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Abstract— Online convex optimization (OCO) is a powerful
tool for learning sequential data, making it ideal for high
precision control applications where the disturbances are arbi-
trary and unknown in advance. However, the ability of OCO-
based controllers to accurately learn the disturbance while
maintaining closed-loop stability relies on having an accurate
model of the plant. This paper studies the performance of OCO-
based controllers for linear time-invariant (LTI) systems subject
to disturbance and model uncertainty. The model uncertainty
can cause the closed-loop to become unstable. We provide a
sufficient condition for robust stability based on the small
gain theorem. This condition is easily incorporated as an
on-line constraint in the OCO controller. Finally, we verify
via numerical simulations that imposing the robust stability
condition on the OCO controller ensures closed-loop stability.

I. INTRODUCTION

This paper considers a class of controllers recently de-
veloped using online convex optimization (OCO). Online
machine learning and convex optimization methods are pow-
erful tools for learning sequential data. This makes these
techniques ideal for high precision control applications like
satellite pointing and photolithography. These systems have
reliable physics-based models with small error (within the
control bandwidth) but are subject to unknown arbitrary
disturbances.

This has motivated a large body of recent work using
online learning and convex optimization for control [1]–
[9]. The most closely related work is the class of OCO
controllers defined in [10]. Here, OCO with memory is
introduced to the discrete-time control setting as an ideal
cost minimization problem (which we describe in detail in
Section IV-B) to handle arbitrary disturbances and general
time-varying convex cost functions. The OCO controller
has promising regret guarantees and makes less restrictive
assumptions about the disturbance characteristics (e.g., white
noise or worst-case) than that of H2 and H∞ optimal
control techniques [11], [12]. This makes OCO methods well
suited for high precision control applications with unknown,
arbitrary disturbances that degrade the system performance.

The OCO framework in [10] aims to learn the disturbance
characteristics in real time. However, small model errors
can cause instability and thus must be explicitly considered
in the design. There are additional works that attempt to
learn the model from data [13]–[19]. However, dynamic
uncertainties in many high precision applications arise due
to high frequency, time-varying, and/or nonlinear effects. It
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is difficult to learn such unmodeled effects from real-time
data. In these cases, it is useful to design a robust OCO-
based controller that can learn the disturbance features and
tolerate model uncertainty, thus motivating our work.

There are three main contributions of our work. First,
we provide a robust stability condition for OCO control of
a discrete linear time-invariant (LTI) plant (Theorem 1 in
Section III-B) and show how it can be used to compute the
stability bound (Section V). The robust stability condition is
a scaled version of the small gain condition which holds for
an arbitrary induced system norm. Second, we show how the
robust stability condition can be imposed as a pointwise in
time constraint on the OCO controller to ensure robustness
to nonparametric uncertainties. This implementation of the
robust stability condition is specific to using the induced ℓ∞-
norm (Section III-C and Section IV-C), resulting in an easy
extension of [10]. Lastly, we present numerical results that
illustrate the effect of the robust stability constraint on the
OCO controller (Section V).

II. PROBLEM FORMULATION

This section formulates the OCO control problem for
discrete-time LTI plants subject to both model uncertainty
and unknown disturbances.

A. Notation

Let v ∈ Rn be a vector. The p-norm of this vector is
defined as ∥v∥p :=

[∑n
i=1 |vi|p

] 1
p . Next, N denotes the set

of non-negative integers. Let d : N → Rn denote a vector-
valued sequence {d0, d1, . . .}. The ℓp-norm of d is defined
as:

∥d∥p =

[ ∞∑
t=0

∥dt∥pp

] 1
p

. (1)

Note that ∥dt∥p is the p-norm of the vector dt ∈ Rn at time
t while ∥d∥p is the ℓp-norm of the sequence. The set ℓp
consists of sequences that have finite ℓp-norm. The subset
ℓpe ⊂ ℓp is the extended space of sequences that have finite
ℓp-norm on all finite intervals, i.e.

