπ ≜∑∞
t=0 γ

tPr(st = s|d,π), and the goal is to maximize the
expected discount reward:

J(π) = Es∼ρπ,a∼π[

∞∑
t=0

γtr(st,at)] (1)

A. Mirror descent

Mirror descent (MD) is a first-order confidence region
optimization method to solve constrained optimization prob-
lems. MD update can be expressed as the following formula

xk+1 = argmin
x∈C

⟨∇f(xk), x− xk⟩+
1

tk
Bψ(x, xk) (2)

where f is a convex function, the constraint set C is convex
compact, Bψ(x, xk) ≜ ψ(x) − ψ(xk) − ⟨∇ψ(xk), x− xk⟩
is the Bregman divergence related to the strongly convex
function ψ, and tk represents a step-size [20]. It should
be emphasized that when ψ is negative Shannon entropy,
Bψ(x, xk) becomes the form of KL divergence.

B. Phasic Policy Gradient

PPG improves PPO algorithm of shared network to reduce
interference between policy and value function objectives,
while still sharing representation, enabling policy network
to learn useful features from value function network in the
auxiliary phase [8].

Ljoint = Laux + βclone · Êt[KL(πθold(·|st), πθ(·|st))] (3)

where Laux stands for auxiliary optimization objective, πθold
is the policy before the auxiliary phase begins, βclone is a
fixed hyperparameter that controls the relative importance of
the original policy and the auxiliary objective.

IV. ALGORITHMS

All illustrate in Fig. 1, we focus on the hidden layer feature
sharing mechanism to deal with the problem of alternating
input of environmental state and local observations. Then the
mirror descent is introduced as the theoretical basis of the
auxiliary stage, and the derivation of the actual algorithm
accordingly.

A. Network Framework

In the multi-agent PG algorithm that conforms to the
CTDE framework, the global value network employs the
state s as the input for training, and the actor network of each
agent almost utilizes the local observation o for learning. Due
to the influence of partial observability under multi-agent
tasks, the dimension of s is generally much larger than that
of o. In general, s can be regarded as the concatenation of

2367

Fig. 1. The framework of MAPPG. The training of policy network is divided into two alternating phases: the policy phase and the auxiliary phase. In
addition, the value head of the policy network is only utilized to give training objectives in the auxiliary phase.

observation o by various agents. If the policy network also
needs state s for auxiliary training, the primary problem is
that the dimensions of state and observation are inconsistent.

To solve the problem of inconsistent dimension, we pro-
pose a MAPPG algorithm framework, whose policy network
integrates the hidden layer sharing mechanism. First, the
policy network of MAPPG algorithm only shares the hidden
layer, which avoids the problem of dimensionality incon-
sistency and ensures the feature sharing between the value
network and the policy network. Second, the shared part of
the policy network includes the GRU network, whose hidden
state utilizes the hidden state of the agent itself. This is
because the purpose of auxiliary training is to benefit the
policy network, which is equivalent to using the global state
to guide the policy training in each step.

B. Policy Phase

Compared with the MAPPO algorithm, the contribution of
the proposed MAPPG algorithm is to introduce an additional
auxiliary phase. During the policy phase, the optimization
objective is consistent with MAPPO, and different networks
are utilized to represent the policy and value function
to reduce the interference between the update objectives.
Specifically, the policy network is trained using the clipped
surrogate objective:

Es∼ρπ,a∼πθk
[min(ri(θ)Â(s,a), clip(ri(θ), 1± ϵ)Â(s,a))]

(4)
where ri(θ) = πi

θ(a
i|s)

πi
θk

(ai|s) , Â is an estimator of the advantage
function. To encourage the exploration of agents, the final
optimization goal is to add a local policy entropy bonus S[πiθ]
to (4), and operate parameter βS to trade off the importance
between them.

