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Model Predictive Control of Two-level Open Quantum Systems

Yunyan Lee, lan R. Petersen and Daoyi Dong

Abstract— This paper presents a robust control approach
for a two-level open quantum system subject to bounded un-
certainties through the application of model predictive control.
We demonstrate two common cases: depolarizing decoherence
and phase-damping decoherence in open quantum systems.
We develop a model predictive control method using quantum
measurements and provide a lower bound on the probability
of obtaining the predicted state. Numerical results illustrate
the effectiveness of this model predictive control approach in
achieving stability and robustness in open quantum systems.

I. INTRODUCTION

Quantum control theory is important in steering the state
of quantum systems, which is essential in quantum comput-
ing and quantum information processing [1]-[4]. The field
includes quantum optimal control, quantum learning control,
and quantum feedback control [5]-[7]. Among these, robust
performance remains important for the practical development
of quantum technologies, employing strategies like feedback,
learning control, and model predictive control (MPC) to
maintain system stability in the presence of uncertainties
[8]-[10]. This paper investigates the application of MPC in
improving the robustness of quantum control systems.

MPC has become a key method for controlling systems
with constraints and uncertainties. It is widely used in many
areas [11], [12] and has also been applied in quantum
systems [13]-[15]. In this paper, we use time-optimal model
predictive control (TOMPC [16]) to steer a quantum system
and the strategy involves positive operator-valued measures
(POVM) [17] for quantum measurement. The measurements
will lead the measured state to collapse into a desired state
with a certain probability of success. Hence, developing an
effective method to calculate the probability of success is a
key task in the proposed MPC method.

In this paper, we focus on calculating the probability
that an open quantum system follows the expected trajec-
tory when subjected to decoherence and disturbances. We
demonstrate that an open quantum system, subject to an
uncertain Hamiltonian and decoherence, can evolve to the
correct nominal state with a calculated lower bound on the
probability of success. This work extends the robust TOMPC
approach illustrated in [18] for closed two-level quantum
systems to the context of two-level open quantum systems.

The structure of this paper is as follows. Section II
discusses open quantum systems affected by depolarizing
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and phase-damping decoherence. In Section III, we derive
a lower bound on the probability that the system state
can be transferred to the correct terminal state under both
depolarizing and phase-damping decoherence. In Section
IV, numerical simulations demonstrate that employing our
results facilitates TOMPC to steer quantum system states
to desired terminal states. Finally, we provide concluding
remarks in Section V.

II. FORMULATION OF THE QUANTUM CONTROL
PROBLEM

In open quantum systems, the state is described by a
density matrix, p, which is a complex matrix satisfying the
condition Tr(p) = 1, p = p/ and p = 0. Specifically,
when the system is closed, the quantum state is pure, and
the density matrix can be represented as p = |1)(¢)| with
a pure quantum state represented by [¢), a unit vector in
the complex Hilbert space. Compared to closed systems,
open systems interact with their environment. The evolution
of such mixed states p, under Markovian dynamics can be
described by the Lindblad equation [19]

p=—ilH(t),p] + D(p). (1)

Here, [H(t),p] = H(t)p— pH(t) is the commutation opera-
tor and H (t) denotes the total Hamiltonian H (t) = Hy+ H.,,
where H| signifies the free Hamiltonian of the system, and
H,, denotes the control Hamiltonian, which accounts for the
external influence due to control signals. Specifically, for the
control Hamiltonian H, = 3 u,(t)H,, the input signal
u,,(t) is considered as a real-valued function, u,(t) € R and
H,, corresponds to the control Hamiltonian associated with
the u-th control signal. Additionally, D(p) corresponds to the
dissipative dynamics induced by environmental interactions,
defined by:
> 1 1
Dip)=)_ (Lij} - 5L;*.Ljp - ZpL}L]) )
j=1

where L; are the Lindblad operators, accounting for environ-
mental influences such as decoherence and { means taking
the Hermitian transpose.

