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Abstract—This paper explores the robot swarm task al-
location problem based on alliance formation game theory,
which treats each robot as an autonomous agent capable
of forming strategic alliances for task completion, with a
focus on optimizing overall system revenue and mutual ben-
efits. To resolve the problem, we introduce a unique graph-
based Deep Reinforcement Learning (DRL) framework named
AFGNet DDQN. Firstly, we construct an Allocation Feature
Graph (AFG) that intricately maps the complex interactive
relationships and allocation features among robots and tasks,
and develop the AFGNet architecture to efficiently extract
features from the graph nodes. Then thorugh reconstructing
a Markov Decision Process (MDP) within this graph, we
implement an advanced version of Double Deep Q-Networks
(DDQN) algorithm, adapted for our graph-based framework.
This setup allows for the effective learning and optimization of
task allocation strategies through localized interactions among
the robots. Finally, our empirical results demonstrate the supe-
riority of our framework over traditional methods, especially
in terms of scalability and robustness.

Index Terms—robot swarm, multi-robot systems, networked
robots, dynamic task allocation.

I. INTRODUCTION

With the advances of robot technology, robot swarms
comprising a multitude of cooperative robots have become
indispensable for addressing intricate tasks across tremen-
dous fields such as mobile sensor networks [1], military
air operations [2], and environmental monitoring [3]. The
efficiency of robot swarms in these intricate environments is
contingent upon the development of refined task allocation
methodologies. In particularly, they require not only profi-
cient task allocation strategies to optimize overall system
performance but also necessitate rapid response capabilities,
so as to enhance the overall efficiency and responsiveness
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of the system [4]. Consequently, the design of efficient and
intelligent task allocation algorithms is a pivotal step in the
progression of intelligent system development.

This work focuses on the allocation of tasks in scenar-
ios where robots outnumber tasks, focusing on effectively
grouping robots for task allocation. This is typical of Single-
Task Robots and Multi-Robot Tasks (ST-MR) systems [5],
where each robot is dedicated to a single task, while a task
may require multiple robots. The existing methods for the
considered problem can be divided into two main branches:
centralized and distributed methods [6]. Centralized methods,
including optimization and heuristic approaches, are noted for
their theoretical ability to provide optimal solutions. Though
optimization methods such as exhaustive search and integer
programming (see e.g., [7], [8]) are highly effective for
small-scale problems, they face significant challenges due
to rapidly increasing computational complexity in complex
environments as the number of robots increases. In contrast,
heuristic methods [9] like genetic algorithms [10] and particle
swarm optimization [11] can provide near-optimal solutions
for NP-hard problems with lower computational complexity
and better adaptability, but these methods may not guarantee
global optimality.

With the advancement of drone technology and commu-
nication networking, distributed algorithms, particularly top-
down and bottom-up strategies, offer effective methodologies
to address large-scale robot task allocation problems. Top-
down methods, such as market-based auction algorithms
[12], [13], optimize task allocation through hierarchical task
decomposition and distributed decision-making. On the other
hand, bottom-up approaches [14], [15] rely on swarm intelli-
gence and individual agents’ local decisions and responses to
achieve task allocation. Although distributed methods excel
in scalability and robustness, these algorithms are inher-
ently polynomial-time and may not meet the rapid response
requirements in large-scale robot swarms. For instance, in
search and rescue missions involving robot swarms [16],
a swift task allocation response is crucial. Therefore, the
primary challenge in designing task allocation algorithms for
large-scale robot swarms lies in achieving rapid and adaptive
response scheduling, while simultaneous maintaining flexi-
bility and scalability.
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To tackle these challenges, our research models the ST-MR
task allocation problem as an alliance formation game [17]
and introduces an innovative end-to-end Deep Reinforcement
Learning (DRL) method for learning efficient allocation
schemes. In this model, each robot is an autonomous agent,
forming alliances based on individual preferences, aiming
for mutual benefits and optimized total revenue. We then
construct an allocation feature graph (AFG) for robot swarms,
which represents complex features of robots and tasks,
and the interactions among them. Drawing from literature
[18], we frame a Markov Decision Process (MDP) on this
graph and introduce a graph-based DRL method named
AFGNet DDQN. Our approach begins with the AFGNet, a
novel network architecture we developed to extract feature
embeddings from the graph nodes. It is worth noting that our
proposed Graph Neural Network (GNN), AFGNet, is specif-
ically tailored to manage allocation feature graphs in task
allocation, capturing both the state of robots and the status
of other communicable nodes. Subsequently, we employ an
enhanced version of Double Deep Q-Networks (DDQN) that
is specifically adapted for our constructed allocation feature
graph. Extensive experiments with synthetic benchmarks
clearly show that our method outperforms traditional dis-
tributed iterative methods in efficiency and decision quality.
Notably, our approach exhibits strong generalizability, with
models trained on smaller scales adeptly handling larger-scale
problem decision-making. This adaptability underscores our
method’s practicality in swiftly and effectively solving large-
scale ST-MR challenges, surpassing conventional methods in
rational scheduling capabilities.