∑T
t=0 ∥dt∥pp < ∞ for all

T ≥ 0. Finally, let G : ℓpe → ℓpe denote systems that map
an input signal u ∈ ℓpe to an output signal y ∈ ℓpe. The
induced ℓp-norm for this system is defined as:

∥G∥p→p = sup
0̸=u∈ℓp

∥y∥p
∥u∥p

. (2)

To simplify notation, we’ll often use ∥d∥ and ∥G∥ for the
signal norm and system induced norm when the specific p-
norm is not important.
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B. Model Uncertainty
In this section, we consider the feedback system in Fig-

ure 1 and discuss the model uncertainty ∆(z) in more detail.
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Fig. 1. Discrete-time feedback system with unknown disturbance d and
uncertainty ∆(z). OCO control is used to reject the disturbance d without
knowledge of the uncertainty ∆(z).

Consider the nominal discrete-time, LTI plant G(z) with
dynamics:

xt+1 = Axt +B vt, (3)

where xt ∈ Rnx and vt ∈ Rnu are the nominal plant state
and input at time t, respectively. We assume x0 = 0 for
simplicity.

Model uncertainty for systems with physics-based models
often shows up as unmodeled actuator dynamics affecting
the plant input [11], [12], [20]. We can account for these
unmodeled dynamics by defining an input-multiplicative
uncertainty set Gδ as:

Gδ =
{
G̃(z) = G(z)

(
I +∆(z)

)
: ∥∆∥ ≤ δ

}
, (4)

where δ ∈ [0,∞). Note that the induced 2-norm is common
choice to bound the uncertainty. However, our main result in
Section III holds for any induced p-norm.

Let G̃0(z) denote the true plant dynamics. We assume that
the true plant is within the uncertainty set, i.e. G̃0(z) ∈ Gδ . In
other words, there exists a specific ∆0(z) such that ∥∆0∥ ≤ δ
and G̃0(z) = G(z)(I + ∆0(z)) ∈ Gδ . More generally, we
refer to G̃(z) = G(z)(I+∆(z)) as the uncertain plant. Here,
we assume the uncertainty ∆(z) is LTI. However, our main
result in Section III can be extended to the case where ∆ is
a possibly nonlinear time-varying (NLTV) system.

C. OCO Control
Unknown disturbances are often caused by environmental

factors and moving physical components which degrade
system performance. However, these disturbances often also
have learnable characteristics. It is typical to model such
disturbances as entering at the plant input as shown in
Figures 1 and 2.

OCO control can be used to learn and reject the distur-
bance without a priori knowledge of the disturbance [1]–
[9]. Here, we describe a class of OCO controllers closely
related to [10] which considers the case without uncertainty
∆(z) = 0. The OCO controller has the block diagram
representation shown in Figure 2. This corresponds to the
class of disturbance action controllers defined as:

ut = −Kxt +

H−1∑
i=0

M
[i]
t ŵt−i, (5)
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Fig. 2. Block diagram representation of the OCO controller in a discrete-
time feedback system with unknown disturbance dt and uncertain plant
G̃(z). The OCO controller is composed of a state-feedback gain K, an
estimator E(z), and an LTV system MLTV.

where K ∈ Rnu×nx , M [i]
t ∈ Rnu×nx , and ŵt ∈ Rnx are

the state-feedback gain, learned coefficients, and disturbance
estimate, at time t, respectively. The state-feedback gain K
is user-selected while the learned coefficients {Mt}H−1

i=0 are
typically updated via some online optimization method. For
example, [10] uses online projected gradient descent (OPGD)
with memory (see Section IV-B).

The online optimization often uses an estimate of the
disturbance to learn the coefficients. When there is no
uncertainty ∆(z) = 0, the disturbance estimate ŵt can be
perfectly estimated from xt and ut using the nominal plant
dynamics [10]. We discuss this in more detail in Section IV-
A. Thus, we assume the disturbance estimate ŵt to be the
output of an LTI estimator E(z) of the following form:

xe
t+1 = Aex

e
t +Be1xt +Be2ut

ŵt = Cex
e
t +De1xt +De2ut,

(6)

where xe
t ∈ Rne and ŵt ∈ Rnx are the estimator state and

output at time t, respectively. Note that xt and ut are inputs
to the estimator.