Without decoherence, we can simplify (1) to the von
Neumann equation, i.e., D(p) = 0. Then, to discretize the
process, we assume a constant sampling time 7. Within each
sampling interval t € [kT, (k + 1)Ts] for k = 0,1,2,...,
the discretization of this continuous time model using the
sampling period T results in the discrete-time evolution for
the nominal system:

pipe = U(KT,) piUT (KTY), 3)



which involves the unitary matrix U (kTy) = e~ *TsH(*Ts),
When the system is affected by uncertainties, we introduce

an uncertain Hamiltonian for a two-level system Ha = A

0= Z?zl Ao, where 0 o 3 are the Pauli matrices, defined

by
(01 (0 —i (1 0
g1 = 1 0 , 02 = i 0 ,03 = 0 -1 9
4)
and A 23 € R. We have
pri1 = Ua(KT) puUL (KT, (5)
where
Ua(KTy) = =TI+ 1), (6)

In the following, we present the Lindblad equation for
depolarizing decoherence and phase-damping decoherence
[20]. The corresponding Lindblad operators for these types
of decoherence are defined as follows.

1) Depolarizing decoherence: This case is characterized
by Lindblad operators 01,09, and o3, leading to the
Lindblad equation:

3
p=—ilH (1), p] +7(1) Y (oipoi —p), (D)
i=1
where we assume the intensity of decoherence is the
time-varying uncertain parameter (t).
Phase-damping decoherence: This case is governed
by the Lindblad operator o3, yielding the Lindblad
equation:

p = —i[H(t), p] + 7(t)(o3p03 — p). (8)

In this paper, we utilize TOMPC to steer the state of
the quantum system and incorporate a POVM quantum
measurement [17]. As shown in Fig. 1 (a), our objective is
to steer the state of the quantum system from the initial state
Pini to the final state pg, within the Bloch sphere. Initially, we
follow the nominal evolution (3) and apply an MPC strategy
to guide the system toward the final state. This generates a
nominal trajectory illustrated by the blue line. However, the
red line represents the actual evolution, which is influenced
by decoherence and the uncertainties in the Hamiltonian.

Subsequently, we use a POVM to measure the state p;
along the nominal trajectory. The probability p of attaining
the correct nominal state is represented by the star point.
Conversely, there is a probability 1 — p of reaching the
corresponding orthogonal state p1, | as shown with a triangle
point. Then, based on the measurement outcome, either the
star point as in Fig. 1 (b) or the triangle point as in Fig.
1 (c), we design a new input control based on the nominal
evolution (3) (blue line) and measure the actual process (red
line) again. This procedure is repeated until the final state
is achieved. The detailed algorithm and the application of
TOMPC are discussed in Section IV.

As the strategy illustrated in Fig. 1 indicates, we can steer
the system state to the target state if it consistently follows
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Fig. 1: Diagram representing the proposed control strategy:
(a) The control is designed based on the initial state pjp;.
After a POVM measurement, we have either the correct
nominal state p; (the star point) or the corresponding or-
thogonal state p; | (the triangle point). Depending on the
measurement result, if we obtain the nominal state p;, we
design the new control as shown in (b). On the other hand, if
we obtain the orthogonal state p; |, we follow the approach
outlined in (c).

the nominal trajectory. Therefore, our primary concern is to
establish a lower bound for p that ensures the system remains
close to the nominal trajectory. Once this is achieved, we
can assert the robustness of the system for reaching the
target state [18]. In the following section, we discuss in
detail how to calculate this probability for two-level open
quantum systems. To facilitate the calculation of this lower
bound on the probability, we employ two approaches: (i)
The representation of the Lindblad equation using the Bloch
vector framework [21]. (ii) The quantum trajectory method,
which provides a stochastic unraveling of quantum dynamics
[22].

III. THE MINIMUM SUCCESS PROBABILITY

In the case of pure quantum systems, a lower bound on
the probability of obtaining the correct nominal state has
been provided in [18, Theorem 2]. Based on the principle
of mathematical induction, we obtain Lemma 1 involving
a generalization to measurements on [-step intervals and
the incorporation of time-varying uncertainties in two-level
systems.

Lemma I: In a two-level quantum system (5), if the
sampling time 7, satisfies the condition AT, < 7/2, where
A denotes the bound on the uncertainties such that |A| < A,
the probability of transferring to the correct nominal state



pui satisfies the lower bound

Tr(pykpr+1) > cos?(IAT,). 9)
By splitting each step into infinitesimal steps and applying
Lemma 1, it is possible to handle time-varying uncertainties
A(1).