In summary, this work introduces a novel end-to-end Deep
Reinforcement Learning (DRL) approach to solve the Single-
Task Multi-Robot (ST-MR) task allocation problem, mod-
eled as an alliance formation game. The main contributions
include: (i) Development of an Allocation Feature Graph
(AFG): We construct an AFG for robot swarms to represent
the features of robots and tasks and their interactions. This
graph serves as a foundational element for our DRL model.
(ii) Innovative Network Architecture and Enhanced DDQN
Adaptation (AFGNet DDQN): We design AFGNet, a unique
network architecture for extracting feature embeddings from
the AFG’s nodes, combined with an advanced adaptation
of the Double Deep Q-Networks (DDQN) algorithm. This
integrated approach is tailored to our AFG framework, to
optimize the efficiency and accuracy of task allocation de-
cisions. (iii) Demonstration of Superior Performance and
Generalizability: Extensive experiments showcase that our
method significantly surpasses traditional methods in effi-
ciency and decision quality, demonstrating remarkable scal-
ability and adaptability from smaller-scale training to larger-
scale problem decision-making.

The paper is organized as follows: Section II introduces
the robot swarm task allocation problem and models it as
an alliance formation game. Section III details our proposed
AFGNet DDQN method. Section IV presents simulation
results and discussions. Section V concludes the study.

II. PROBLEM DESCRIPTIONS

In this section, we will introduce the robot swarm task al-
location problem and formulate its model based on Coalition
Formation Game (CFG).

A. Introduction to Robot Swarm Task Allocation Problem

The robot swarm task allocation problem involves assign-
ing a group of homogeneous robots to various tasks with
the objective to maximize overall revenue. It comprises three
main elements: the set of target tasks, the set of robots,
and the utility function that evaluates the reward for robots
collaboratively completing a task.

Define a set of tasks M = {1, 2, ...,M} and a set of
robot N = {1, 2, ..., N} situated within a two-dimensional
space. Each task j ∈ M is characterized as a multi-robot
required task, necessitating collaborative effort from multiple
robots for its completion. We use Πj to represent the subset
or coalition of robots allocated to task j ∈ M, and |Πj | to
indicate the cardinality of this coalition. Each task j has a
maximum capacity, hj , which is the largest number of robots
it can accommodate, ensuring |Πj | ≤ hj . Upon successful
allocation, each task j ∈ M dispenses a reward to the
coalition of robots Πj , with the reward amount depending
on the task’s characteristics and the number of participating
robots. We define the reward function rtaskj for the task
j ∈ M as:

rtaskj = F(j, |Πj |). (1)

The utility function of robot i ∈ N for selecting the task
j ∈ M, denoted by ui(j, |Πj |), consists of two parts. The
first part u1

i is the reward fed back to the robot upon task
completion, which is equally distributed among participating
robots as u1

i = rtaskj /|Πj |. The second part u2
i describes the

cost of the robot i ∈ N for selecting the task j ∈ M, which
increases with the the Euclidean distance di,j between robot
i ∈ N and task j ∈ M. Particularly, we set u2

i = βdi,j ,
where β > 0 is a penalty coefficient. Therefore, the utility
function ui for robot i ∈ N choose task j ∈ M is defined
as:

ui(j, |Πj |) = u1
i − u2

i =
F(j, |Πj |)

|Πj |
− βdi,j . (2)