The first term in (5) is considered the baseline controller
which we denote by:

ubase
t = −Kxt. (7)

The main results in Section III can be generalized to the
case when the baseline control ubase

t is the output of an
LTI controller K(z) with input xt. We assume the baseline
controller is a static, state-feedback gain for simplicity.

The second term in (5) is the output of an finite impulse
response (FIR) filter with time-varying coefficients. We de-
note the FIR filter as a linear time-varying (LTV) system
MLTV with input-output dynamics defined as:

uoco
t =

H−1∑
i=0

M
[i]
t ŵt−i. (8)

where ŵt ∈ Rnx and uoco
t ∈ Rnu are the input and output at

time t, respectively. The FIR filter order H is also referred
to as the learning horizon since the coefficients are often
updated via OCO using the past H disturbance estimates.
We provide an example of online optimization in Sections IV
and V, but the main results in Section III assume only that
the coefficients are time-varying.
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The OCO controller (5) can be interpreted as a baseline
controller ubase

t plus an adapting term uoco
t which corrects for

the unknown disturbance dt based on disturbance estimates.

D. Model Uncertainty Effects on OCO Control

The uncertainty ∆(z) and disturbance dt have different
effects on closed-loop stability. Suppose the state-feedback
gain K is stabilizing, i.e., all eigenvalues of (A−BK) are
strictly inside the unit disk. Without uncertainty ∆(z) = 0,
OCO control can be designed to achieve disturbance rejection
with provable guarantees [10]. In this case, a bounded
disturbance d cannot cause signals x, u, ŵ, etc. to grow
unbounded. However, small amounts of model uncertainty
can cause the system to become unstable.

As shown in Figures 1 and 2, the uncertain plant input is
the control input perturbed by an unknown disturbance:

pt = ut + dt, (9)

where ut, dt, pt ∈ Rnu are the control input, disturbance,
and perturbed uncertain plant input at time t, respectively.
The perturbed input pt is further distorted by the uncertainty
∆(z). The resulting input to the nominal plant G(z) is:

vt = (I +∆) pt = ut + dt + qt, (10)

where qt = ∆pt ∈ Rnu . Again, vt is the nominal plant input
at time t. Not only is there an unknown disturbance dt, but
also a distorted signal qt due to the uncertainty ∆(z).

The additional perturbation qt can lead to unexpected
behaviors that affect the disturbance estimate and FIR filter
coefficient update when left unaccounted for in the OCO
design. This can occur even when the state-feedback gain K
is stabilizing for the uncertain plant G̃(z). Thus, the OCO
controller is required to: i) learn and compensate for the
disturbance, and ii) stabilize the system in the presence of un-
certainty. The OCO controller must achieve these objectives
without a priori knowledge of the disturbance or uncertainty.

III. MAIN RESULT

This section provides a condition on MLTV that ensures
the feedback system with OCO control remains stable even
in the presence of the model uncertainty.

A. Linear Fractional Transformation

As a first step, we transform the feedback system of the
uncertain plant and OCO controller (Figures 1 and 2) to a
standard form as shown in Figure 3. This diagram separates
the LTI dynamics P from the uncertainty ∆ and time-varying
OCO dynamics MLTV. Here P includes the dynamics due to
the plant, estimator, and state-feedback gain. This diagram is
called a linear fractional transformation (LFT) in the robust
control literature [11], [12]. We use the notation FU (P,Γ)
for this interconnection with Γ =

[
∆ 0
0 MLTV

]
closed around

the upper channels of P .

P d�x�

∆ 0

0 MLTV

Γ

[
p
ŵ

] - [
q

uoco

]
�

Fig. 3. Equivalent LFT FU (P,Γ) of original system separating LTI
dynamics P from uncertainty ∆ and time-varying learning dynamics
MLTV.

An explicit state-space model for P can be determined
from the various components of the feedback system de-
scribed in Section II. The dynamics of P are given by:[
xt+1

xe
t+1

]
=

[
A−BK 0

Be1 −Be2K Ae

] [
xt

xe
t

]
+

[
B B B
0 Be2 0

] qt
uoco
t

dt


pt
ŵt

xt

 =

 −K 0
De1 −De2K Ce

I 0

[
xt

xe
t

]
+

0 I I
0 De2 0
0 0 0

 qt
uoco
t

dt

.
Next, we use the LFT representation FU (P,Γ) to formulate
and state our robust stability condition.

