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Finite-Sample Bounds for Adaptive Inverse Reinforcement
Learning using Passive Langevin Dynamics

Luke Snow, Vikram Krishnamurthy

Abstract— Stochastic gradient Langevin dynamics
(SGLD) are a useful methodology for sampling from
probability distributions. This paper provides a fi-
nite sample analysis of a passive stochastic gradi-
ent Langevin dynamics algorithm (PSGLD) designed
to achieve inverse reinforcement learning. By "pas-
sive", we mean that the noisy gradients available to
the PSGLD algorithm (inverse learning process) are
evaluated at randomly chosen points by an exter-
nal stochastic gradient algorithm (forward learner).
The PSGLD algorithm acts as a randomized sampler
which recovers the cost function being optimized by
this external process. Previous work has analyzed
the asymptotic performance of this passive algorithm
using stochastic approximation techniques; in this
work we analyze the non-asymptotic performance.
Specifically, we provide finite-time bounds on the 2-
Wasserstein distance between the passive algorithm
and its stationary measure, from which the recon-
structed cost function is obtained.

I. INTRODUCTION

We derive non-asymptotic (finite-sample) bounds for
a Langevin dynamics algorithm performing real-time
inverse reinforcement learning (IRL). Traditional IRL
[1], [2], [3] reconstructs the cost function of a Markov
Decision Process by observing decisions taken from an
optimal policy, i.e., after an observed agent has com-
pleted learning the optimal policy. Here, we consider real-
time (adaptive) IRL. We observe an agent performing
stochastic gradient descent (e.g, policy gradient rein-
forcement learning) on a cost function J, and attempt
to reconstruct J in real-time.

To accomplish real-time IRL, we employ a passive
stochastic gradient Langevin dynamics (PSGLD) al-
gorithm. Given observations of an agent’s sequential
stochastic gradient descent (SGD) evaluations on .J, the
PSGLD algorithm acts as a Markov chain Monte Carlo
(MCMC) sampler designed to reconstruct J. The algo-
rithm relies on stochastic gradient Langevin dynamics
[4], [5], which has emerged as a general MCMC tech-
nique for sampling from probability distributions. The
algorithm is considered passive because the sequential
stochastic gradients are not directly controlled, but are
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provided by the observed SGD process. Thus, this tech-
nique can be considered an inverse stochastic gradient
algorithm. It can apply to IRL problems in a variety of
contexts, such as adaptive Bayesian learning, constrained
Markov Decision Processes, and logistic regression clas-
sification [6].

The PSGLD algorithm we consider was initially pro-
posed in [6], in which stochastic approximation argu-
ments were used to show that the algorithm asymp-
totically samples from the Gibbs measure encoding the
cost function. Similar passive schemes and stochastic
approximation analyses have been investigated in [7], [8],
[9]. In this work we present a non-asymptotic analysis
of this PSGLD algorithm; we provide finite-time bounds
on the 2-Wasserstein distance between the law of the
algorithm and that of the Gibbs measure encoding the
cost function.

Non-asymptotic analysis of stochastic gradient
Langevin dynamics has been investigated in [10], [11],
[12]. In our case the algorithm is passive; so our analysis
generalizes and extends previous works to handle
this complexity. To obtain our bound, we decompose
the desired 2-Wasserstein distance into the sum of
distances between the law of the PSGLD algorithm
and a particular continuous time diffusion, and that
between the diffusion and its stationary Gibbs measure.
The former bound relies on a Girsanov-type change of
measure technique and a weighted transportation cost
inequality, as in [10]. To obtain the latter bound we
show that the diffusion satisfies a logarithmic-Sobolev
inequality, allowing us to employ exponential decay
of entropy and the Otto-Villani Theorem to show
exponential convergence in 2-Wasserstein distance.

The paper is organized as follows: Section II provides
background on passive stochastic gradient Langevin dy-
namics. Section III discusses our main results, namely,
a non-asymptotic 2-Wasserstein bound. In section IV
we provide additional background for the proof of our
bound, and in section V provides further proof details.

II. PASSIVE LANGEVIN DYNAMICS

In this section we first present the PSGLD algorithm
and its setting. We then discuss recent work providing
asymptotic guarantees for this algorithm, and motivate
the non-asymptotic analysis to follow.