B. Modeling Based on Coalition Formation Game

Since the class of Coalition Formation Game (CFG) pro-
vides an effective framework for analyzing the complex
coalition formation process, we model the task allocation
problem of a robot swarm as a CFG. In this model, each
robot is considered as an independent participant, choosing
to join specific coalitions based on their preferences.

Coalition Formation of Robot Swarm: The coalition for-
mation of a robot swarm can be defined as a series of subsets
separated from the set of robots N : Π = {Π1,Π2, ...,ΠM}.
Here, Πj ∈ N represents the robot coalition for executing
task j ∈ M. Since each robot can only choose one task, the
union ∪M

j=1Πj = N , and the intersection Πj ∩ Πk = ∅, j ̸=
k ∈ M. If robot i ∈ N chooses the target task gi, then the
coalition it belongs to is Πgi , i.e., Πgi = {Πj ∈ Π|i ∈ Πj}.
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Definition 1 (Robot Swarm Coalition Formation Game):
It is a triplet (N ,M,Q), where (1) N = {1, 2, ..., N}, a set
of robots; (2) M = {1, 2, ...,M}, a set of tasks; (3) Q :=
{Q1,Q2, ...QN}, a set of preference relations of the robots.
For robot i ∈ N , Qi describes its preference relation over
the robot coalition set Π. Specifically, for any two coalitions
Πj ,Πk ∈ Π including robot i, Πj ≻i Πk implies that robot
i strongly prefers Πj to Πk, and Πj ∼i Πk means that the
preference regarding Πj and Πk is indifferent for robot i.

In CFG, coalition preferences are based on individual
utility or the coalition’s total utility. To balance individual
and collective interests, we employ a balanced preference
ordering method [19] for robot preferences.

Definition 2 (Balanced Preference Ordering): For any
robot i ∈ N , and for any two alliances Πj and Πk:

Πj ≻iΠk ⇔ ui(j, |Πj |) +
∑

i′∈Πj/{i}

ui′(j, |Πj |)

+
∑

i′∈Πk/{i}

ui′(k, |Πk| − 1) > ui(k, |Πk|)+∑
i′∈Πj/{i}

ui′(j, |Πj | − 1) +
∑

i′∈Πk/{i}

ui′(k, |Πk|).

(3)

where ui(j, |Πj |) is the utility that robot i receives from being
in alliance |Πj |,

∑
i′∈Πj/{i} ui′(j, |Πj |) is the combined

utility of all other robots i′ in alliance |Πj | except robot i,∑
i′∈Πk/{i} ui′(k, |Πk| − 1) is the utility that other robots i′

would receive if they joined alliance |Πk| with the current
size of |Πk| minus one (assuming robot i leaves |Πk|). The
term

∑
i′∈Πk/{i} ui′(k, |Πk| − 1) represents the utility that

other robots i′ would receive if they joined alliance Πk

assuming robot i leaves Πk.
Definition 3 (Equilibrium Alliance Division): For any

robot i ∈ N , if the alliance division Π satisfies Πgi ≻i

Πk,∀Πk ∈ Π, then Π is considered an equilibrium alliance
division.

In this division, each robot tends to maintain its current
alliance rather than join others. In other words, no robot can
unilaterally change its alliance to gain greater benefits, either
individually or collectively. The following lemma orignated
from Theorem 2 in [19] shows some nice properties of the
coalition formation game with balanced preference ordering.

Lemma 1: In a coalition formation game with balanced
preference ordering, there is at least one stable alliance divi-
sion. Furthermore, when solving the problem of maximizing
total revenue, the optimal solution to this problem constitutes
a stable alliance division.