B. Scaled Small Gain Theorem

Our first stability result is a variation of the standard
small gain theorem (see Section 5.4 of [21]). This provides
a sufficient condition for the dynamics FU (P,Γ) to have a
bounded gain from disturbance d to state x. Note stability
here is in the sense of bounded gain in some induced norm.

Lemma 1. Consider the interconnection FU (P,Γ) where P :
ℓpe → ℓpe and Γ : ℓpe → ℓpe are linear systems with finite
induced ℓp-norm. Partition P as:[

p̄
x

]
=

[
P11 P12

P21 P21

] [
q̄
d

]
, (11)

where p̄ := [ pŵ ] and q̄ := [
q

uoco ] are the inputs and outputs
of Γ. The interconnection has finite induced ℓp-norm, i.e.
∥FU (P,Γ)∥ < ∞, if ∥P11∥ ∥Γ∥ < 1.

Proof: The system P is LTI so by the principle of
superposition (assuming zero initial conditions):

p̄ = P11q̄ + P12d. (12)

We can bound p̄ using the triangle inequality and the
definition of the induced norm:

∥p̄∥ ≤ ∥P11∥ ∥q̄∥+ ∥P12∥ ∥d∥. (13)

Next, q̄ = Γp̄ so that ∥q̄∥ ≤ ∥Γ∥ ∥p̄∥. Substitute this bound
into (13) and re-arrange to obtain:

∥p̄∥ ≤ ∥P12∥
1− ∥P11∥∥Γ∥

∥d∥. (14)

This last step requires the small gain condition
∥P11∥ ∥Γ∥ < 1 to obtain the bound on ∥p̄∥.
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Finally, the state is x = P21q̄ + P22d. We can use similar
steps and the bound on p̄ to obtain:

∥x∥ ≤
[
∥P22∥+

∥P21∥ ∥P12∥ ∥Γ∥
1− ∥P11∥ ∥Γ∥

]
∥d∥. (15)

Hence, FU (P,Γ) has finite induced ℓp-norm.
The small gain condition in the previous lemma can be

conservative as it does not exploit the block structure Γ =[
∆ 0
0 MLTV

]
. We can reduce the conservatism by normalizing

the blocks and introducing scalings. Specifically, assume
∥∆∥ ≤ δ and ∥MLTV∥ ≤ β. Define the normalized
uncertainty and learning dynamics as: ∆̃ = 1

δ∆ and M̃LTV =
1
βMLTV. Stacking these together yields

Γ̃ :=

[ 1
δ I 0
0 1

β I

]
Γ =

[ 1
δ∆ 0
0 1

βMLTV

]
. (16)

The scaling normalizes each block so that ∥Γ̃∥ ≤ 1.
Next, the uncertainty is LTI and hence d1∆ = ∆d1 for

any scalar d1 > 0. (In fact, this relation holds even if d1 is
also an LTI system but we do not pursue this generalization
here.) Similarly, the learning dynamics are also linear and
hence d2MLTV = MLTVd2 for any scalar d2 > 0. It follows
that the normalized systems can be equivalently written, for
any d1, d2 > 0, as:

Γ̃ :=

[ 1
d1δ

I 0

0 1
d2β

I

]
Γ

[
d1 0
0 d2

]
. (17)

This leads to the following scaled small gain result.

Theorem 1. Consider the interconnection FU (P,Γ) where
P : ℓpe → ℓpe and Γ : ℓpe → ℓpe are linear systems
with finite induced ℓp-norm. Assume Γ :=

[
∆ 0
0 MLTV

]
where

∥∆∥ ≤ δ and ∥MLTV∥ ≤ β. Partition P as:[
p̄
x

]
=

[
P11 P12

P21 P21

] [
q̄
d

]
, (18)

where p̄ := [ pŵ ] and q̄ := [
q

uoco ] are the inputs and outputs
of Γ. The interconnection has finite induced ℓp-norm, i.e.,
∥FU (P,Γ)∥ < ∞, if there exists scalars d1, d2 > 0 such
that

P̃11 :=

[ 1
d1

I 0

0 1
d2

I

]
P11

[
d1δ I 0
0 d2β I

]
(19)

satisfies ∥P̃11∥ < 1.

