
Bridging Autoencoders and Dynamic Mode Decomposition for
Reduced-order Modeling and Control of PDEs

Priyabrata Saha and Saibal Mukhopadhyay

Abstract— Modeling and controlling complex spatiotemporal
dynamical systems driven by partial differential equations
(PDEs) often necessitate dimensionality reduction techniques
to construct lower-order models for computational efficiency.
This paper explores a deep autoencoding learning method for
reduced-order modeling and control of dynamical systems gov-
erned by spatiotemporal PDEs. We first analytically show that
an optimization objective for learning a linear autoencoding
reduced-order model can be formulated to yield a solution
closely resembling the result obtained through the dynamic
mode decomposition with control algorithm. We then extend
this linear autoencoding architecture to a deep autoencoding
framework, enabling the development of a nonlinear reduced-
order model. Furthermore, we leverage the learned reduced-
order model to design controllers using stability-constrained
deep neural networks. Numerical experiments are presented
to validate the efficacy of our approach in both modeling and
control using the example of a reaction-diffusion system.

I. INTRODUCTION

Performing high-fidelity simulations of physical systems
governed by partial differential equations (PDEs) incurs
substantial computational costs, rendering subsequent tasks,
such as control, extremely challenging if not infeasible. To
address this, reduced-order models (ROMs) are often de-
veloped using dimensionality reduction techniques, enabling
efficient simulation and control. For controlled dynamical
systems, the reduced-order modeling approaches either com-
bine analytical techniques with empirical approximation [1]
or are purely data-driven [2], [3], [4]. Among these, the
dynamic mode decomposition (DMD) based methods have
become widely popular in recent years due to a strong
connection between DMD and Koopman operator theory [5].
Another recent research trend involves utilizing deep neural
networks (DNNs), particularly autoencoders, for modeling
and control of high-dimensional dynamical systems. Most
research in this area focuses only on the modeling and
prediction of such complex dynamics [6], [7], [8].

A second line of research, though relatively less prevalent
than modeling and prediction, leverages deep learning for
controlling PDE-driven systems. Deep reinforcement learn-
ing (RL) is one such approach utilized to learn control
policies for these systems [9], [10]. However, model-free RL
methods require running numerical solvers in every iteration
to provide feedback to the agents, which is computationally
expensive. The same concern arises for the methods involv-
ing differentiable simulators as in [11], [12]. The alternative

The authors are with School of Electrical and Com-
puter Engineering, Georgia Institute of Technology, Atlanta,
USA. Emails: priyabratasaha@gatech.edu,
saibal.mukhopadhyay@ece.gatech.edu

to model-free methods for control design takes the traditional
approach: develop a model first and then use that to design
controllers [13], [14], [15]. These model-based methods con-
strain the latent dynamic models to be linear and work well
within a short time-window. However, linear combination
of a finite number of dynamic modes may not accurately
represent the long-term nonlinear characteristics of complex
dynamics [16] and adding nonlinear forcing terms yields
better prediction accuracy [7]. It is also necessary to update
the linear ROMs with online observations during operation
for better prediction accuracy. Accordingly, model-based
approaches typically leverage the model-predictive control
(MPC) scheme to optimize the control policy online using
the updated ROMs. Running online optimization at each step
may not be computationally feasible in many cases.

In this paper, we explore the potential of nonlinear ROMs
to achieve more accurate long-term predictions, enabling
the use of offline control learning methods. Specifically, we
develop autoencoder-based ROMs for PDE-driven controlled
dynamical systems and leverage these ROMs to learn control
policies for the original systems. Our main contributions are:

• Drawing inspiration from the dynamic mode decompo-
sition with control (DMDc) algorithm [4], we propose
an autoencoding framework that effectively captures
the dynamic characteristics of the underlying systems,
which is crucial for the controller’s performance on the
full-order system.

• We formulate an objective function for data-driven
model learning in a linear autoencoding configuration
and show analytically that this function encourages a
linear ROM resembling the model obtained via DMDc.

• We configure the linear autoencoding architecture such
that its components can be substituted with DNNs and
optimized via gradient descent to obtain a nonlinear
ROM. We show that DNN-based nonlinear ROMs yield
more accurate long-term predictions and facilitates of-
fline control learning for the underlying system.

• We leverage the learned nonlinear ROM to design
controllers using stability-constrained DNNs, ensuring
the stability of the control policies.

Section II provides the problem statement and background
on DMDc. Section III details the linear autoencoding frame-
work, its connection to DMDc, extends it to nonlinear
autoencoders, and outlines the control learning algorithm.
Section IV presents numerical experiments to validate the
proposed methods, and Section V concludes the paper with a
summary of findings and potential future research directions.

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 7580

II. PROBLEM AND PRELIMINARIES

A. Problem statement

Consider a time-invariant controlled dynamical system
driven by a PDE

∂X
∂t

= M
(
X ,

∂X
∂ζ

,
∂2X
∂ζ2 , · · · ,u

)
, (1)

where X (ζ, t) ∈ R is the system state at location ζ and
time t, and u(t) ∈ U ⊂ Rdu is the actuation (or control
input) at time t. M is a linear or nonlinear function of the
system state, its spatial derivatives of different orders, and the
actuation. Space discretization of the state leads to a system
of ordinary differential equations (ODEs) that can be written
as

dx

dt
= f(x,u). (2)

Here x(t) ∈ X ⊂ Rdx , dx >> 1 is the space-discretized
state vector at time t. Our objective is to learn a reduced-
order model for this high-dimensional (dx >> 1) system
of (2) and use that ROM to learn a feedback controller
u = π(x) that stabilizes the system at a desired state. We
consider a data-driven learning scenario and assume that we
have observations from the system consisting of time series
data x(ti), i = 0, 1, · · · , n subjected to random values of
actuations u(ti), i = 0, 1, · · · , (n − 1). Note, we use v (in
place of v(t) for brevity) as notation for any continuous-time
variable (e.g., system state, control input), whereas v(ti) is
used to denote their discrete sample at time instance ti. We
further assume that the system we are aiming to stabilize at
an equilibrium point is locally stabilizable, i.e., there exists
a control policy such that the desired state is asymptotically
stable for the closed-loop system.