According to [20], under the condition of decreasing
individual utility functions, a Nash equilibrium alliance di-
vision can be obtained after N(N + 1)/2 iterations using
a distributed iterative method. However, as the number of
robots increases, the time spend of obtaining an equilibrium
solution grows exponentially. To address the computational
cost issues in traditional distributed iterative methods, we
consider using Deep Reinforcement Learning (DRL) to learn
an end-to-end strategy for alliance division. In the following
section, we will introduce the method in details.

III. AFGNET DDQN FOR ROBOT SWARM TASK
ASSIGNMENT

In this section, we provide a comprehensive overview of
our algorithm, which combines graph neural networks and
reinforcement learning to solve the task allocation problem
in robot swarms. Our approach involves several key com-
ponents: the construction of an Allocation Feature Graph
(AFG), the embedding of this graph using a specialized
network (AFGNet), and the application of an enhanced
Double Deep Q-Network (DDQN) for learning optimal task
allocation strategies.

A. Construction of the Allocation Feature Graphs
To precisely represent the allocation status features, along-

side the distinct characteristics of task nodes and robot nodes
in robot swarm task assignment problem, we thus develop the
following allocation feature graph.

a) Allocation Feature Graphs (AFG): We let the
AFG G = {N , E ,M,H} illustrate the intricate interactive
relationship and allocation feature among robots and tasks.
Within this graph, N = {1, 2, ..., N} and M = {1, 2, ...,M}
represents the set of robots and tasks in a two-dimensional
space, respectively. Interaction among robots is depicted by
edges E ⊂ N × N , with εi,i′ ∈ E indicating information
exchange between robots i and i′. The set H ⊂ N × M
illustrates robot-task connections, where ξi,k ∈ H signifies
robot i’s access to task k’s information, including utility and
attributes. Each robot i’s neighboring set of robots is defined
as Ni = {i′ ∈ N : (i, i′) ∈ E}. Furthermore, we introduce
W ∈ RN×N as the weight matrix for the robot nodes. For
any robot node i ∈ N and another node k ∈ N , if k ∈ Ni

, wi,k ∈ W denotes the Euclidean distance between these
nodes, i.e., wi,k = di,k; otherwise, wi,k = 0.

b) Robot Node Feature on Graph: For the robot nodes
of this graph, we primarily focus on the tasks selected by each
robot. To effectively represent this information, we adopt a
one-hot encoding scheme. In this encoding, for each robot
node i ∈ N , we create a vector νi of length M , where M
is the total number of tasks. If a robot selects a specific task,
the corresponding position in νi is marked as 1, while all
other positions set to 0. Therefore, the robot note features on
the graph can be expressed as V = {ν1, ν2, ..., νN} ∈ RN×M

.
c) Task Node Feature on Graph: Task nodes are

characterized by the rewards they offer to each robot, reflect-
ing the payoff for successful task completion. We establish
H = {h1, h2, ..., hM} ∈ RM×N as the payoff matrix. The
jth row of this matrix specifies the rewards available to
each robot from task node j, as determined by formula (2).
To maintain uniformity in features between robot and task
nodes, we present task node features in a columnar layout,
specifically defining U = HT . Thus, the task node features
on the graph are represented as U = {µ1, µ2, ..., µN}.

The graph-based model excels in providing a comprehen-
sive state representation, and hence can effectively map out
the interconnectedness and dependencies prevalent in robot
swarm environments.
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B. AFG based Graph Embedding Network

To capture the structural features of allocation feature
graphs, we propose a graph-based deep learning architecture
named AFGNet for embedding representation.

a) Node Embedding: In this subsection, we examine
the handling of various feature types in graph G. This
includes task node features U , robot node features V , and
the edge features wi,k, for edges εi,k ∈ E connecting robot
nodes i, k ∈ N . We utilize multi-layer perceptron (MLP)
with parameter θ and nonlinear activation functions σ to
effectively synthesize and refine these features for enhanced
feature embedding. Furthermore, we use the notation [x||y]
to denote the concatenation of two vectors x and y, which
will be used below.