Proof: Define a scaled version of the nominal dynamics
P as:

P̃ =

 1
d1
I 0 0

0 1
d2
I 0

0 0 I

[
P11 P12

P21 P22

] d1δ I 0 0
0 d2β I 0
0 0 I

 .

The constants introduced in the scaled plant P̃ cancel those
introduced for Γ̃ in (16). In other words, FU (P,Γ) and
FU (P̃ , Γ̃) define the same dynamics from d to x. Moreover,
∥P̃11∥ < 1 and ∥Γ̃∥ ≤ 1 by assumption. It follows from the
small gain result (Lemma 1) that FU (P̃ , Γ̃) = FU (P,Γ) has
finite induced ℓp-norm.

The scalings d1 and d2 in the robust stability condition
(Theorem 1) can be used to reduce the conservatism of the
small gain condition (Lemma 1). They are known as D-
scales in the robust control literature (see [22] and Chapter
11 in [11]) and are used in structured singular value robust
stability tests. Note that without loss of generality, we can
set d2 = 1 and express (19) in terms of only d1. This will
be useful in Section V when we use Theorem 1 to compute
the stability bound.

C. Bounding the LTV Dynamics

In this section, we provide a result specific to the induced
ℓ∞-norm for the OCO control implementation. The induced
ℓ∞-norm is useful as it allows us to relate ∥MLTV∥∞→∞
to ∥Mt∥∞→∞. The robust stability constraint can then be
imposed as a point-wise in time constraint β on the coeffi-
cients ∥Mt∥∞→∞ ≤ β in the projection step of OPGD. We
discuss this further in Section IV-B and IV-C.

The dynamics MLTV in (8) can be expressed as:

uoco
t = MtŴt, (20)

where

Mt :=
[
M

[0]
t · · · M

[H−1]
t

]
∈ Rnu×nxH , and (21)

Ŵt :=

[
ŵt

...
ŵt−H+1

]
∈ RnxH (22)

are the stacked FIR coefficients and estimated disturbance
history. The following lemma relates the induced ℓ∞-norm of
the system MLTV to the matrix induced ∞-norm of Mt. The
proof is based on standard norm properties but is included
for completeness.

Lemma 2. Let MLTV be the LTV system defined in (20) and
Mt be the stacked gains defined in (21). Then

∥MLTV∥∞→∞ = sup
t

∥Mt∥∞→∞. (23)

Proof: The equality in (23) is shown in two
steps: (A) ∥MLTV∥∞→∞ ≤ supt ∥Mt∥∞→∞ and (B)
∥MLTV∥∞→∞ ≥ supt ∥Mt∥∞→∞.

First, we show direction (A). Let ŵ and uoco be any input-
output pair of MLTV. By definition of the induced matrix
norm and equation (20), we can show that

∥uoco∥∞ = sup
t

∥MtŴt∥∞

≤ sup
t

∥Mt∥∞→∞ · ∥ŵ∥∞. (24)

It follows that ∥uoco∥∞
∥ŵ∥∞

≤ supt ∥Mt∥∞→∞, and thus we have
that ∥MLTV∥∞→∞ ≤ supt ∥Mt∥∞→∞ by definition of the
induced ℓ∞-norm. Hence, claim (A) holds.

Next, we show direction (B). Suppose supt ∥Mt∥∞→∞
achieves its maximum at some finite time t0. (The proof can
be modified if the supremum occurs as t → ∞.) Then there
exists a vector Ŵ ∗ such that ∥Ŵ ∗∥ = 1 and

∥Mt0Ŵ
∗∥∞ = sup

t
∥Mt∥∞→∞.
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We can use the vector Ŵ ∗ to construct a signal ŵ∗ for which:
(a) ∥ŵ∗∥∞ = 1, and (b) the corresponding Ŵ ∗ constructed
from ŵ∗ satisfies Ŵ ∗

t0 = Ŵ ∗. Since ∥uoco∥∞ ≥ ∥uoco
t0 ∥∞ =

∥Mt0Ŵ
∗
t0∥∞, we have that

∥uoco∥∞ ≥ sup
t

∥Mt∥∞→∞ · ∥ŵ∗∥∞.