In the following discussion, considering that the open
quantum system is affected by decoherence and an uncertain
Hamiltonian, we calculate a lower bound on the probability
of achieving the correct nominal state.

A. Analysis of Depolarizing Decoherence

Theorem 1: In the two-level quantum system with depo-
larizing decoherence (7), the probability of transferring to
the correct nominal state p;;, satisfies the lower bound

11 s5am)
) = 5 + ¢ ;
where 7 represents an upper bound on the Lindblad coeffi-
cients. i.e., for any time ¢, v(t) < 7. The state py11 evolves
from the state pj according to the Lindblad equation (7),
over a fixed sampling period T5.

Proof: To facilitate our analysis, the total Hamiltonian
is defined as H(t) = vy(t)o1 + vy(t)os + v.(t)os. Sub-
sequently, we can transform the Lindblad equation (7) into
the Bloch vector representation [21]. Consequently, the time
evolution of the corresponding Bloch vector of the quantum
state py, denoted as [y, yx, 2] T, is [20]

Tr(prripuk (10)

T —4~(t) —v, Uy Ty
| = v. ) —ue Yk (11)
2 —vy Vg —4~(@t)| |z

In this case, the decoherence term is represented by —4~(¢)1
and we define

0 —u(t) o

Lu(t)= | v.(t) 0 —v,(t) (12)
—vy(t)  vg(t) 0

Since —4v(¢t)I and Lpg(t) commute, the state

[@k11, Yrr1s 2x11)T following the evolution (11), is given by

T+l (k+1)Ts Tk
Yk+1 | = exp —4/ yt)dt | |yue |, (13)
2+l kT AUk

where the nominal state [2x, Y|k, 2| x]T is obtained from

Tl |k (k+1)Ts Tk
Yk | = exp / Ly(t)dt | |yx (14)
2|k kTs 2k

Therefore, the probability Tr(px4ip;%) can be bounded as
follows:

(L + 2yt + YurYr+l + 20k2041)

(k+D) T,
exp —4/ ~(t)dt
kT,

e~ 4IT:

Tr(pr-101k)

N~ N~ N

+
N~ N

vV

15)
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since for any ~(¢) < 7,

(k+1)Ts
exp | —4 /
kT,
|

Corollary 1: If a two-level quantum system is subject to
the depolarizing decoherence (7) and includes an uncertain
Hamiltonian H, then the probability of transitioning to the
correct nominal state pq|;, satisfies the lower bound

~y(t)dt> > ¢~ 4T), (16)

1 - -
Tr(prr1p1k) > 3 cos?(IAT,) (1 + e~ 91T (17)
under the condition (¢) < 7 and IAT, < /2.

Proof: We assume that the system with uncertain
Hamiltonian has evolved to the state pj ;. Its corresponding
Bloch vector is [z}, Y11 z,’CH]T, which can be obtained
from

Lijk (RDTs 7 Tk
e | = elere T En Mt g (18)
Rk 2k
where
/ 0 —vz(t) = A ()  vy(t) + Ay (1)
Ly (t) = | vz(t) + A (2) 0 —va(t) — Az (t) ] .
—vy — Ay (t)(t) ve () + Ay (t) 0

(19)

Then, we introduce a pseudo measurement, a conceptual
approach used to simplify the calculation, allowing us to
decompose the probability as follows:

Tr(pr+1ouk) = Tr(prs10k 1) Tr(Ph 1Pk )- (20)

Here, the pseudo measurement helps isolate the contributions
of different components of the state. Specifically, terms
involving the orthogonal state o, ; ,;, defined as I — pj .,
can be ignored. This is because the decoherence term,
represented by the identity matrix, ensures that the state
pﬁ_)k 4 1s orthogonal to pg;. Then, using Theorem 1, we
have

1 1 4
Tr(priphs) = 5 + 5o~ 77 1)
Using Lemma 1, this yields
Tr(phs1oyr) > cos?(IAT). (22)

Therefore, the probability of obtaining the correct quantum
state satisfies the lower bound

1+1
-+ e
2

—4A1T,
2 )

Tr(pr-1oux) = cos” (IAT)( (23)

|
In the case of phase-damping decoherence, the decoher-
ence term in the Bloch vector representation does not com-
mute with the other terms, making it challenging to compute
expectations within this framework. Therefore, an alternative
approach using stochastic unraveling is considered to calcu-
late a lower bound on the probability of obtaining the correct
state [22].