Consider a forward learning agent running a stochastic
gradient descent (SGD) to minimize a cost function
J : RY — R,. We aim to observe this process and
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reconstruct J. In order to observe sufficient richness of
gradient samples from this cost function, we assume
the stochastic gradient algorithm resets after some finite
time. Thus we have, for n € N representing each "run" of
the SGD, and 7, stopping times:

9k+1 = Gk - UVJ(Qk),

ket —11 (1)

where each 6., ~ my x and 17 > 0 is some step-size. Here
T, is the "sampling distribution" with scale parameter
A, defined as

mo(z/A)

N ST @

for some base distribution 7y on RN. V.J(6;) is an
unbiased estimate of the gradient V.J(6y), with bounded
variance, see I1I-B. Algorithm 1 displays this randomly
re-initializing stochastic gradient descent.

We consider an inverse learning agent who observes
the SGD process, and attempts to reconstruct the cost
function J being optimized. We assume the observer
knows the initialization density mp » and the step size
7, and can observe evaluations 6,k € N. The agent
then performs the following passive stochastic gradient
Langevin dynamics update:

A1 = O — 6|:A1NK (ek_Aak> gﬁj(gk) (3)

+ VWO,A(O%):| mo.a(ak) + Vemo (k) wy

initialized by ap ~ mpx. A is a constant step size
parameter, {wg, k > 0} is an i.i.d. sequence of standard
N —variate Gaussian random variables, 8 is the inverse
temperature parameter, and K (g’ﬂz%) is a kernel func-
tion weighting the relevance of the stochastic gradient
@J(Ok) to the current update ayy1. Algorithm 2 displays
this passive stochastic gradient Langevin dynamics algo-
rithm, which takes as input the sequential evaluations 60}
made in Algorithm 1.

The kernel function K(-) is a key element of this
passive scheme. Since we do not know J(-) we cannot
evaluate V.J(ay), and so we instead employ the estimator
VJ(6;) obtained by observing the SGD (1). Thus, we
want to weight our algorithm’s dependence on this biased
estimator by the proximity between evaluations 6, and
oy, through the kernel function. The kernel' can be
chosen by the observer as any function K : RN — R
satisfying:

K(u) >0, K(u)=K(—u), sng(u) < 00,

2 ()
RNK(u)du:l, /]RN lu|*K(u) < oo

1An example kernel function is the multivariate normal
N(0,02Iy) density with o = A, ie, ALNK(G*TO‘) =

—all?
(2m)~N/2A=N exp(—122al%)

The idea behind Algorithm 2, developed in [6], is that
in the asymptotic limit the samples «j are generated
according to the Gibbs measure

exp(—BJ(a))

Z 7
where Z = [y exp(—fJ())d is a normalizing con-
stant. Thus, the true cost function J(-) driving the
SGD (1) can be recovered by taking the log-density of
asymptotic Markov chain Monte Carlo samples. This
idea is presented as the following informal result, see [6]
for more details.

acRY (5)

Too(Q) 1=

Proposition 1 (Weak Convergence Analysis [6]). Let
af(t) = ay for t € [ek,e(k + 1)] be the continuous-time
interpolation of Algorithm 2. Under assumptions (Al1)-
(A4) of [6], the process af(t) converges weakly to the
solution of the stochastic differential equation

da(t) = mo(a(t)) dW (1)

+ Vﬂo,x(a(t))ﬂo,x(a(t))—gﬁg,x(a(t))VJ(a(t)) d(tG)

a(0) = ag ~ T\

where W (t) is standard N -dimensional Brownian motion.
Furthermore, The stochastic differential equation (6) has
Too (D) as its stationary distribution.

Motivation: Proposition 1 shows that Algorithm 2
asymptotically produces samples o ~ 7o, and so the
cost function J can be reconstructed from the logarithm
of the asymptotic sample density. However, for any prac-
tical implementation it should be quantified how well
this sampling algorithm approximates the Gibbs measure
after a finite run-time. Our main result provides such
non-asymptotic (finite-time) guarantees.