To enhance the representational power of the robot nodes’
original features, we apply a dimensionality expansion using
MLP with parameters θ1 ∈ RM×d. This MLP operation
increases the dimension of each robot node’s feature vector
νi from RM to a higher-dimensional space Rd, facilitating
more nuanced feature representation.

ν′i = σ(MLPθ1νi). (4)

In parallel with the robot nodes, the task nodes’ orig-
inal features undergo a dimensionality increase for better
feature representation. Using another MLP with parameters
θ2 ∈ RM×d , each task node feature vector µi is expanded
from RM to Rd.

µ′
i = σ(MLPθ2µi). (5)

To create a comprehensive embedding for each robot node,
we combine the enhanced robot node features ν′i and task
node features µ′

i. This unified embedding δi encapsulates
both the robot’s attributes and its relationship with tasks,
essential for effective task allocation.

δi = ν′i + µ′
i. (6)

This part focuses on learning the embeddings that describe
each robot node’s connections within its neighborhood Ni.
For each robot node i, we first concatenate the features of its
neighboring nodes νk and their corresponding edge weights
wi,k. This concatenated data is then processed through a
MLP with parameters θ4 ∈ Rd×d, followed by a nonlinear
activation function σ. After averaging these features across
all neighbors in Ni, we feed them into another MLP with
parameters θ3 ∈ R(M+1)×(d−1). The final output, ηi, is
the embedding that encapsulates the spatial and relational
information of robot node i with respect to its neighboring
nodes.

ηi = σ

(
MLPθ3

[
1

|Ni|
∑
k∈Ni

σ(MLPθ4 [wi,k||νk])||(|Ni|)

])
.

(7)
To refine each robot node’s embedding, we integrate its

current combined embedding δi with the relational embed-
ding ηi and the weighted embeddings of its neighbors. We
start by concatenating(||) the current combined embedding
of robot node i, δi, with its relational embedding, ηi.

Additionally, we incorporate the weighted embeddings of
its neighbors, obtained by averaging the weighted product
of each neighbor’s embedding δk and the corresponding
edge weight wi,k. This concatenated data is then processed
through additional MLP layers with parameters θ5 and θ6,
and a nonlinear activation function σ. The result is the
final updated embedding δ′i, which now includes both the
individual characteristics of the robot node and the contextual
information from its neighborhood.

δ′i = σ

[
MLPθ5

[
δi||σ

(
MLPθ6

[
1

|Ni|
∑
k∈Ni

wi,kδk||ηi

])]]
.

(8)
b) Stacking and Pooling: The embedding process

within the AFGNet layer is key to transforming the original
graph G into node embeddings δ′i. In this study, we stack
L identical AFGNet layers, each capable of independent
training, to achieve a deeper and more nuanced representation
of the graph’s structure. This stacking of multiple layers,
culminating in the final embedding δ

′(L)
i , is crucial because

it allows the model to learn complex hierarchical patterns
within the data [21].

After applying L layers of AFGNet, the embeddings of
the robot nodes undergo a mean pooling process to condense
the individual and collective information into a unified rep-
resentation. Specifically, linear transformation MLPθ7 with
parameters θ7 ∈ Rd×d and nonlinear activation functions σ
are performed on the sum of all robot node embeddings,∑

i∈N δ
′(L)
i . Each individual robot node’s embedding δ

′(L)
i

is then combined through concatenation(||), yielding two
distinct d-dimensional vectors. These vectors are then con-
catenated to form the state embedding s of graph G:

s =

[
σ(

MLPθ7

N

∑
i∈N

δ
′(L)
i )||δ′(L)

i

]
. (9)

This process allows for a comprehensive representation
that encompasses both individual node details and the aggre-
gated information of the swarm. For simplicity, this entire
graph embedding process is summarized as:

s = AFGNetL(V,U ,G|θ). (10)

C. Reformulation as Markov Decision Process

In this section, we reformulate the robot swarm task
allocation as a Markov Decision Process (MDP) on graphs.
Initially, each robot’s node feature νi starts as a zero vector,
reflecting no task assignment. Robots make sequential actions
at based on the current graph state st. The MDP is defined
by H = {S,A,P,R, γ}, where γ represents the discount
factor.