B. Analysis of Phase-Damping Decoherence

Theorem 2: In the case of a two-level quantum system
with phase-damping decoherence (8), the probability of
transferring to the correct nominal state p;; satisfies the
lower bound

Tr(prripui) > e 70T (24)
under the condition ~(¢) < 7.
This proof follows [22]. When we consider the quantum

state evolving according to the deterministic evolution [22],

d. - , -
£‘¢d(t)> = —iHegl1ba(t)), (25)
where [1)4(t)) denotes the unnormalized state vector and the
effective Hamiltonian in phase-damping decoherence is

v(t)

Hy=H— —L (26)
Since the contribution from the dissipative term is the

identity, we can calculate the minimum probability based on

deterministic evolution to obtain the lower bound in (24).

Corollary 2: 1f the two-level quantum system with phase-
damping decoherence (8) also includes an uncertain Hamil-
tonian Ha, the probability of transferring to the correct
nominal state p; satisfies the lower bound

Tr(prripyp) > cos?(IAT,)e 71T 27)
under the condition (¢) <7 and IAT, < 7/2.

Following the approach used in Corollary 1, we introduce
a pseudo-measurement, then apply Theorem 2 and Lemma
1 to obtain (27).

In conclusion, we have provided lower bounds on the
probability Tr(p;;pr+1) of transferring to the correct nom-
inal state p;, with an uncertain Hamiltonian and decoher-
ence. The results are summarized in Table I.

TABLE I: The lower bounds on the probability of transfer-
ring to the correct nominal state.

Cases Lower bound of Tr(py|xpx+1)
Closed system cos?(IATs)
Depolarizi I cos?(IAT, 3 UTs)
polarizing 5 cos?(IAT)(1 +e )
Phase-damping cos? (IATs)e=70Ts)

IV. NUMERICAL RESULTS

In our simulation, we follow [18, Algorithm 1] to solve a
quantum TOMPC, as outlined in Algorithm 1. Building on
the study in [18], we further demonstrate the lower bound
of the probability of remaining in the correct nominal state
for an open quantum system. In an open quantum system,
Algorithm 1 optimizes the optimal control problem defined
in (28).
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Algorithm 1 qTOMPC: TOMPC for quantum systems

Require: Initial state po and target state py, prediction
horizon L, performance index J; (py)

1: repeat (for each step £k =0,1,...,N — 1)

Calculate optimal control {uglk,u’flk,...,u’i_”k} by

minimizing Jz (pp) using the nominal model

Use u6| i 10 get py from the nominal model

Make a measurement with My, = {p1x,1 — p1) }, and

obtain the post-measurement state p’wC

update py, = p’w~C

-1
W T = 301 =T ()
s.t. Polk = Pr 08)
Pl+1lk = Ul|kﬁl\kUlT‘k7
Ukl < B,
PLIk = Pf>
where Uy, = eI H((k+DT5) and the cost function J; (px)

includes the weight # € R and measures the deviation of p
from the desired target state py. Our study defines the trace
distance between quantum states as described in [23]. The
trace distance is equal to half the Euclidean norm of the
difference between the corresponding Bloch vectors. Here,
w), represents a multi-input control with each component
Uj|k,u- The inequality constraints ensure that each input
signal u, ,, satisfies a specified magnitude bound B € R.
Upon finding the optimal value of the cost function
Ji (pr), the optimal control sequence over the prediction
horizon L is given as {uawuﬁlw“"“*ifuk}' Following
(3), a unitary matrix is calculated as Ul*lk = e‘iTsH*((kH)),
where H*((k +1) = Ho + >_, uj};, ,H,. In the nominal
system, the state py|, at step k + [ is then expressed as

-1 -1
ot
o= [T U1 juen [T UG
=0 =0

When we have the corrected nominal state pyy, it is
feasible to establish the POVM. By applying the theorems
from Section III, we can ensure that the state evolves to this
corrected nominal state with high probability. In the sub-
sequent simulation, we demonstrate that quantum TOMPC
effectively manages uncertainties to keep the state close
to the target, even under depolarizing and phase-damping
decoherence.