Algorithm 1 Randomly Re-Initializing SGD Process
initialize 1o = 1,k =1
while n > 0 do

generate 7,41 > Ty,
fOI‘k:TnZ’T?H,l—A].dO
6‘]€+1 — Hk — nVJ(Hk)
end for
end while

9‘1’" ~ T,

Algorithm 2 PSGLD
initialize o1 ~ g »
while k£ > 1 do
obtain 0 from Algorithm 1
if k> 2 then
BVI(O8) =106 — k1), K = gy K (Z5)
sample wg ~ N (0, Iy)

gyl < Q —€ Kg@J(ek) + V’ﬂ'o(ak) Fo(ak)

Q1 < g1+ Vemo(ag)wy
end if

end while
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III. MAIN RESULT. NON-ASYMPTOTIC ANALYSIS

In this section we construct finite-sample bounds on
the 2-Wasserstein distance between the sample density
produced by Algorithm 2 and the Gibbs measure (5)
encoding the cost function J. We provide a brief overview
of the 2-Wasserstein metric and the non-asymptotic anal-
ysis techniques, specify assumptions on the cost function
J and initial distribution mp x, provide the main bound
in the form of Theorem 1 , and briefly discuss the
application to adaptive inverse reinforcement learning.

A. 2-Wasserstein Distance

We provide a non-asymptotic bound on the conver-
gence of (3) to the Gibbs measure 7o, (5), in terms of
the 2-Wasserstein distance:

Wa(u,v) := inf

)1/2
YET ()

(E(177y)’\"‘{||x - y”2

Here I'(u, v) is the set of all couplings of measures p and
v, where a coupling v is a joint probability measure on
RN x RN with marginals 4 and v, i.e.,

V(AvRN) = N(A)a ’Y(RNvB) - V(B)v VA,B € B(RN)

where B(RY) is the Borel o-algebra of RV.
Letting

7 = Law(ak), Vke := Law(a(ke))

be the distributions of the sampling density produced
by iterates ay (3) and the continuous time diffusion (6),
respectively, we bound

Wa (T, Too ) < Wa(Tk, Vie) + Wa (Vie, Too)

i.e., by simple triangle inequality we can first control the
distance between the law of the discretization (3) and
that of the continuous-time diffusion (6), then control
the convergence of the continuous time diffusion to its
stationary measure 7. Section V provides further de-
tails on the methods for obtaining these bounds.

Simple non-asymptotic convergence bounds for
Markov diffusions have been been established in [13]
in terms of total-variation norm. However, recent
works [11], [10] study the convergence in 2-Wasserstein
distance; this is a more suitable metric for assessing the
quality of approximate sampling schemes since it gives
direct guarantees on the accuracy of approximating
higher order moments [11].

B. Assumptions

Here we make several assumptions on the cost function
J and the base sampling distribution my. Recall that the
sampling distribution m  (2) is simply a scaled version
of the base distribution my. Throughout the paper we will
use || - || to denote the Iy norm.

A 1 (J regularity). J is Lj-Lipschitz continuous and
Ly j-smooth: 3 Ly, Ly > 0 such that for all x,y € RN,

17 (z) = J()ll < Lsllz = yll
IVJ(x) = VI(y)l < Lyslz -yl

A 2 (Dissipativity). J is (m,b)-dissipative:
Im>0,b>0:(z,VJ(z)) >m|z||? —b, Vo e RY

A 3 (Gradient Noise Variance). The noisy SGD gradient

evaluation is unbiased, i.e. E[V.J(z)] = V.J(z) Va € RV,

Furthermore, the noise is additive such that VJ(x) —

VJ(x) is i.i.d. with variance bounded uniformly in x, i.e.
there exists a constant ¢ > 0 such that

E[|VJ(z) - VJ(2)|]’] < ¢, Vo e RY

A 4 (m exponential decay). There exists M € N,C > 0
such that for all ||z| > M

C
[Vro(@)|| <
]

mo(x) < exp(—||z[?),
A 5 (my Lipschitz-continuity).
ALy > 0+ [lmo(x) = mo(y)| < Liyllz — yll Va,y € RY
A 6 (mp unimodal). The sampling distribution my is
unimodal, and has sup, mo(x) =1

A 7 (kernel structure). The kernel function K(-) satisfies
(4).

A 8 (feasible parameter ranges). Here A denotes the min
operator and V the maz operator. Assume

i) e€ (0,11 /545L55)
i) B> 5 v V2

ALL ;7 mVIvy

Assumptions on J (A1-A3) are standard and equiva-
lent to those in [10]. Assumptions on the base sampling
distribution 7 hold for a wide class of probability density
functions, including Gaussian densities. A7 admits a wide
range of kernel functions, including Gaussian densities.
Range specifications on ¢, 8 in A8 can be satisfied once
a feasible range for the Lipschitz constant Ly ; is known
to the inverse learner.