B. Dynamic mode decomposition with control

DMD [17] is a data-driven method that reconstructs the
underlying dynamics using only a time series of snapshots
from the system. DMDc [4] is an extension of DMD for
dynamical systems with control. DMDc seeks best-fit linear
operators A and B between successive observed states and
the actuations:

x̂(ti+1) = Ax(ti) +Bu(ti), i = 0, 1, · · · , n− 1, (3)

where x̂(t) denotes an approximation of x(t), A ∈ Rdx×dx ,
and B ∈ Rdx×du . Direct analysis of (3) could be com-
putationally prohibitive for dx >> 1. DMDc leverages
dimensionality reduction to compute a ROM

xR,DMDc(ti) = EDMDcx(ti), (4a)
xR,DMDc(ti+1) = AR,DMDcxR,DMDc(ti) +BR,DMDcu(ti),

(4b)
i = 0, 1, · · · , n− 1,

which retains the dominant dynamic modes of (3). Here,
xR,DMDc(ti) ∈ Rrx is the reduced state, where rx << dx,
and EDMDc ∈ Rrx×dx , AR,DMDc ∈ Rrx×rx ,BR,DMDc ∈
Rrx×du . The full state is reconstructed from the reduced
state using the transformation x̂(ti) = DDMDcxR,DMDc(ti),

where DDMDc ∈ Rdx×rx . DMDc computes truncated sin-
gular value decomposition (SVD) of the data matrices
Y = [x(t1),x(t2), · · · ,x(tn)] ∈ Rdx×n and Ω =
[ω(t0),ω(t1), · · · ,ω(tn−1)] ∈ R(dx+du)×n, ω(ti) =
[x(ti)

⊤,u(ti)
⊤]⊤ ∈ Rdx+du as follows:

Y = ÛY Σ̂Y V̂ ⊤
Y , Ω = ÛΩΣ̂Ω V̂

⊤
Ω , (5)

where ÛY ∈ Rdx×rx , Σ̂Y ∈ Rrx×rx , V̂Y ∈ Rn×rx , ÛΩ ∈
R(dx+du)×rxu , Σ̂Ω ∈ Rrxu×rxu , and V̂Ω ∈ Rn×rxu . Here,
rx < min(dx, n) and rx < rxu < min(dx + du, n) denote
the truncation dimensions of SVDs. Utilizing the SVDs of
(5), the parameters of the ROM (4) is obtained as

EDMDc = Û⊤
Y , DDMDc = ÛY , (6a)

AR,DMDc = Û⊤
Y Y V̂ΩΣ̂

−1

Ω Û⊤
Ω,1ÛY , (6b)

BR,DMDc = Û⊤
Y Y V̂ΩΣ̂

−1

Ω Û⊤
Ω,2, (6c)

where ÛΩ,1 ∈ Rdx×rxu , ÛΩ,2 ∈ Rdu×rxu , and Û⊤
Ω =

[Û⊤
Ω,1 Û⊤

Ω,2].

III. METHOD

A. Learning a reduced order model

To develop a nonlinear ROM utilizing DNNs that effec-
tively capture the underlying dynamics, we first investigate
if we can obtain a linear ROM similar to DMDc, in a
gradient descent arrangement. Specifically, we analyze op-
timization objectives that encourage a DMDc-like solution
for a reduced-order modeling problem using linear networks
(single layer network without nonlinear activation). Consider
the following reduced-order modeling problem

xR(ti) = Exx(ti), (7a)
xR(ti+1) = ARxR(ti) +BRu(ti), (7b)

x̂(ti) = DxxR(ti), i = 0, 1, · · · , n− 1, (7c)

where the linear operators Ex ∈ Rrx×dx and Dx ∈
Rdx×rx projects and reconstructs back, respectively, the
high-dimensional system state to and from a low-dimensional
feature xR ∈ Rrx . The linear operators AR ∈ Rrx×rx and
BR ∈ Rrx×du describe the relations between successive
reduced states and actuations. We refer to this reduced-order
model with linear networks as linear autoencoding ROM or
LAROM. In the following, we first analyze the solution of
the optimization objective of LAROM for a fixed encoder
Ex. Then we establish a connection between the solution of
LAROM and the solution of DMDc, and further discuss the
choice of the encoder to promote similarity between the two.
Finally, we extend the linear model to a DNN-based model,
which we refer to as DeepROM.

1) Analysis of the linear reduced-order model for a fixed
encoder: The DMDc algorithm essentially solves for G̃ ∈
Rrx×(dx+du) to minimize 1

n

∑n−1
i=0

∥∥Exx(ti+1)−G̃ω(ti)
∥∥2

for a fixed projection matrix Ex = EDMDc = Û⊤
Y . Here,

ω(ti) is the concatenated vector of state and actuation as
defined in section II-B. The optimal solution G̃opt is then
partitioned as [Ã B̃] such that Ã ∈ Rrx×dx , B̃ ∈ Rrx×du .

7581

Finally, Ã is post-multiplied with the reconstruction operator
DDMDc = ÛY to get the ROM components AR,DMDc and
BR,DMDc. Note, that the final step of this process (multi-
plication of the operators) is feasible only for the linear
case, not in the case when the projection and reconstruction
operators are nonlinear (e.g. DNNs). Therefore, we use an
alternative formulation with the following results to design
a loss function that encourages a DMDc-like solution for
(7) and also offers dimensionality reduction when nonlinear
components are used.