To train the global value function, we need to optimize
the objective of

Lvalue = Es∼ρπ [(Vϕ(s)− R̂)2] (5)

where R̂ is the discounted reward-to-go, θ and ϕ denote the
parameters of policy network and value network respectively.
Both Â and R̂ are estimated by GAE [21].

C. Auxiliary Phase

During the auxiliary phase, the update of the policy
network should not change its policy as much as possible
while approaching the optimization objective, which can be
regarded as a constrained optimization problem in essence.
Since the policy represents a probability distribution, it is
natural to utilize KL divergence to measure the degree of
policy change. Therefore, the joint optimization objective is

θk+1 = argmin
θ

L(θ, θk) where (6)

L(θ, θk) = Es∼ρπ [(V
i
θ (s)− R̂)2 +

1

tk
KL(πiθ(·|s), πiθk(·|s))]

To learn useful features from the value network, the updated
objective of the local policy network is the same as that of
the value network, that is, R̂ utilized here is the same as
(5). Notice that the direction of KL is different from the
direction of PPG, KL(πθk , πθ). Moreover, instead of using
a fixed parameter βclone to control the trade-off between
the auxiliary optimization goal and the original policy, an
annealed schedule is employed to dynamically update pa-
rameter tk, which slowly decreases from 1 to near 0. In the
initial training stage, it is known from (6) that useful features
can be obtained from the value function with comprehensive
information to a greater extent. However, in the training
convergence stage, more emphasis is placed on retaining

2368

its policy, which prevents all local policies from becoming
resemblance.

In a word, (3) and (6) are distinguished by the direction
of KL divergence and an annealed schedule. Different from
(6), PPG algorithm only empirically determines the way
to update the policy through (3) in the auxiliary stage,
without theoretical guarantee. If the Bregman divergence
term takes the form of the KL divergence, i.e., Bψ(x, xk) =
KL(x, xk), then it is easy to see that (6) conforms to the
general MD updating rules in (2). As a result, it provides a
theoretical basis for policy updating in the auxiliary stage,
which brings the improvement of convergence and robust-
ness. It is worth noting that the auxiliary phase is controlled
by a hyperparameter Kaux, which is not executed for every
update. Therefore, it can be seen as performing updates on
different periods, which is why updates are divided into two
alternating phases.

Moreover, if updating (6) in the auxiliary phase by per-
forming a single stochastic gradient descent (SGD) step as

∇θKL(π
i
θ(·|s), πiθk(·|s))|θ=θk = 0 (7)

and thus the gradient of (6) is the following equation

∇θL(θ, θk)|θ=θk = ∇θEs∼ρπ [(V
i
θ (s)− R̂)2] (8)

the resulting algorithm would be equivalent to unconstrained
optimization, which misses the purpose of preserving the
original policy, making the local policies very similar. As a
consequence, m SGD steps need to be performed at each
iteration k as follows

θ
(i+1)
k = θ

(i)
k + η∇θL(θ, θk)|θ=θ(i)k

where θ
(0)
k = θk, θk+1 = θ

(m)
k

for i = 0, ...,m− 1

(9)

In the actual algorithm, the update of the auxiliary stage is
according to (9), except that observation oi is utilized in KL
to replace the state s, i.e., KL(πiθ(·|oi), πiθk(·|o

i)).
In a typical implementation of MAPPO, value function

optimization and policy optimization utilize the same level of
sample reuse, making it difficult to mediate the relationship
between policy and value function optimization. In contrast,
the MAPPG algorithm allows the value function to be trained
several additional times in the auxiliary phase. Therefore,
the value function optimization and policy optimization can
be decoupled to a certain extent, resulting in a higher level
of sample reuse, which helps to train more accurate value
functions.

V. EXPERIMENTS

In this section, Multi-agent Particle Environment (MPE)
with discrete action space and Multi-Agent MuJoCo (MA-
MuJoCo) with continuous action space are selected for more
comprehensive algorithm performance testing. The proposed
MAPPG is compared with the state-of-the-art benchmarks
including MADDPG and MAPPO in these two environments
with different characteristics.