a) State and Action Spaces: The state space S consists
of graph G’s embedded states, output by AFGNet. The action
space A, representing the set of all tasks M, reflects each
robot’s task choice.
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b) State Transition Function: The function
P(S,A) : S × A → S ′ describes how the graph state
evolves post-action. It divides into P r for robot nodes,
updating νi based on action ai, and Pm for task nodes,
adjusting tasks’ participant counts and subsequent rewards
using formula (2) based on action at.

c) Reward Function: The reward function is defined
as the difference between the maximum utilities of states st
and st+1. It is important to note that when st is known,
the utility of each robot can be calculated using formula
(2), since the variables needed to compute the utility are
included in st. Thus, the utility of state st is given by
u(st) =

∑t
i=1 ui(j, |Πj |). Based on this, the reward function

can be expressed as:

r(st, at, st+1) = u(st+1)− u(st). (11)

Since each robot node is equally important, we set the
discount factor γ to 1, ensuring that future rewards are valued
as much as immediate ones. Consequently, the cumulative
reward R of this allocation strategy can be represented as:

R =

N∑
t=1

r(st, at, st+1) = u(sN )− u(s0) = u(sN ). (12)

Here, sN is the final state, representing system’s total utility
post task allocation, and s0 is the initial state. The objective
of the MDP is to maximize R, leading to an equilibrium
coalition partition, as stated in Lemma 1.

D. DDQN based Training Process

DQN is a reinforcement learning algorithm tailored for
solving Markov Decision Process (MDP) problems. To effec-
tively manage the robot swarm task allocation on graphs, we
implement the Double Deep Q-Network (DDQN) algorithm
to train a policy network.

a) Prediction Network: The prediction network, de-
noted as MLPωπ , is a multi-layer perceptron with parameters
ωπ ∈ R2d. At each decision step, MLPωπ

takes the graph’s
embedding state st as input and outputs Q-values for all
potential actions from that state, represented as Q(st, a|ωπ):

Q(st, a|ωπ) = MLPωπ
(st). (13)

b) Sampling Strategy: Action selection at each step
hinges on the Q-values forecasted by the Prediction Network.
The probability of picking each action is determined by
applying the softmax function to all the Q(st, a|ωπ) values:

π(at|st) =
exp(Q(at, st|ωπ))∑

a′
t∈Q exp (Q(a′t, st|ωπ))

,∀at ∈ A. (14)

In the training phase, we sample actions based on the
policy π to facilitate exploration. Conversely, during testing,
the choice of actions is made greedily, selecting those with
the highest probability.

c) Target Network: The target network MLPωt
has the

same network structure with the prediction network, but with
diffirence parameters ωt ∈ R2d. It is used to compute the
target Q-values for updating the parameters of the prediction
network. For each decision step , MLPωπ

inputs the next
state of resulting from action a′, denoted as st+1, and inputs
the Q-values for all possible actions from state st+1, denoted
as Q̂(st+1, a

′|ωt).

Q̂(st+1, a
′|ωt) = MLPωπ

(st+1). (15)

d) Network Updating: In AFGNet DDQN, the
AFGNet ’s parameters θ and the Prediction Network’s
parameters ωπ are updated regularly with each training step
based on the loss function in formula (16), while the Target
Network’s parameters ωt are updated every fixed number of
steps c, using the parameters ωπ of the prediction network.

L(θ, ωπ) = E[
(
rt −Q(st, at;ωπ) + γytarget

)2
];

st = AFGNetL(Vt,Ut,G|θ);
ytarget =Q̂(st+1, argmax

at+1∈A
Q(st+1, at+1|ωπ)|ωt);

st+1 = AFGNetL(Vt+1,Ut+1,G|θ).

(16)

Algorithm 1 presents a comprehensive training pseudocode
that integrates three key stages: initialization, experiential
data generation and network training.