Theorem 1: Consider the following objective function

Lpred(Ex,G) =
1

n

n−1∑
i=0

∥∥Exx(ti+1)−GExuω(ti)
∥∥2, (8)

where G = [AR BR] ∈ Rrx×(rx+du),Exu =[
Ex 0
0 Idu

]
∈ R(rx+du)×(dx+du), Idu being the identity

matrix of order du. For any fixed matrix Ex, the objective
function Lpred is convex in the coefficients of G and attains
its minimum for any G satisfying

GExuΩΩ⊤E⊤
xu = ExY Ω⊤E⊤

xu, (9)

where Y and Ω are the data matrices as defined in section
II-B. If Ex has full rank rx, and ΩΩ⊤ is non-singular, then
Lpred is strictly convex and has a unique minimum for

G = [AR BR] = ExY Ω⊤E⊤
xu(ExuΩΩ⊤E⊤

xu)
−1. (10)

Proof. See appendix I-A.
Remark 1: For a unique solution, we assume that Ex

has full rank. The other scenario, i.e., Ex is rank-deficient
suggests poor utilization of the hidden units of the model. In
that case, the number of hidden units (which represents the
dimension of the reduced state) should be decreased. The
assumption that the covariance matrix ΩΩ⊤ is invertible
can be ensured when n ≥ dx + du, by removing any
linearly dependent features in system state and actuation.
When n < dx + du, the covariance matrix ΩΩ⊤ is not
invertible. However, similar results can be obtained by adding
ℓ2 regularization (for the coefficients/entries of G) to the
objective function.

2) The connection between the solutions of the linear
autoencoding model and DMDc: The connection between
the ROM obtained by minimizing Lpred (for a fixed Ex),
i.e., (10) and the DMDc ROM of (6) is not readily apparent.
To interpret the connection, we formulate an alternative
representation of (10) utilizing the SVD and the Moore-
Penrose inverse of matrices. This alternative representation
leads to the following result.

Corollary 1.1: Consider the (full) SVD of the data ma-
trix Ω given by Ω = UΩΣΩV

⊤
Ω , where UΩ ∈

R(dx+du)×(dx+du),ΣΩ ∈ R(dx+du)×n, and VΩ ∈ Rn×n.
If Ex = Û⊤

Y and ΩΩ⊤ is non-singular, then the solution
for G = [AR BR] corresponding to the unique minimum of
Lpred can be expressed as

AR = Û⊤
Y Y VΩΣ

∗U⊤
Ω,1ÛY , BR = Û⊤

Y Y VΩΣ
∗U⊤

Ω,2,
(11)

where [U⊤
Ω,1 U⊤

Ω,2] = U⊤
Ω with UΩ,1 ∈

Rdx×(dx+du),UΩ,2 ∈ Rdu×(dx+du), and
Σ∗ = limε→0(Σ

⊤
ΩU

⊤
Ω,1ÛY Û⊤

Y UΩ,1ΣΩ +

Σ⊤
ΩU

⊤
Ω,2UΩ,2ΣΩ + ε2In)

−1Σ⊤
Ω .

Proof. See appendix I-C.
Remark 2: It can be verified easily that if we use the

truncated SVD (as defined by 5), instead of the full SVD,
for Ω in corollary 1.1, we get an approximation of (11):

ÂR = Û⊤
Y Y V̂Ω Σ̂

∗Û⊤
Ω,1ÛY , B̂R = Û⊤

Y Y V̂Ω Σ̂
∗Û⊤

Ω,2,
(12)

where Σ̂∗ = limε→0(Σ̂
⊤
ΩÛ

⊤
Ω,1ÛY Û⊤

Y ÛΩ,1Σ̂Ω +

Σ̂
⊤
ΩÛ

⊤
Ω,2ÛΩ,2Σ̂Ω + ε2Irxu)

−1Σ̂
⊤
Ω . We can see that

(12) has the same form as (6b), except Σ̂
−1

Ω is replaced
with Σ̂∗.

All the aforementioned results are derived for a fixed Ex

and the relation to the DMDc is specific to the case Ex =
Û⊤

Y . Note that the columns of the ÛY are the left singular
vectors, corresponding to the leading singular values, of Y .
Equivalently, those are also the eigenvectors, corresponding
to the leading eigenvalues, of the covariance matrix Y Y ⊤.
Lpred alone does not constrain Ex to take a similar form and
we need another loss term to encourage such form for the
encoder. To this end, we build on the findings in [18], which
explore the similarity between principle component analysis
and linear autoencoders optimized with the objective func-
tion: Lrecon(Ex,Dx) = 1

n

∑n
i=1

∥∥x(ti) − DxExx(ti)
∥∥2.

It is shown in [18] that all the critical points of Lrecon
correspond to projections onto subspaces associated with
subsets of eigenvectors of the covariance matrix Y Y ⊤.
Moreover, Lrecon has a unique global minimum correspond-
ing to the first rx (i.e., the desired dimension of the reduced
state) number of eigenvectors of Y Y ⊤, associated with the
leading rx eigenvalues. In other words, for any invertible
matrix C ∈ Rrx×rx , Dx = UrxC and Ex = C−1U⊤

rx
globally minimizes Lrecon, where Urx denotes the matrix
containing leading rx eigenvectors of Y Y ⊤. Since the left
singular vectors of Y are the eigenvectors of Y Y ⊤, we
have Urx = ÛY . Hence, we consider to utilize Lrecon to
promote learning an encoder Ex in the form of C−1Û⊤

Y .
Accordingly, we propose to minimize the following objective
function to encourage a DMDc-like solution for LAROM:

L(Ex,Dx,G) = Lpred(Ex,G) + β1Lrecon(Ex,Dx), (13)

where β1 > 0 is a tunable hyperparameter.
It is important to note that Lrecon is minimized for any

invertible matrix C, Dx = ÛY C, and Ex = C−1Û⊤
Y .