(29)

A. Simulation on open quantum systems

In our simulation of open quantum systems, we consider
the dynamics outlined in (7) and (8). We select the free
Hamiltonian Hy = %03 and incorporate two control signals,
one aligned with o and the other with o5. In these systems,
the coefficient ~(¢) is uniformly randomized within the range
[0.025,0.075].



The simulation parameters are set as follows: the sampling
time 7T is 0.4, and the total time duration is 2.8. We impose
control constraints such that |uq(¢)] < 1 and |uz(t)] < 1.
Additionally, the prediction horizon L is 15, and the weight
parameter 6 is fixed at 1.9.

1 T
08 1
E» —O— DP(measured)
= 0.6 DP(fixed measured) i
=7 —O— DP(unmeasured)
7
£ 04f |
®
A
02r 1
[olcs L L

1.5 25

Time t

0.5 1

Fig. 2: Simulation results using Algorithm 1 for depolar-
izing decoherence, comparing scenarios with and without
measurement. The label ‘DP(measured)’ refers to the state
measured along the nominal trajectory. ‘DP(fixed measured)’
indicates measurement with a fixed POVM, as defined in
(30). ‘DP(unmeasured)’ denotes the scenario where the state
is not measured, showcasing the average of states in the
simulation.

In addition to measuring the quantum system with the
nominal state, we also implement a fixed measurement
strategy to demonstrate a more practical approach. In this
strategy, the quantum state is measured using a fixed set of
POVMs, resulting in control inputs derived from the MPC
that depend on the initial state. This strategy is more practical
because it involves a fixed input signal and a trajectory that
adheres to the selected POVMs. The predetermined set of
POVMs is defined as M; = {|¢:) (|, I — |¢i){¢;|}, where
four specific POVM elements are chosen. These fixed POVM
elements are defined as follows:

|¢1> = |O>a
o) = cos($)[0) +¢~*F sin(L)]1),
T x T 30)
[63) = cos()[0) + €% sin(Z)]1),
[64) = cos()|0) + €T sin()|1).

In our simulations with fixed measurements, we con-
sistently select the POVM that is nearest to the quantum
state at each measurement step, determined by the nominal
trajectory.

Tables II and III present the infidelity and error tracking
metrics, denoted as FEiack. Among them, we illustrate the
scenario of depolarizing decoherence in Fig. 2.

In the presence of uncertainties, we assess the performance
of the algorithm by calculating the accumulated tracking
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errors over the entire period IN. This process is repeated
3000 times to obtain an average performance metric.

Here, the accumulated tracking error, denoted by Eiack,
quantifies the deviation from the nominal path and is defined
as follows:

N-1

Eiack = Z 1-Tr (ﬁl\kp;c+1) s
t=0

€1V

where pj | represents the post-measurement state.

In scenarios without measurement, py), represents the
evolution of the nominal system. On the other hand, the state
Pl41 is obtained by evolving the system with uncertainties.

TABLE II: Infidelity between final and target states for
depolarizing and phase-damping decoherence.

Infidelity Unmeasured | Fixed Measured Measured
Depolarizing 0.2139 8.020 x 102 | 6.572 x 10~ 2
Phase-damping 0.03173 3.512 x 1073 | 1.172 x 10~ %

TABLE III: Average accumulated tracking error, gk, for
depolarizing and phase-damping decoherence.

FElrack Unmeasured | Fixed Measured Measured
Depolarizing 7.078 0.4650 0.2567
Phase-damping 7.814 0.1930 3.767 x 10~ 2

V. CONCLUSIONS AND FUTURE WORKS

In our study, we apply an MPC strategy to two-level open
quantum systems. To facilitate this strategy with a quan-
tum measurement, POVM, we demonstrated the minimum
success probability when quantum states are affected by de-
coherence and an uncertain Hamiltonian. Notably, the fixed
measurement strategy in our method represents a practical
approach. It allows for controlling the quantum state using
predetermined input signals and following a predefined set
of POVMs, thereby simplifying the quantum control process
step by step. We will explore scenarios involving more
general N-level open quantum systems in future work,.
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