Fig. 2. Effect of different settings of MAPPG algorithm on the performance
of Walker 2×3 in the auxiliary phase. The suffix NV in the label means that
no additional updates are made to the value network in the auxiliary phase,
the suffix NMD means that no mirror descent is used to update the policy
network, and NA implies that neither of the above is utilized.

Experimental Setup: Each experiment was conducted
on a laptop computer with 16 GB of RAM, one 14-
core CPU, and one GeForce RTX 3070Ti GPU, which is
utilized for network training and environment interaction.
The MPE environment used in the experiment is consistent
with that in paper [6], and the MAMujoco environment
follows the specification in paper [15]. For a fair comparison,
the MAPPO benchmark employs open-source code in the
original paper [6], and the implementation of MADDPG
follows the EPyMARL [3] framework. It is noted that the
experimental parameters are all adopted from the original
paper or its released code parameters.

Evaluation Method: In all the tables given in this experi-
ment, the highest value in each task is presented in bold, and
the asterisk indicates the algorithm that is not significantly
different from the best execution algorithm in each task. In
addition, each algorithm evaluates the performance of five
random seeds for each task. The solid line in the figure
represents the average set reward for each algorithm in the
five seed evaluations, and the shadowed part represents the
95% confidence interval.

A. Ablation Studies

Ablation experiments are conducted to investigate the
effect of additional updating of the value network and MD
method in the auxiliary phase on the performance of the
algorithm. Therefore, four ablation experiments can be con-
structed according to whether there is an additional update
value network or an MD method.

Fig. 2 shows the results of these ablation experiments on
MAMuJoCo. It can be clearly seen that the MD method
can increase reward and robustness in the training process
compared to the updated method of (3). In addition, adding
additional value network updates in the auxiliary phase can
help further increase the reward. Therefore, the proposed
MAPPG algorithm has the best performance.

2369

(a) Spread (3 agents) (b) Spread (6 agents) (c) Spread (8 agents)

Fig. 3. Performance comparison on Spread scenario of MPEs with different number of agents. The shadowed part represents the 95% confidence interval.
The solid line represents the average episode reward of each algorithm in the evaluation of the five seeds.

(a) Ant 2×4 (b) Walker 2×3 (c) Walker 6×1

Fig. 4. Performance comparison of three typical Multi-Agent MuJoCo tasks. In this experiment, the technique of parameter sharing is not utilized, which
greatly improves the performance and facilitates the comparison of the real difference between algorithms.

TABLE I
AVERAGE EPISODE REWARD OF THE LAST 10 EVALUATIONS OF EACH

ALGORITHM ON 5 SEEDS IN THE MPES.

Tasks\Algs MADDPG MAPPO MAPPG

Spread(3 agents) -122.87 -112.47* -111.19
Spread(6 agents) -424.71 -400.81 -358.10
Spread(8 agents) -706.08 -670.02 -632.76
Speaker-Listener -27.67 -12.13 -12.64*

Reference -13.66 -9.78* -9.68
Avg. -259.00 -241.04 -224.87

B. MPE Results

MPE is a 2-dimensional multi-agent particle world with
continuous observation space and discrete action space, in-
cluding some predator-prey, navigation, and communication
tasks. In this experiment, we compare the MAPPG algorithm
with the MAPPO and MADDPG algorithms in focusing
on three cooperative tasks: Speaker-Listener, Spread, and
Reference. In the Spread task, each agent needs to control
a point to navigate to landmarks, which has variable agents
and target points so that it can be evaluated in more detail.
Moreover, all algorithms adopt the local policy parameter
sharing technique to improve the computational efficiency in
MPEs. The convergence performance of each algorithm is
shown in Fig. 3.

The more comprehensive results are listed in Table I,
which demonstrates that MADDPG achieves the worst re-
sults in all of the tasks. In contrast, the MAPPG algorithm

TABLE II
AVERAGE EPISODE REWARD OF THE LAST 10 EVALUATIONS OF EACH

ALGORITHM ON 5 SEEDS IN THE MAMUJOCO.