Notice that the feasible range for n can always be
satisfied; the SGD process (1) optimizing cost function
J with step 9) > (1A ;77—) is equivalent to another SGD
which optimizes %J . So assuming 7

m
1L%
satisfies A8 we can sample from 7o oc exp(—33J), from
which J can be recovered since the scale % [ disappears

upon MCMC sample measure normalization.

C. Main Result. Finite-Sample Bound

Recall that 7y, is the distribution of ay, in Algorithm 2,
Vke is the distribution of «(t) at time ¢ = ke in diffusion
(6), and T o exp(—BJ(a)) is the Gibbs measure (5)
encoding the cost function J we aim to reconstruct.

We present our Wasserstein bound in a way that
explicitly depends on a hyperparameter §: Wa (g, Too) <
f(0) for some function f which is monotonically increas-
ing and has lims_,o f(6) = 0. Our main result is that
for any arbitrarily small f(d), we can choose the step
size €, algorithmic iterations k, kernel scale parameter A

with step n <
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and sampling distribution scale parameter A as follows
to achieve Wh(mg, oo ) < f(9).

2
1 )
ke > Berglog <5> €< <log((1;)>

(7)

_1(1%12\/%612/2) 2 32
A < inf < A€E e, €
T zele, K] K_2($€2N) [ }

where cpg is the logarithmic-Sobolev constant of diffu-
sion (6), explicitly bounded in (25). K~! denotes the
inverse of K and K2 denotes the inverse of K2, both
mapping to the non-negative orthant, and for general

A

a € Ry, Ko) = N K(2), Ko = sup,cpn Ko(). So
K, :=sup, K(z).

Theorem 1 (Finite-Sample 2-Wasserstein Bound).
Consider the PSGLD Algorithm 2 with iterates o, € RY .

For any
1
§€ [O,eXp <— ﬂCLs)] (8)

choose step size €, number of iterations k, kernel scale
A and sampling distribution scale X according to (7).
Then, under assumptions (A1)-(A8), at iterate k the 2-
Wasserstein distance between the distribution my, gener-
ated by the PSGLD algorithm, and the Gibbs measure Ty
(5), satisfies:

Wg(ﬂ'k, 7700) <§ |:C4 + 4/ QCLsC;),} + (5\/1OCL5N log (1/(5)

(9)
where Cs,Cy are constants dependent on structural spec-
ifications of J and the process (3), and are provided

explicitly in Appendix VII. cpg is the logarithmic-Sobolev
constant bounded explicitly in Proposition 4.

Discussion: For any a > 0, §/alog (1/9) is monoton-
ically increasing in ¢ for § € (0,0.607) and

;irr(l)éx/alog (1/6)=0
—

So, Wa (7, Teo) is monotonically increasing in 6 for ¢ €
(0,0.607) and

lim Wh (g, oo ) = 0
0—0

Thus, Theorem 1 asserts that, through hyperparameter
0, we can take the number of iterations k large enough,
step size €, kernel parameter A and sampling distribution
scale X\ small enough, in accordance with (7), such that
the PSGLD algorithm (3) is within any arbitrarily small
desired 2-Wasserstein distance (9) to the Gibbs measure
(5). Here ¢ acts as a precision parameter; smaller § yields
a tighter approximation (9) at the expense of larger
number of iterations k£ and smaller step size €, kernel
scale A and sampling distribution scale A.

Recalling moo(a) o< exp(—BJ(a)), the cost function
J can be approximately reconstructed as the logarithm
of sample density produced by aj. This reconstruction
approaches the true cost function J as § — 0.

D. Ezxample: Adaptive Inverse Reinforcement Learning

As an example, we now briefly discuss how adaptive
IRL for an infinite horizon discounted cost Markov De-
cision Process (MDP) fits into our framework. Let {z,}
denote a finite state Markov chain with controlled tran-
sition probabilities P;;(u) = Plxn11 = jlzn = i, up = u]
where action u,, is chosen from policy uy parametrized
by 6 as u, = wup(x,). Solving a discounted average
cost MDP requires computing the optimal parameter
0* = min{0 : J(0)} where the cumulative cost is

N
Z Y o(Tns un)|zo =

n=1

J(Q) = lim ]E9

N —o0 l:

Here u,, = ug(x,), v € (0,1) is the discount factor, and
p(Zn, uy) is the cost of taking action u,, in state .