When optimized using gradient descent, it is highly unlikely
to get C as the identity matrix like DMDc. Rather, we expect
a random C. Therefore, we need additional constraints to
promote similarity with DMDc. For this purpose, we tie the
matrices Ex and Dx to be the transpose of each other and
add a semi-orthogonality constraint β4∥ExE

⊤
x −Irx∥, β4 >

0 to the optimization objective of (13).
3) Extending the linear model to a deep model: Here,

we discuss the process of extending LAROM to a non-

7582

ℰ𝒙 ℱ

State
Encoder

State
Decoder

ROM
𝒙(𝑡𝑖) 𝒙R(𝑡𝑖)

𝒖(𝑡𝑖)

ෝ𝒙R(𝑡𝑖+1)

𝒙(𝑡𝑖+1)

𝒟𝒙

ෝ𝒙(𝑡𝑖)ℒrecon

ℒpred

ℰ𝒙
𝒙R(𝑡𝑖+1)

(a)

ℰ𝒙 ℱ

State
Encoder

ROM

Π

ℱ𝑠

𝒱R 𝒙R

ℱ(𝒙R, 𝒖)

Controller

Target
Dynamics

𝒙 𝒙R

𝒖

ℱ𝑠(𝒙R)

Lyapunov Function

ℒctrl

(b)
Fig. 1: (a): Autoencoding architecture for reduced-order
modeling. The state encoder Ex reduces the dimension of
the state. The ROM F takes the current reduced state and
actuation to predict the next reduced state, which is then
uplifted to the full state by the state decoder Dx. All modules
are trained together using a combined loss involving Lpred
and Lrecon. (b): The control learning process. Given a reduced
state, Fs predicts a target dynamics for the closed-loop
system, and the controller Π predicts an actuation to achieve
that target. Both the modules are trained jointly using the
loss function Lctrl. Parameters of the dark-shaded modules
are kept fixed during this process.

linear reduced-order modeling framework. We replace all
the trainable components of LAROM, i.e., Ex,Dx, and
G, with DNNs. Specifically, we use an encoding function
or encoder Ex : X → Rrx and a decoding function or
decoder Dx : Rrx → X to transform the high-dimensional
system state to low-dimensional features and reconstruct
it back, respectively, i.e., xR = Ex(x), x̂ = Dx(xR),
where xR ∈ Rrx denotes the reduced state, and x̂ is
the reconstruction of x. The encoded state and control are
then fed to another DNN that represents the reduced order
dynamics dxR

dt = F(xR,u), where F : Rrx × Rdu → Rrx .
Given the current reduced state xR(ti) and control input
u(ti), the next reduced state xR(ti+1) can be computed
by integrating F using a numerical integrator: xR(ti+1) =

xR(ti)+
∫ ti+1

ti
F
(
xR(t),u(t)

)
dt

∆
= G

(
xR(ti),u(ti)

)
. We can

say that G is the nonlinear counterpart of G.
Note, here the ROM is represented as a continuous-

time dynamics, unlike the linear case where we used a
discrete-time model. We use a discrete-time formulation for
LAROM to establish its similarity with DMDc, which is

formulated in discrete time. DeepROM can be formulated
in a similar fashion as well. However, the specific control
learning algorithm we used, which will be discussed in the
next subsection, requires vector fields of the learned ROM
for training. Therefore, we formulate the ROM in continuous
time so that it provides the vector field F(xR,u) of the
dynamics. In cases where only the prediction model is of
interest and control learning is not required, a discrete-time
formulation should be used for faster training of the ROM.

We train Ex,Dx, and F by minimizing the following loss
function, analogous to (13),

L(Ex,Dx,F) = Lpred(Ex,F) + β2Lrecon(Ex,Dx), (14)

where β2 > 0 is a tunable hyperparameter.
Lpred and Lrecon are defined as Lpred(Ex,F) =

1
n

∑n−1
i=0

∥∥∥Ex(x(ti+1)
)

− G
(
Ex

(
x(ti)

)
,u(ti)

)∥∥∥2 and

Lrecon(Ex,Dx) =
1
n

∑n
i=1

∥∥x(ti)−Dx ◦Ex
(
x(ti)

)∥∥2. Here,
the operator ◦ denotes the composition of two functions.
In experiments, Lrecon also includes the reconstruction
loss of the desired state where we want to stabilize the
system. Figure 1a shows the overall framework for training
DeepROM.

B. Learning control

Once we get a trained ROM of the form dxR
dt = F(xR,u)

using the method proposed in section III-A, the next goal
is to design a controller for the system utilizing that ROM.
Since our ROM is represented by DNNs, we need a data-
driven method to develop the controller. We adopt the
approach presented in [19] for learning control laws for
nonlinear systems, represented by DNNs. The core idea of
the method is to hypothesize a target dynamics that ensures
exponentially stability of the desired state, and simultane-
ously learn a control policy to realize that target dynamics in
the closed loop. A DNN is used to represent the vector field
Fs : Rrx → Rrx of the target dynamics dxR

dt = Fs(xR). We
use another DNN to represent a controller Π : Rrx → Rdu

that provides the necessary actuation for a given reduced
state xR: u = Π(xR). Finally, the reduced state xR and
actuation u are fed to the (trained) ROM of dxR

dt = F(xR,u)
to get F(xR,u). The overall framework for learning control
is referred to as deep reduced-order control (DeepROC) and
is shown in Figure 1b.