Tasks\Algs MADDPG MAPPO MAPPG

Ant 2×4 661.27 1781.41 1967.86
Walker 2×3 628.94 3310.29 3674.71
Walker 6×1 359.70 3186.88 3616.86

HalfCheetah 2×3 3106.31 4447.16* 4501.67
HalfCheetah 6×1 4179.61 4433.01* 4444.17

Avg. 1787.17 3431.75 3641.05

performs optimal performance in all five tasks. Especially
under the Spread task, MAPPG is more robust as the number
of agents and task complexity increase. For typical tasks such
as Reference, Speaker-Listener and Spread that contain only
2 or 3 agents, the number of agents is small, and the MAPPG
algorithm is similar to the MAPPO algorithm. Taking the
Spread task as an example, Fig. 3(b) reveals that when the
number of agents increased to six, the MAPPG algorithm
significantly exceeds the other two methods. In addition, as
shown in Fig. 3(c), when the number of agents increases
to 8, the performance of MAPPG is more robust, while the
reward of MAPPO tends to decline with the training.

C. MAMuJoCo Results

Developed from the popular fully observable single-agent
robot MuJoCo, MAMuJoCo is a collaborative multi-agent
robot control platform with continuous action space and

2370

observation space. In addition, since each agent only controls
a part of the robot body, and the agent can only observe other
agents adjacent to it, partial observability can be controlled
in MAMuJoCo, and the higher speed can be reached only
when all parts fully cooperate.

Following [3], we train 5 times more samples of the on-
policy algorithm than the off-policy algorithm, because the
sample efficiency of the off-policy algorithm is better than
that of the on-policy algorithm. Specifically, in MAMuJoCo,
on-policy algorithms such as MAPPG and MAPPO are
trained with 10 million time steps, while MADDPG only
has 2 million time steps. However, for convenience, the time
step of the off-policy algorithm is extended by 5 times when
drawing the figure, then it can be unified with the on-policy
algorithm.

In addition, since MADDPG network parameters are much
larger than the MAPPG and MAPPO algorithms1, the lo-
cal policy parameter sharing technology is not utilized for
MAPPG and MAPPO, which greatly reduces the perfor-
mance. Empirically, it is found that the MAPPO algorithm
with completely heterogeneous policies has a similar perfor-
mance to the HAPPO algorithm, thus we do not compare it
with the HAPPO algorithm specifically.

It can be seen form Table II that the MAPPG algorithm
exceeds the two benchmarks in a final performance in five
tasks, while the MADDPG algorithm performs the worst.
As shown in Fig. 4, the intermediate performance of the
MAPPG algorithm in all three tasks also exceeds the two
benchmarks. Especially in Fig. 4(b), the performance of
MAPPO algorithm decreases significantly in the end, while
MAPPG has certain robustness.

In summary, both qualitative and quantitative experi-
mental results show that the proposed MAPPG algorithm
outperforms the benchmark algorithm both in MPE and
MAMuJoCo.

VI. CONCLUSIONS

This paper presented a multi-agent cooperative algorithm
called MAPPG, conforming to the CTDE framework. Com-
pared with the existing CTDE methods, the main highlight
is that the local policy network is directly trained with envi-
ronment states in the auxiliary phase, and the policy network
is updated in a manner consistent with the general MD.
Through a series of experiments on MPE and MAMuJoCo,
the experimental results show that our proposed method
is superior than the MAPPO and MADDPG benchmarks.
Besides changing the structure of the local policy network,
the introduction of the auxiliary phase does not involve
the training of the policy phase, which can be naturally
integrated into any CTDE framework. In future work, we
aim to implement our frame-work in real-world robots, such
as robot running competitions.