One canonical scheme for achieving this minimum is
the REINFORCE algorithm, which proceeds by evaluat-
ing sequential sample trajectories {sg, ao. ..., sT,ar; Ok}
under policy ug, (+), and updating ) as

T T
O =0k —1 Y |7 Vologm(si,ai:0) Y 7"~ p(sk, ax)
t=0 k=t
=0, —nV.J(0)

where V.J(0) is an unbiased estimate of V.J(f) by the
Policy Gradient Theorem [14].

Suppose the forward learner runs such a policy gra-
dient algorithm to obtain #* = argminJ(6). Given
sequential observations of the estimates 6}, through e.g.,
state-action trajectories {sg,aq....,sr,ar; 0}, our PS-
GLD algorithm can approximate, within 2-Wasserstein
distance (9) depending on parameter specifications (7),
the Gibbs measure exp(—£J(6)) through Markov chain
Monte Carlo sampling. So the cost function J(6) can be
recovered by taking the logarithm of the sample density.

Note that traditional IRL methods aim to reconstruct
p(z,a), rather than J(6), given optimal policy demon-
strations. In our case p(z,a) can be recovered up to a
constant multiplicative factor once J(#) and the MDP
transition dynamics are known, since J(6) is the expec-
tation of p(x,a) with respect to the stationary measure
induced by the policy ug(-) and the dynamics P;;(u).
Furthermore, in contrast to traditional methods [15], [1],
we operate in the transient regime where the observed
agent is in the process of learning an optimal policy.

See [6] for more details on how a more broad class of
RL frameworks fit into this work, and [16] for rigorous
details on structural estimation and identification of
MDPs.

IV. STOCHASTIC DIFFERENTIAL EQUATION
PRELIMINARIES

Here we provide mathematical background on diffusion
processes and functional inequalities which are indispens-
able to the proof of our bound (9).
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1) Infinitesimal Generator: First we state some back-
ground on the infinitesimal generator of an It6 diffusion.
Let X; be the R"-valued It6 diffusion solving the stochas-
tic differential equation

where b : R — R" is the drift function, ¢ : R" —
R is the diffusion function, and W(¢) is standard n-
dimensional Brownian motion. Fixing a point x € R™, let
P? denote the law of X; given Xy = z, and E* denote
expectation with respect to P*. Let L be the infinitesimal
generator of X, defined by its action on compactly-
supported C? functions f : R® — R, in domain D(L),
as

E*[f(X:) — f(2)]

Lf(z) =lim

tl0 t
& o7 ) o2/ (11)
= ; bi()5o-@) + 5 ZJ (@) 5, om; @)

where b;(x) is the ¢’th element of b(z) € R™. Thus L is
an operator acting on f € C?(R") as
1
Lf = 5<72Af—i— b, V1)

where A := V - V denotes the standard Laplacian
operator. We say 7 is an invariant probability measure
w.r.t £ if and only if [y Lgdm =0 for all g € D(L).

In this work we consider the diffusion which solves the
stochastic differential equation (6), which has:

b(z) = —gwg(x)VJ(x) — 7o (x) Vo (),

Thus, the infinitesimal generator of our process is given
as

o(x) = mo(x)

£f = imAf — Dx2VIV]) — wo(m, V) (12)

and note that by assumptions (A2),(A6) and by Theorem
2.5 of [17], we have that (6) admits a unique strong
solution.

2) Poincaré and logarithmic Sobolev inequalities:
From the generator £ we can define the Dirichlet form

E(g) = —/ gLgdm
RN

Let us consider a Markov process X; with unique invari-
ant distribution 7 and infinitesimal generator £. We say
that 7 satisfies a Poincaré (spectral gap) inequality [18]
with constant c if

dp
X2 (pllm) < c€ <\/;>

for all probability measures u < 7 (u absolutely contin-
wous w.r.t 7), where y?(u|r) = || % — 1|72y is the x?
divergence between p and w. We say that m satisfies a

logarithmic Sobolev inequality [18] with constant c if

D(ullm) < 2¢€ (@)

for all p < 7, where

d
D(pl|m) = /du log ﬁ

is the Kullback-Leibler divergence between y and .