Our training objective is to minimize the difference be-
tween F(xR,u) and Fs(xR), i.e.,

Lctrl(Fs,Π) =
1

n

n∑
i=1

∥∥F(
Ex(x(ti)),Π ◦ Ex(x(ti))

)
−Fs ◦ Ex

(
x(ti)

)∥∥2. (15)

To minimize the control effort, we add a regularization loss
with (15), and the overall training objective for learning
control is given by

Lctrl,reg(Fs,Π) = Lctrl(Fs,Π) + β3
1

n

n∑
i=1

∥∥Π(xR(ti))
∥∥2,
(16)

7583

where β3 > 0 is a tunable hyperparameter. Here we jointly
train the DNNs representing Π and Fs only, whereas the
previously-trained DNNs for Ex and F are kept frozen.
Once all the DNNs are trained, we only need Ex and Π
during evaluation to generate actuation for the actual system,
given a full-state observation: u = Π ◦ Ex(x) = π(x). As
we mentioned earlier, we require that the target dynamics,
hypothesized by a DNN, ensures exponential stability of the
desired state. Without loss of generality, we consider stability
at xR = 0. The system can be stabilized at any desired state
by adding a feedforward component to the control. Dynamics
represented by a standard neural network does not generally
guarantee stability of any equilibrium point. However, it is
possible to design a DNN, by means of Lyapunov functions,
to represent a dynamics that ensures exponentially stability of
an equilibrium point, as demonstrated in [20]. Accordingly,
we represent our target dynamics as follows:

dxR

dt
= Fs(xR) =

P(xR)−
ReLU

(
∇VR(xR)

⊤P(xR) + αVR(xR)
)

∥∇VR(xR)∥2
∇VR(xR),

(17)

where α is a positive constant, ReLU(z) = max(0, z), z ∈
R, P : Rrx → Rrx is an arbitrary function represented by a
DNN, and VR : Rrx → R is a candidate Lyapunov function.
We use

VR(xR) = x⊤
R KxR, (18)

where K ∈ Rrx×rx is a positive definite matrix. It is shown
in [20] that the origin is exponentially stable for the target
dynamics of (17) for any arbitrary DNN P .

IV. NUMERICAL EXPERIMENTS

We consider the Newell-Whitehead-Segel reaction-
diffusion equation

∂q

∂t
= σ∇2q + q(1− q2) + 1Ww in I× R+,

∇q(ζl, t) = ∇q(ζr, t) = 0, t ∈ R+, (19)

which is used to describe various nonlinear physical systems
including Rayleigh-Bénard convection. In (19), q(ζ, t) ∈ R
denotes the measurement variable such as concentration or
temperature at location ζ ∈ I ⊂ R and time t; σ denotes the
diffusion coefficient; w(t) ∈ R is the actuation at time t and
1W(ζ) is the indicator function with W ⊂ I; ζl and ζr denote
the boundary points of I. The considered system is a bistable
system with ±1 as stable and 0 as unstable equilibria. For
the control task, we consider feedback stabilization of this
system at the unstable equilibrium 0, as studied in [21]. We
use I = (−1, 1),W = (−0.2, 0.2), and σ = 0.2. Details on
dataset generation, neural network architectures, and training
settings are given in appendix II.

The prediction performance of DeepROM is compared
against DMDc and the Deep Koopman model [13]. The Deep
Koopman model shares a similar DNN-based autoencoding
structure as ours, with the distinction that its (reduced-
order) dynamic model is linear. The method proposed in [13]

DMDc dynamic modes LAROM dynamic modes

Fig. 2: The first three dynamic modes of the reac-
tion–diffusion system, obtained using DMDc and LAROM.

considers a model predictive scenario, where the state/system
matrix of the linear reduced-order model is updated with
online observations during operation while the input/control
matrix is kept fixed. However, in contrast to the original
method, we keep both matrices fixed during the control
operation as we consider offline control design in this paper.
For the same reason, we apply linear quadratic regulator
(LQR) on the ROM obtained from the Deep Koopman
method, instead of model predictive control, to compare
the control performance with our method: DeepROC. The
control performance is also compared against the reduced-
order controller obtained by applying LQR on the ROM
derived from DMDc.

Similarity with DMDc. To investigate the similarity with
DMDc, we first train LAROM using gradient descent to
minimize the objective (13) with the semi-orthogonality
regularization and enforcing Dx = E⊤

x , as discussed in
III-A.2. The dynamic modes for LAROM are computed
as φi = Dxzi, where zi is the ith eigenvector of AR.
Similarly, the dynamic modes for DMDc are computed as
φi,DMDc = DDMDczi,DMDc, where zi,DMDc is the ith eigen-
vector of AR,DMDc. Note, these dynamic modes are similar
to the ones used in the original DMD algorithm [17], not
the exact modes obtained in [4]. Exact modes cannot be
computed for LAROM since it does not involve SVD. Modes
defined by φi,DMDc = DDMDczi,DMDc = ÛY zi,DMDc are the
orthogonal projection of the exact modes onto the range of
Y (Theorem 3, [22]). Fig. 2 compares the dynamic modes
obtained using DMDc and LAROM for the case when the
dimension of the ROMs is 3. It is important to note that the
numbering of the modes is arbitrary as the optimal ranking
of DMDc modes is not trivial. The correspondence between
the DMDc modes and LAROM modes are determined by
comparing the eigenvalues of AR,DMDc and AR. Dynamic
modes of both methods are similar except for the different
signs of the first two modes.

Prediction performance. We compare the performance
of DeepROM, Deep Koopman model, and DMDc in the
prediction task. Fig. 3(a) shows the quantitative comparison
of the recursive multi-step predictions obtained using DMDc,
Deep Koopman model, and DeepROM. The prediction error
is computed as normalized mean squared error (NMSE)
with respect to the solution obtained using the PDE solver.
Prediction error increases more quickly for DMDc and Deep
Koopman than DeepROM as the linear ROMs become less
accurate in the long term. A qualitative comparison of

7584

Error with respect to desired profile ActuationPrediction error

(a) (b) (c)

Fig. 3: (a): Prediction performance of different methods in the reaction–diffusion example. The shaded interval shows the 95%
confidence interval around the mean from 100 test sequences and 3 different training instances. (b,c): Control performance
of different methods in the reaction–diffusion example. The shaded interval shows the 1-standard deviation range around
the mean from 3 different training instances.