It follows that ∥uoco∥∞
∥ŵ∗∥∞

≥ supt ∥Mt∥∞→∞, and thus we have
that ∥MLTV∥∞→∞ ≥ supt ∥Mt∥∞→∞ by definition of the
induced ℓ∞-norm. Hence, claim (B) holds.

IV. APPLICATION TO OCO

In this section, we demonstrate how the main results
can be applied to ensure robust stability of existing OCO
controllers. We focus on the OCO controllers in [7], [10]
where the coefficients of MLTV are updated via OPGD.

A. Estimator Design

The class of OCO controllers defined by [10] considers
the feedback system with OCO control (Figure 2) and no
uncertainty (Figure 1) when ∆(z) = 0. In this case, a perfect
plant model is assumed G̃(z) = G(z). Thus, the nominal
plant dynamics can be used to design an estimator E(z)
and OPGD to update the coefficients in MLTV. Later, we
will show how the OPGD projection step can be modified to
ensure robust stability for the case that there is uncertainty
∆(z) ̸= 0.

Without uncertainty, the plant dynamics with unknown
disturbance reduce to:

xt+1 = Axt +But +Bdt.

Note that Bdt is the effective disturbance on the state
at time t. Assuming the state xt is measurable, we can
perfectly reconstruct this effective disturbance at the previous
time step. Use the measured state and rearranging the plant
dynamics:

ŵt = xt −Axt−1 −But−1. (25)

With no uncertainty, this estimator perfectly reconstructs the
effective disturbance with a one-step delay: ŵt = Bdt−1.
However, perfect reconstruction is no longer guaranteed with
uncertainty, i.e. if ∆(z) ̸= 0 then ŵt ̸= Bdt−1. In this case,
ŵt is considered an estimate of Bdt−1.

The disturbance reconstruction (25) can be expressed in
state-space form as:

xe
t+1 = 0xe

t −Axt −But

ŵt = xe
t + xt,

where xe
t = −Axt−1 − But−1 is the estimator state. This

has the form of the general LTI estimator E(z) in (6). The
estimates ŵt of past disturbances are used to update the FIR
coefficients Mt defined in (21) by minimizing an “ideal” cost
which we describe next.

B. OPGD on an Ideal Cost

The coefficients Mt are updated at each time step via
OPGD in the direction of an “ideal” (per-step) cost. This
cost is associated with the nominal plant dynamics (3) and a
per-step cost function. Here, we consider quadratic per-step
costs:

c(xt, ut) = x⊤
t Qxt + u⊤

t Rut, (26)

where Q = Q⊤ ⪰ 0 ∈ Rnx×nx and R = R⊤ ≻ 0 ∈
Rnu×nu . Note that the finite-horizon cost is defined as:

JT (x, u) =

T∑
t=0

c(xt, ut), (27)

where T is the total time horizon. The ideal cost g(M) is
defined for any static gain M ⊂ Rnu×nxH based on this per-
step cost (26) which is computed and defined as follows.

Let x̃τ ∈ Rnx and ũτ ∈ Rnu denote the ideal state and
control input at time τ , respectively. The ideal state and input
are initialized at τ = t−H by:

x̃t−H = 0 and ũt−H =

H−1∑
i=0

M [i−1] wt−H−i. (28)

where t is the current time. The ideal state and control input
are then computed for τ = t−H+1, . . . , t by iterating over
the plant dynamics with the static gains M :

x̃τ = A x̃τ−1 +B ũτ−1 + ŵτ−1 (29)

ũτ = −K x̃τ +

H−1∑
i=0

M [i] ŵτ−i. (30)

The ideal cost is then defined as g(M) := c(x̃t, ũt). In other
words, the ideal cost g(M) is the cost of the plant dynamics
evolving with static gain M over the learning horizon H ,
neglecting dynamics beyond time t − H . The coefficients
Mt are updated via OPGD on this ideal cost:

Mt+1 = ΠM (Mt − η∇Mg(Mt)) , (31)

where η is the learning rate, and ΠM is the projection of
the gradient step of Mt onto a constraint set M. Additional
details are given in [7], [10]. Next, we show how the
constraint set M can be modified to ensure the robust
stability of the OCO feedback system (Figures 1 and 2) when
∆(z) ̸= 0.