In this paper we will show that the diffusion (6)
satisfied a log-Sobolev inequality, because several useful
results then apply. Specifically, letting {X(¢)}:>0 be
a Markov process with stationary distribution 7 and
Dirichlet form &£, then we have:

Lemma 1 (Exponential decay of entropy [18], Th. 5.2.1).
Let py := Law(X (t)). If m satisfies a logarithmic-Sobolev
inequality with constant c, then

D(pul|m) < D(uollm)e /¢ (13)

Lemma 2 (Otto-Villani theorem [18], Th. 9.6.1). If &
satisfies a logarithmic-Sobolev inequality with constant c,
then, for any p < m

Wa(p, m) < /2¢D(p|m)

The following Proposition will be a crucial tool al-
lowing us to show that our diffusion (6) satisfies a log-
Sobolev inequality.

Proposition 2 (Cattiaux et. al. (2010) [19]). Let
7(dx) = exp(—H (z))dx be a probability measure on RN
with H € C?>(RY) and lower bounded. Let L be the in-
finitesimal generator of a Markov process with stationary
measure m. Suppose the following conditions hold:

(14)

1) There emist constants k,y > 0 and a C? function
V :R? — [1,00) such that
LV (w)
V(w)
2) 7 satisfies a Poincaré inequality with constant cp.
3) There exists some constant K > 0, such that V?H =
—KlIy
Let Zy, Zy be defined as

2K 2 2K
7= —+ —, Z2:</1—|—’y/ l|w||*7 (dw
£z : RE

16)
Then m satisfies a logarithmic Sobolev inequality with
constant crs = Z1 + (Z2 + 2)cp.

<k —v|w|? Vw € R? (15)

Condition (2) of the above Proposition requires that
the measure 7 satisfy a Poincaré inequality. This can be
shown by employing the following result.

Proposition 3 (Bakry 2008 [20]). Let =w(dx) =
exp(—H (z))dx be a probability measure on RN with H €
C?(RYN) and lower bounded. Let L be the infinitesimal
generator of a Markov process with stationary measure
. Suppose there exist constants kg,(o > 0, r > 0 and a
C? function V : RN — [1,00) such that

LV (w)
V(w)

< —Co + mol{|lw|| <7} (17)
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Then 7 satisfies a Poincaré inequality with constant

1
cp < o (14 Cror® exp(O,(H))) (18)
0
where C' > 0 is a universal constant and O,(H) :=
max|jy|<r H(w) — minjy) < H(w)

The following Corollary is unrelated to Poincaré and
logarithmic-Sobolev inequalities, but will be useful in re-
lating a KL-divergence bound to a 2-Wasserstein bound.

Corollary 1 (Bolley and Villani 2005 [21] Cor. 2.3). For
any two Borel probability measures p,v on RY,

) /4
w2<u,u><cul DGl + (2412) ]

1 /3 1/2
=2 — (2 Allwll?
c, 2/{1;%()\ <2—|—log/RNe V(dw))>

Next we provide details on the structure of the proof
of Theorem 1, utilizing the tools presented above.

V. MAIN RESULT: PROOF OUTLINE

Here we provide the proof structure for our bound on
Wa (T, Too ), provided as (9) in Theorem 1. The high level
proof structure is as follows: We bound Ws (7, Too) <
Wa(Tk, Vke) + Wa(Vie, Too ), 1.€., we first control the dis-
cretization error between passive algorithm 2 and diffu-
sion 6, then control the convergence rate of this diffusion
to its stationary distribution .

In order to achieve a useful bound on the former, scal-
ing as O(key/€), we employ a Girsanov change of measure
(controlling the KL-divergence), followed by Corollary 1
(to relate back to Wasserstein distance), as in [10]. This
procedure relies crucially on the exponential integrability
of the diffusion (6), which we prove as Lemma 5.