1The policy network of MAPPG algorithm is an MLP with 2 hidden
layers of 64 units and ReLU non-linearities, while the actor network of
MADDPG is an MLP with 2 hidden layers of 400 units.

REFERENCES

[1] S. Sarkar, V. Gundecha, A. Shmakov, S. Ghorbanpour, A. R. Babu,
P. Faraboschi, M. Cocho, A. Pichard, and J. Fievez, “Multi-agent
reinforcement learning controller to maximize energy efficiency for
multi-generator industrial wave energy converter,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 36, no. 11, 2022,
pp. 12 135–12 144.

[2] M. Hüttenrauch, A. Šošić, and G. Neumann, “Guided deep reinforce-
ment learning for swarm systems,” arXiv preprint arXiv:1709.06011,
2017.

[3] G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht,
“Benchmarking multi-agent deep reinforcement learning algorithms
in cooperative tasks,” in NeurIPS Datasets and Benchmarks, 2020.

[4] C. S. de Witt, T. Gupta, D. Makoviichuk, V. Makoviychuk, P. H. Torr,
M. Sun, and S. Whiteson, “Is independent learning all you need in
the starcraft multi-agent challenge?” arXiv preprint arXiv:2011.09533,
2020.

[5] L. Kraemer and B. Banerjee, “Multi-agent reinforcement learning as
a rehearsal for decentralized planning,” Neurocomputing, vol. 190, pp.
82–94, 2016.

[6] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The
surprising effectiveness of ppo in cooperative, multi-agent games,”
arXiv preprint arXiv:2103.01955, 2021.

[7] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster,
and S. Whiteson, “Monotonic value function factorisation for deep
multi-agent reinforcement learning,” The Journal of Machine Learning
Research, vol. 21, no. 1, pp. 7234–7284, 2020.

[8] K. W. Cobbe, J. Hilton, O. Klimov, and J. Schulman, “Phasic policy
gradient,” in International Conference on Machine Learning. PMLR,
2021, pp. 2020–2027.

[9] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv preprint arXiv:1706.05296, 2017.

[10] B. Peng, T. Rashid, C. Schroeder de Witt, P.-A. Kamienny, P. Torr,
W. Böhmer, and S. Whiteson, “Facmac: Factored multi-agent cen-
tralised policy gradients,” Advances in Neural Information Processing
Systems, vol. 34, pp. 12 208–12 221, 2021.

[11] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mor-
datch, “Multi-agent actor-critic for mixed cooperative-competitive
environments,” Advances in neural information processing systems,
vol. 30, 2017.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” CoRR, vol. abs/1509.02971, 2015.

[13] E. Wei, D. Wicke, D. Freelan, and S. Luke, “Multiagent soft q-
learning,” arXiv preprint arXiv:1804.09817, 2018.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” ArXiv,
vol. abs/1707.06347, 2017.

[15] J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang,
“Trust region policy optimisation in multi-agent reinforcement learn-
ing,” arXiv preprint arXiv:2109.11251, 2021.

[16] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Neural Information Processing Systems (NIPS), 2017.

[17] C. S. de Witt, B. Peng, P.-A. Kamienny, P. Torr, W. Böhmer,
and S. Whiteson, “Deep multi-agent reinforcement learning for
decentralized continuous cooperative control,” arXiv preprint
arXiv:2003.06709, vol. 19, 2020.

[18] T. Wang, T. Gupta, A. Mahajan, B. Peng, S. Whiteson, and C. Zhang,
“Rode: Learning roles to decompose multi-agent tasks,” arXiv preprint
arXiv:2010.01523, 2020.

[19] F. A. Oliehoek and C. Amato, A concise introduction to decentralized
POMDPs. Springer, 2016.

[20] M. Tomar, L. Shani, Y. Efroni, and M. Ghavamzadeh, “Mirror descent
policy optimization,” arXiv preprint arXiv:2005.09814, 2020.

[21] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” arXiv preprint arXiv:1506.02438, 2015.

2371