Algorithm 1: Training Process of AFGNet DDQN
Input: AFGNet, Prediction Network and Target

Network with trainable parameters θ, ωπ , and
ωt; G = {N , E ,M,H}

1 Initialize: Experience replay buffer D;
2 while Training is not terminated do
3 Receive initial feature V0 and U0;
4 Extract embeddings using AFGNet:

s0 = AFGNetL(V0,U0,G|θ);
5 for t = 1 to N do
6 Sample at ∼ MLPωπ

(·|st) Execute actions at
;

7 Receive reward rt+1 and next feature Vt+1

and Ut+1;
8 Extract embeddings using AFGNet:

st+1 = AFGNetL(Vt+1,Ut+1,G|θ);
9 Store (st, at, st+1, rt+1 ) in replay buffer D;

10 end
11 Sample a random minibatch of S samples from

D;
12 Compute the AFGNet DDQN’s loss L, and

optimize the AFGNet ’s parameters θ and the
Prediction Network’s parameters ωπ ;

13 Update Target Network parameters ωt by ωπ

every c times;
14 end
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IV. EXPERIMENT

This section will evaluate the effectiveness of our proposed
task allocation method for robot swarms through simulation
experiments.

A. Experimental Setup

a) Evaluation Instances: Similarly to the related re-
search, this study generated necessary allocation feature
graphs instance followed the process described in [20] for
training and testing. Specifically, in each instance, M tasks
and N robots were uniformly and randomly distributed in
a 1m x 1m area. In this article, we only consider the case
where M = 5.

b) Utility Functions: We detail the task rewards and
individual utility functions in our experiment. When multiple
robots form a coalition to execute a task, they collectively
receive a reward. While the total reward increases with the
number of participating robots, the marginal contribution
of additional robots diminishes. The reward approaches its
maximum when the number of robots equals hj . Specifically,
the task reward function is defined as:

rtaskj = rinij · logεj (|Πj |+ εj − 1).

where rinij is the initial reward when a single robot forms
the coalition, uniformly drawn from [N/M, 2 ∗ N/M ]. The
penalty coefficient β is set to 1, leading to the robot utility
function:

ui(j, |Πj |) = u1
i − u2

i =
rinij · logεj (|Πj |+ εj − 1)

|Πj |
− di,j .

c) Configuration: For AFGNet, the number of itera-
tions L was set to 3, and the dimension d of vector embedding
was set to 64. The training process included 2.5 million
iterations, with a batch size of 256, and the target network
was updated every 1000 iterations.The Adam optimizer was
used with a learning rate of 10−4. During the first 10% of
training, the exploration rate was linearly reduced from 1 to
0.05.

B. Training Results and Discussion

In our study, AFGNet DDQN was pre-trained across
varying robot scales (N=20, 60, 100) and subsequently
benchmarked against two established algorithms. Firstly, to
ascertain the efficacy of our bespoke AFGNet embedding
network, we juxtaposed it with a ”structure-to-vector” (S2V)
based graph network embedding architecture [22], thus es-
tablishing our first benchmark, S2V DDQN. Secondly, to
underscore the superiority of the Double Deep Q-Network
(DDQN) over traditional Deep Q-Network (DQN) in ad-
dressing the challenges presented in this study, we introduced
AFGNet DQN as our second benchmark. It is crucial to note
that the network architectures and parameter configurations
of these benchmarks were aligned with our proposed method
for consistency.

The convergence trajectories of all methodologies are illus-
trated in Fig.1. It can be observed that our AFGNet DDQN

consistently outperformed in terms of reward acquisition,
irrespective of the robot count. More significantly, compared
to AFGNet DQN, the AFGNet DDQN achieved markedly
higher rewards, substantiating the enhanced efficiency of
the DDQN training architecture over the conventional DQN
in addressing the robot swarm allocation problem. When
we switch from AFGNet to S2V, although S2V DDQN
converges effectively, it often gets stuck at local optima
because it doesn’t include task-specific features, which limits
its ability to gain higher rewards.

Fig. 1: Average reward by S2V DDQN, AFGNet DQN and
AFGNet DDQN in different robot scales.