DMDc [4] prediction

DeepROM predictionPDE solution

Deep Koopman [13] prediction

Fig. 4: Qualitative comparison of prediction performance
of DMDc, Deep Koopman, and DeepROM for the reac-
tion–diffusion system using one example sequence.

the prediction performance of the methods for an example
sequence is shown in Fig. 4.

Control performance. Fig. 3(b,c) show the control per-
formance of DeepROC, Deep Koopman + LQR, and DMDc
+ LQR in the task of stabilizing the system at the unstable
equilibrium 0 from an initial state 2+cos(2πζ) cos(πζ). We
use the following two metrics for comparison:

(i) mean squared error over time between the controlled
solutions and the desired profile

(ii) the amount of actuation applied
All methods show similar closed-loop error profiles. How-
ever, DeepROC requires significantly less amount of actua-
tion in comparison with DMDc + LQR and Deep Koopman
+ LQR to reach a similar steady-state error. DeepROC can
account for the decaying nonlinear term −q3 present in the
system (19) and therefore learns to apply less actuation.
A qualitative comparison of the uncontrolled solution and
the controlled solutions obtained using the three methods is
shown in Fig. 5.

V. CONCLUSION

We presented a framework for autoencoder-based mod-
eling and control learning for PDE-driven dynamical sys-
tems. The proposed reduced-order modeling framework is

Uncontrolled solution
DeepROC

controlled solution

DMDc [4] + LQR

controlled solution

Deep Koopman [13] + LQR

controlled solution

Fig. 5: Visual comparison of the uncontrolled solution and
the controlled solutions of the reaction–diffusion system
using DeepROC, Deep Koopman + LQR, and DMDc + LQR.

grounded on the connection between dynamic mode decom-
position for controlled systems and a linear autoencoding
architecture that can be trained using gradient descent. As
demonstrated in our numerical experiments, DeepROM of-
fers better prediction accuracy than a linear ROM over a
relatively longer prediction horizon when applied to a non-
linear system. Additionally, DeepROC requires less amount
of actuation to reach the desired state for such a system.

APPENDIX I
PROOFS

A. Proof of theorem 1

We can write Lpred(Ex,G) as follows,

Lpred(Ex,G) =
1

n

n−1∑
i=0

∥∥Exx(ti+1)−GExuω(ti)
∥∥2

=
1

n

∥∥vec(ExY)− vec(GExuΩ)
∥∥2

=
1

n

∥∥vec(ExY)− (Ω⊤E⊤
xu ⊗ Irx)vec(G)

∥∥2,
(20)

7585

where ⊗ and vec(·) denotes the Kronecker product and
vectorization of matrices, respectively. The third equality is
obtained using properties of the Kronecker product. Applying
the principles of linear least squares optimization, we obtain
the following outcome. For fixed Ex, (20) is convex in
coefficient of G, and G corresponds to a global minimum
of Lpred if and only if

(Ω⊤E⊤
xu ⊗ Irx)

⊤(Ω⊤E⊤
xu ⊗ Irx)vec(G)

= (Ω⊤E⊤
xu ⊗ Irx)

⊤vec(ExY). (21)

Using the properties of the Kronecker product, we can write
(21) as

(ExuΩΩ⊤E⊤
xu⊗Irx)vec(G) = (ExuΩ⊗Irx)vec(ExY),

(22)
which yields GExuΩΩ⊤E⊤

xu = ExY Ω⊤E⊤
xu, i.e., (9).

If Ex has full rank rx, then Exu =

[
Ex 0
0 Idu

]
∈

R(rx+du)×(dx+du) has full rank (rx + du). If ΩΩ⊤ ∈
R(dx+du)×(dx+du) is non-singular, then Ω has full row-rank
(dx + du). Consequently, applying the properties of matrix
rank, we have

rank(ExuΩΩ⊤E⊤
xu) = rank(ExuΩ)

= rank(Exu) = rx + du. (23)

Hence, the symmetric positive semidefinite matrix
ExuΩΩ⊤E⊤

xu has full rank and is therefore positive
definite. Using the properties of the Kronecker
product of positive definite matrices, we can see that
(Ω⊤E⊤

xu⊗Irx)
⊤(Ω⊤E⊤

xu⊗Irx) = (ExuΩΩ⊤E⊤
xu⊗Irx)

is positive definite as well. Therefore, (20) is strictly convex
in the coefficients of G and has a unique minimum. Since
ExuΩΩ⊤E⊤

xu ≻ 0, it is invertible. Hence, from (9), we
can say that the unique minimum of (20) is reached at
G = ExY Ω⊤E⊤

xu(ExuΩΩ⊤E⊤
xu)

−1, i.e., (10). ■

B. An alternative representation of (10)

Here we provide an alternative representation of (10)
required to prove corollary 1.1.

Lemma 2: Consider the (full) SVD of the data ma-
trix Ω given by Ω = UΩΣΩV

⊤
Ω , where UΩ ∈

R(dx+du)×(dx+du),ΣΩ ∈ R(dx+du)×n, and VΩ ∈ Rn×n.
(10) can be expressed as

G = lim
ε→0

ExY VΩ (Σ
⊤
ΩU

⊤
ΩE⊤

xuExuUΩΣΩ

+ε2In)
−1Σ⊤

ΩU
⊤
ΩE⊤

xu. (24)

Proof. Replacing Ω with its SVD in (10) we get,

G =

ExY VΩΣ
⊤
ΩU

⊤
ΩE⊤

xu(ExuUΩΣΩV
⊤
Ω VΩΣ

⊤
ΩU

⊤
ΩE⊤

xu)
−1

= ExY VΩΣ
⊤
ΩU

⊤
ΩE⊤

xu(ExuUΩΣΩΣ
⊤
ΩU

⊤
ΩE⊤

xu)
−1

= ExY VΩ (ExuUΩΣΩ)
+, (25)

where (·)+ denotes the Moore-Penrose inverse of a matrix.
The second equality is due to the orthogonality of VΩ .