To bound the latter Wa(Vge, Too)), We first show that
T satisfies a logarithmic-Sobolev inequality, by satisfy-
ing the conditions of Proposition 2 [19]. This result is
given as Proposition 4. We then apply exponential decay
of entropy [18], given as Lemma 1, and the Otto-Villani
Theorem [20], given as 2. This procedure provides an
exponentially decaying bound on Ws(vie, Too)-

A. Technical Results

Here we list several technical results which will be uti-
lized in the proof methodology that follows. The proofs
of all of these can be found in [22]. We denote 7y :=
sup, mo(x) and 7o, := sup, mor(x). A = ||[J(0)|,B =
[VJ(0)]|, and I,I" are constants provided in Lemma 7.4
of [22].

Lemma 3 (7, exponential integrability). For all A <
1, mo,x has a bounded and strictly positive density with
respect to the Lebesque measure on RN, and
Ky = log/ e”x‘lzdﬂo,A(x) < oo (19)

RN

and denote ko := K}|x=1-

Lemma 4 (relative entropy bound).
3 Bb

— _ N ™
D} := D(mo||7e0) <log7ox + ?1og p + 5 log 3

+8 (L;’53+B\/%+A)
(20)
Lemma 5 (exponential integrability of Langevin diffu-
sion).
log E[el*®I°]] < 1 + ((8b + N)2e +2I')t
where ko is given in (19).
Lemma 6 (L? bound on Langevin diffusion).
(Bb+ N)mox + 21
(mpB)mo,x
B. 2-Wasserstein Bound for Diffusion Approximation

The following Lemma
Wa(Tk, Vhe)-

Ela(®)|* < 5 +

provides a bound on

Lemma 7. Fixing the step size € and time horizon ke,
take the kernel scale parameter A and sampling distribu-
tion scale parameter A small enough to satisfy (7). Then
we have

Wa (ks Vi) < keﬁ[m/mco +3+3V2

1/2
+4 (; + 01) (4\/(72+ 2,/2L2 +4Co>]
(21)
where Cy,(Cq,Cy are constants provided in Ap-
pendix VII. Mp is a bound on E||0||?, see the Appendix
or Lemma 4.9 of [22].

Proof Sketch: The full proof is available in [22]. We
aim to relate the measures m, and vg. through Girsanov’s
formula, as in [10], to obtain a desirable bound. However,
due to an incompatibility between the algorithm 2 and
continuous time diffusion (6) (specifically lack of absolute
continuity between measures m; and Vke), we cannot
directly apply Girsanov’s formula, see [22] for extended
discussion of this phenomena. To solve this, we introduce
the intermediate process

X(t) = ag — /O 45(05, X (5))ds + /O o (X (5)) AW (s)
(22)

where

3005, X(5)) = | (K 0r.a(5)5

V.J(05)

+ V7r07,\(&(8))> mo,x(a(s))

() = X()

Notice that X(t) is a stochastic differential equation
with the same volatility term as the diffusion (6). Thus,
Letting yx. denote the law of X (¢) at time ¢, we can apply
Girsanov’s formula to relate i and vg.. We can bound
Wa (7, Vke) < Wa (T, Yie) + Wa(Vkes Vie)-
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We bound Wa(mg, Vke) by E(pmmy ymryi) |1 — y||?, and
obtain (see Lemma 5.1 of [22])

Wa (7, Yre) < 6(ke)en/12Co + 3+ 3y/2(ke)e  (23)

where Cj is a constant provided in Appendix VII.

Then, we use Girsanov’s formula within the definition
of the KL-divergence (see Lemma 5.2 of [22]) to obtain

D(Yre|lvre) < (ke)® €3 [45L2v J <7200 +6+/Co

+18 + \@ﬂ + (ke) € (213 + 4Cy)

Now applying Corollary 1 gives us a way to relate this
KL-divergence bound to a 2-Wasserstein bound, pro-
vided that the measure vi. is exponentially integrable,
i.e., E[exp(||a(t)]|?)] < co. Lemma 5, in Appendix V-A,
provides such a bound on Elexp(||a(t)||?)], so we employ
this within Corollary 1 to produce

WQ (’Ykea Vke)

3 1/2
+2¢/2L% + 400)

with Cy.C1, Co constants defined in Appendix VII.
Combining (24) with (23) yields (21).