C. Comparative Experiments

To further evaluate the efficacy of our AFGNet DDQN, we
execute a series of performance comparisons using models
trained through the three distinct methods. We generated
100 varied initial test cases, each characterized by randomly
positioned tasks and robot starting points, to assess these
trained policies. Our evaluation metrics included the average
total utility and the rate at which robots achieved an equi-
librium coalition partition (NS rate). The outcomes of these
evaluations are detailed in Table I.

The empirical result reveal that our method consistently
outperformed the others, achieving the highest average total
utility across all tested scenarios. In scenarios with small
(N=20) and medium (N=60) robot groups, AFGNet DDQN
demonstrated a marked advantage over S2V DDQN. How-
ever, in large-scale scenarios (N=100), the performance
gap between AFGNet DDQN and S2V DDQN narrowed,
echoing our observations from the training phase. From the
standpoint of NS rate, our method achieved an 80% NS rate,
demonstrating its effectiveness across various scales. On the
other hand, while AFGNet DQN showed promising results
in medium and small-scale scenarios, its performance notably
deteriorated in larger-scale tests. This decline in NS rate
could be attributed to potential overfitting issues inherent in
the traditional DQN when applied to large-scale problems,
leading to diminished effectiveness.

D. Scalability Performance in Large-Scale Instances

In this section, we explore the generalizability of our
AFGNet DDQN method for large-scale robot systems. We
pretrained our model with 20, 60, and 100 robots and tested
it on scenarios with 500 and 1000 robots. For benchmark-
ing, we compared it with a well-established Decentralized
Algorithm (DA) [20]. We created 100 diverse test scenarios,
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TABLE I: COMPARISON OF TEST RESULTS BETWEEN
S2V DDQN, AFGNET DQN AND AFGNET DDQN

Scale Average Total Utility NS rate

S2V
DDQN

AFGNet
DQN

AFGNet
DDQN

S2V
DDQN

AFGNet
DQN

AFGNet
DDQN

20 14.85 19.31 22.61 77.90% 77.30% 81.80%

60 42.37 48.00 59.51 48.70% 76.60% 80.80%

100 96.18 96.99 106.21 66.64% 53.88% 78.00%

TABLE II: COMPARISON OF TEST RESULTS BETWEEN
S2V DDQN, AFGNET DQN AND AFGNET DDQN

Metrics Scale DA Pretrain 20 Pretrain 60 Pretrain 100

Average Total Utility 500 619.11 564.4 620.23 503.95

1000 1247.53 1106.39 1250.75 1000.21

NS rate 500 80.50% 73.60% 79.50% 76.47%

1000 80.00% 71.81% 81.10% 68.77%

Time Cost 500 181.83 2.66 2.66 2.67

1000 714.88 10.42 10.5 11.1

and the results are presented in Table II. As can be seen,
our model trained with 60 nodes, performs similarly to the
DA algorithm in terms of Average Total Utility and NS rate
but requires only 2% of the DA algorithm’s processing time,
demonstrating significant computational efficiency.

However, our model’s performance varies at different
scales. Smaller-scale training leads to underfitting, limiting
the model’s ability to handle complex dynamics in larger
environments. Conversely, training on overly large systems
may cause overfitting, reducing adaptability to new scenarios.
Thus, selecting an appropriate training scale is crucial for
consistent model performance across various system sizes.

V. CONCLUSION AND DISCUSSION

In this study, we proposed a novel graph-based deep re-
inforcement learning method, AFGNet DDQN, to tackle the
robot swarm task allocation problem modeled as a coalition
formation game. We have designed a network architecture,
based on allocation feature graph embedding, to illuminate
the interplay between robot node characteristics, task node
features, and the state of task allocation. Then by reconstruct-
ing the problem within a Markov Decision Process (MDP) on
graphs, we effectively depicted a sequential task allocation
process. In our training process, we used an enhanced Double
Deep Q Network (DDQN) algorithm to achieve an end-to-
end training strategy. Our methodology demonstrated notable
efficacy and superiority in both performance and decision-
making speed in task allocation, as corroborated by thorough
experimental validation.
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