Substituting (ExuUΩΣΩ)
+ with the limit definition (see

[23]) of the Moore-Penrose inverse, we get

G = lim
ε→0

ExY VΩ (Σ
⊤
ΩU

⊤
ΩE⊤

xuExuUΩΣΩ

+ε2In)
−1Σ⊤

ΩU
⊤
ΩE⊤

xu. (26)

■

C. Proof of Corollary 1.1
By the definition of truncated SVD, the columns of ÛY

are orthonormal. Therefore, Û⊤
Y has full row-rank rx. Hence,

by theorem 1 and lemma 2, if Ex = Û⊤
Y , and ΩΩ⊤ is non-

singular, then the unique minimum of Lpred, is reached when

G = Û⊤
Y Y VΩ (ExuUΩΣΩ)

+

= lim
ε→0

Û⊤
Y Y VΩ (Σ

⊤
ΩU

⊤
ΩE⊤

xuExuUΩΣΩ

+ε2In)
−1Σ⊤

ΩU
⊤
ΩE⊤

xu. (27)

Now, substituting Ex = Û⊤
Y in Exu, and using

the partition U⊤
Ω = [U⊤

Ω,1 U⊤
Ω,2], where UΩ,1 ∈

Rdx×(dx+du),UΩ,2 ∈ Rdu×(dx+du), we get

ExuUΩ =

[
Û⊤

Y 0
0 Idu

] [
UΩ,1

UΩ,2

]
=

[
Û⊤

Y UΩ,1

UΩ,2

]
, (28)

and

U⊤
ΩE⊤

xuExuUΩ =
[
U⊤

Ω,1ÛY U⊤
Ω,2

] [
Û⊤

Y UΩ,1

UΩ,2

]
= U⊤

Ω,1ÛY Û⊤
Y UΩ,1 +U⊤

Ω,2UΩ,2. (29)

Plugging (28) and (29) into (27) leads to

G = lim
ε→0

Û⊤
Y Y VΩ (Σ

⊤
ΩU

⊤
Ω,1ÛY Û⊤

Y UΩ,1ΣΩ

+Σ⊤
ΩU

⊤
Ω,2UΩ,2ΣΩ + ε2In)

−1Σ⊤
Ω

[
U⊤

Ω,1ÛY U⊤
Ω,2

]
.

(30)

Defining Σ∗ ∆
= limε→0(Σ

⊤
ΩU

⊤
Ω,1ÛY Û⊤

Y UΩ,1ΣΩ +

Σ⊤
ΩU

⊤
Ω,2UΩ,2ΣΩ + ε2In)

−1Σ⊤
Ω , we can split (30) into

AR = Û⊤
Y Y VΩΣ

∗U⊤
Ω,1ÛY , and BR = Û⊤

Y Y VΩΣ
∗U⊤

Ω,2,

which is (11). ■

APPENDIX II
DETAILS ON NUMERICAL EXPERIMENT

A. Dataset
We generate 100 training sequences of length 50 (i.e., n =

50) with time step size 0.01 and 256 nodes in I using the
finite element method. The initial conditions and actuations
of these sequences are given by

q(ζ, 0) = |a|
4∑

k=0

bkTk(ζ), ζ ∈ I, (31)

and

w(ti) = 10gi max
ζ

|q(ζ, ti−1)|, i = 1, 2, · · · , 49, (32)

where Tk denotes the kth Chebyshev polynomial of the
first kind, and a ∼ N (0, 1), bk, gi ∼ U(−1, 1) are chosen
randomly. Similarly, 100 sequences are generated for the test
set to evaluate the prediction performance.

7586

B. DNN architectures

The state encoder comprises two 1D convolutional layers,
followed by two fully connected (FC) layers. The first
convolutional layer has 32 filters of size 3, utilizing a
ReLU activation function and a stride of 2. The second
convolutional layer maintains the same configuration but
lacks the ReLU activation. The subsequent FC layer contains
64 neurons with ReLU activation. The final or output FC
layer is composed of rx neurons and does not use any bias.
The arrangement of layers in the state decoder is inverted
compared to that of the encoder, with transposed convolu-
tional layers replacing the convolutional layers. The ROM is
designed by breaking the function F into two components:
F
(
xR,u

)
= Fauto

(
xR

)
+ Fforced

(
xR,u

)
− Fforced

(
xR,0

)
.

Fauto represents the autonomous dynamics that does not
depend on the actuation, whereas Fforced is responsible for the
impact of actuation on dynamics. We observe this structure
results in better performance in experiments than a single
neural network representing F

(
xR,u

)
. Two multilayer per-

ceptrons (MLPs) are employed to realize Fauto and Fforced,
each consisting of three layers. The first and second layers
each comprise 100 neurons with ReLU activation, while the
output layer consists of rx neurons. The output of the ROM
is integrated using a numerical integrator to get the next
state. The target dynamics is represented by an MLP akin to
the one employed for Fauto, followed by a stability criterion
in the form of (17). The controller is implemented using
another MLP with a similar three-layer configuration, while
the output layer is adjusted to accommodate the actuation
dimension.

For the encoder and decoder of the Deep Koopman model,
we use the identical architectures as those employed in our
DeepROM model.