C. 2-Wasserstein Distance for Diffusion Convergence

Here we describe the method to bound Wh (v, Too)-
The strategy is as follows:

i) Show that 7. satisfies a logarithmic-Sobolev in-
equality.

ii) Apply exponential decay of entropy, given as
Lemma 1, with the relative entropy bound in
Lemma 4, to derive a bound on D (vge||mso)

iii) Apply the Otto-Villani Theorem, given as Lemma 2,
to relate this to a bound on Wha(Vke, Too)-

We accomplish (i) in the following proposition, establish-
ing that the Gibbs measure 7., satisfies a log-Sobolev
inequality:

Proposition 4. For [ satisfying Assumption 8, the
Gibbs measure T satisfies a logarithmic Sobolev inequal-
ity with constant crs:

28Lv, 2
< <
0= cLs = +5LVJ
1/258L b+ N)7 21
+( BLv, (H+7(HO+(5 + )7T_0,,\+ ))+2>
A o (mpB)To,x

(25)

(26)

Proof Sketch: The full proof is available in [22]. The
key tool we use is the main Theorem in [19], reproduced
as Proposition 2. To satisfy condition (1) of Proposition 2
we show that the Lyapunov function

_ pmljw|®
V(w) = exp (2(7_%)\_'_1)>

and the infinitesimal generator (12) satisfy (15), with &
and  given in (26). Then, Proposition 3 is used to show
that condition (2) is satisfied. Condition (3) is satisfied
with K = Ly by assumption 1.

Now since D(vp||7e) = D(mo]|me0) < o0 by Lemma
4, we can apply the exponential decay of entropy
(Lemma 1) to obtain

D(villmee) < D(mo,a||moc)e 2/ Pers (27)

Then by the Otto-Villani Theorem and Lemma 4, we

have
W2(Vt7 Troo) S \/m€_t/ﬁCLs

where D()\ is the relative entropy bound given in (20) and
crs is bounded in (25).

(28)

D. Controlling the 2-Wasserstein Distance
Combining the bounds (21) and (28) yields

W2(7rk7 7TOO)
< keﬁ[ﬁx/lQCo +343v2

1/2
3
+4 (2 + Cl) (4\/02 +24/2L% + 400)]
+ 4/ QCLSDS‘eikE/’BCLS

The strategy to control (29) is to take ke large enough
so that the exponential term dies away, then (fixing ke)
take € small enough so that the first term decreases
arbitrarily. However, we encounter a subtle problem: the
term DS‘ may depend inconveniently on A, and thus on
e. In [22] we provide details on how the parameter speci-
fications inherently control this relative entropy term. In
short, using Lemma 4 and the choices of k, €, and A in

(29)
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(7), we obtain:
Wa (T, Too)

1/2
<6{6\/12C0+ +3\f+4< +01) (4\/02
+2,/2L?,+4CO)]
+6 2CL5'N10g( ) + 6 4/2cr,5Cs

(30)
where C3 is listed in the 2Appendix. Then, since A €
[€2,€3/?] and € < (W) we have

log(%) < 4log (bg(;/‘s)) < 5log (;)

where we use that M < 6% for all § < 1,

satisfied by the feasible ¢ range (8).
Plugging this into (30) gives the 2-Wasserstein bound
presented in Theorem 1.

VI. CONCLUSION

We derived non-asymptotic (finite sample) bounds for
a passive stochastic gradient Langevin dynamics algo-
rithm. These results complement recent asymptotic weak
convergence analysis of the passive Langevin algorithm
in [6]. The passive Langevin algorithms analyzed in this
paper use sequential evaluations of a stochastic gradient
descent by an external agent (forward learner), and
reconstruct the cost function. Thus real-time inverse
reinforcement learning is achieved, in that we (the inverse
learner) reconstruct the cost function while it is in the
process of being optimized. Specifically, we have provided
finite-time bounds on the 2-Wasserstein distance between
the sample distribution induced by our algorithm and
the Gibbs measure encoding the cost function to be re-
constructed. Our paper builds on the seminal paper [10]
and uses techniques in the analysis of Markov Diffusion
Operators [18] to achieve the bound.
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VII. APPENDIX: BOUND CONSTANTS

=3L% ;(My+2B*M,) + B* + ¢
Ky + (Bb+ N)2e +2I')
BL%, (7200 +64/Co+ 18 + \/5)

74’@10 3

+ 8 <n0 +BW+A)
{6\/1200 +3+3V2

3 1/2
+4 (2 + Cl) (4\/02 +24/2L% +4CO>}

N
—lo

m

Mg—li0+2<lvl) (b+2B?)
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