C. Training settings

We use rx = 5 in the prediction task and rx = 2
in the control task for all the methods. All modules are
implemented in PyTorch. In both of the learning phases,
learning ROM and learning controller, we use the Adam
optimizer with an initial learning rate of 0.001 and apply
an exponential scheduler with a decay of 0.99. Modules are
trained for 100 epochs in mini-batches of size 32. 10% of
the training data is used for validation to choose the best set
of models. For DeepROM training, we use β2 = 1 in (14).
For learning control, we use β3 = 0.2 in (16), α = 0.2 in
(17), and K = 0.5Irx in (18). Since the learned ROMs from
one training instance to another can vary, the hyperparameter
pair (α, β3) may require re-tuning accordingly.

For the Deep Koopman model, the input matrix is op-
timized by gradient descent during training along with the
encoder-decoder parameters, whereas the system matrix is
obtained using linear least-squares regression. The datasets
are divided into staggered 32-step sequences for training,
and the model is trained by generating recursive predictions
over 32 steps following [13]. We employ the same learning
hyperparameters as our model, adjusting the mini-batch size
to 8 to accommodate multistep recursive prediction.

REFERENCES

[1] K. Willcox and J. Peraire, “Balanced model reduction via the proper
orthogonal decomposition,” AIAA journal, vol. 40, no. 11, pp. 2323–
2330, 2002.

[2] J.-N. Juang and R. S. Pappa, “An eigensystem realization algorithm
for modal parameter identification and model reduction,” Journal of
guidance, control, and dynamics, vol. 8, no. 5, pp. 620–627, 1985.

[3] J.-N. Juang, M. Phan, L. G. Horta, and R. W. Longman, “Identification
of observer/kalman filter markov parameters-theory and experiments,”
Journal of Guidance, Control, and Dynamics, vol. 16, no. 2, pp. 320–
329, 1993.

[4] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode
decomposition with control,” SIAM Journal on Applied Dynamical
Systems, vol. 15, no. 1, pp. 142–161, 2016.

[5] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson,
“Spectral analysis of nonlinear flows,” Journal of fluid mechanics, vol.
641, pp. 115–127, 2009.

[6] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal
linear embeddings of nonlinear dynamics,” Nature communications,
vol. 9, no. 1, p. 4950, 2018.

[7] H. Eivazi, H. Veisi, M. H. Naderi, and V. Esfahanian, “Deep neural
networks for nonlinear model order reduction of unsteady flows,”
Physics of Fluids, vol. 32, no. 10, p. 105104, 2020.

[8] P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumoutsakos,
“Multiscale simulations of complex systems by learning their effective
dynamics,” Nature Machine Intelligence, vol. 4, no. 4, pp. 359–366,
2022.

[9] C. Vignon, J. Rabault, and R. Vinuesa, “Recent advances in applying
deep reinforcement learning for flow control: Perspectives and future
directions,” Physics of fluids, vol. 35, no. 3, 2023.

[10] Y.-Z. Wang, J.-Z. Peng, N. Aubry, Y.-B. Li, Z.-H. Chen, and W.-T.
Wu, “Control policy transfer of deep reinforcement learning based
intelligent forced heat convection control,” International Journal of
Thermal Sciences, vol. 195, p. 108618, 2024.

[11] P. Holl, N. Thuerey, and V. Koltun, “Learning to control pdes with
differentiable physics,” in International Conference on Learning Rep-
resentations, 2020.

[12] T. Takahashi, J. Liang, Y.-L. Qiao, and M. C. Lin, “Differentiable
fluids with solid coupling for learning and control,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35(7), 2021, pp.
6138–6146.

[13] J. Morton, A. Jameson, M. J. Kochenderfer, and F. Witherden, “Deep
dynamical modeling and control of unsteady fluid flows,” Advances
in Neural Information Processing Systems, vol. 31, 2018.

[14] O. Bounou, J. Ponce, and J. Carpentier, “Online learning and control of
dynamical systems from sensory input,” in NeurIPS 2021-Thirty-fifth
Conference on Neural Information Processing Systems Year, 2021.

[15] K. Chen, J. Lin, Y. Qiu, F. Liu, and Y. Song, “Deep learning-
aided model predictive control of wind farms for agc considering
the dynamic wake effect,” Control Engineering Practice, vol. 116,
p. 104925, 2021.

[16] M. A. Khodkar, P. Hassanzadeh, and A. Antoulas, “A koopman-based
framework for forecasting the spatiotemporal evolution of chaotic
dynamics with nonlinearities modeled as exogenous forcings,” arXiv
preprint arXiv:1909.00076, 2019.

[17] P. J. Schmid, “Dynamic mode decomposition of numerical and exper-
imental data,” Journal of fluid mechanics, vol. 656, pp. 5–28, 2010.

[18] P. Baldi and K. Hornik, “Neural networks and principal component
analysis: Learning from examples without local minima,” Neural
networks, vol. 2, no. 1, pp. 53–58, 1989.

[19] P. Saha, M. Egerstedt, and S. Mukhopadhyay, “Neural identification
for control,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
4648–4655, 2021.

[20] J. Z. Kolter and G. Manek, “Learning stable deep dynamics models,”
Advances in neural information processing systems, vol. 32, 2019.

[21] D. Kalise and K. Kunisch, “Polynomial approximation of high-
dimensional hamilton–jacobi–bellman equations and applications to
feedback control of semilinear parabolic pdes,” SIAM Journal on
Scientific Computing, vol. 40, no. 2, pp. A629–A652, 2018.

[22] J. H. Tu, , C. W. Rowley, D. M. Luchtenburg, S. L. Brunton,
and J. N. K. and, “On dynamic mode decomposition: Theory and
applications,” Journal of Computational Dynamics, vol. 1, no. 2, pp.
391–421, 2014.

[23] A. Albert, Regression and the Moore-Penrose Pseudoinverse. Aca-
demic Press, 1972.

7587