C. Robust OCO Control

Theorem 1 states that the closed-loop system (Figures 1
and 2) will be stable for bounded uncertainties ∥∆∥∞→∞ ≤
δ and bounded LTV learning dynamics ∥MLTV∥∞→∞ ≤
β if the robust stability condition ∥P̃11∥∞→∞ < 1 holds.
Larger values of β risk stability, yet can improve disturbance
rejection as they allow the OCO more freedom to adapt the
coefficients Mt. Thus, it is important to determine the largest
possible value of β such that the robust stability condition
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holds. We refer to this value of β as the robust stability bound
β∗ which is the solution to:

sup
β

β

subject to ∥P̃11∥∞→∞ < 1,
(32)

where P̃11 is defined in (19). Once the stability bound β∗ is
known, we can select the constraint β to be within [0, β∗) to
ensure stability. Selecting β as close as possible to β∗ gives
the full benefit of OCO.

Next, it follows from Lemma 2 that if ∥Mt∥∞→∞ ≤ β,
then ∥MLTV∥∞→∞ ≤ β (and vice versa). This means we
can simply impose a constraint on the coefficients Mt as they
are updated via OPGD by defining the constraint set M as:

M :=
{
M ∈ Rnu×nxH : ∥M∥∞→∞ ≤ β

}
. (33)

However, instead of computing the exact projection ΠM
in (31), we can scale down the coefficients until they are
within the constraint set M for simpler online implementa-
tion. The projection step (see Algorithm 1 from [10]) can
easily be modified to update the coefficients as:

Mt+1 =

{
Mstep, ∥Mstep∥∞→∞ ≤ β

β
(

Mstep

∥Mstep∥∞→∞

)
, ∥Mstep∥∞→∞ > β,

(34)

where Mstep := Mt − η∇Mg(Mt) is the gradient step of
the coefficients Mt at time t. The results in the following
section are based on the coefficient update described in (34).

V. NUMERICAL RESULTS

In this section, we perform numerical studies to illustrate
the effect of β and explicitly use the robust stability condition
(Theorem 1) to compute the stability bound β∗. Note that
we recover state-feedback when β = 0 and unconstrained
OCO (U-OCO) when β = ∞. We refer to the case when
0 < β < ∞ as constrained OCO (C-OCO).

Our example considers the following nominal plant model
G(z) and uncertainty ∆(z):

G(z) =
0.1

z − 0.9
and ∆(z) =

−z2 + 1.79z − 0.7903

z2 − 1.672z + 0.9048
,

where ∆(z) is small in magnitude at low frequencies and
larger at higher frequencies. For the baseline controller, we
use a state-feedback gain of K = 0.15. Note that K = 0.15
is stabilizing for both the nominal and uncertain plant. For
the OCO, we use the quadratic per-step cost c(xt, ut) in (26)
with Q = 1 and R = 10−1, learning rate η = 5× 10−4, and
learning horizon H = 1. Lastly, we use a step disturbance:
dt = 100 for 0 ≤ t ≤ 500 and dt = −100 for 500 < t ≤ T .
All simulations were run with a time horizon of T = 1000.

Figure 4 shows the per-step cost c(xt, dt) and estimated
disturbance ŵt of U-OCO at each time t. We compare the
performance of the nominal (red dashed) and uncertain (blue
solid) plant. The disturbance is perfectly reconstructed ŵt =
Bdt−1(see Section IV-A) with the nominal plant. However,
with the uncertain plant, this is not the case ŵt ̸= Bdt−1.
The ideal cost g(M) computation assumes the nominal plant

Fig. 4. Per-step cost (top) and disturbance estimate (bottom) of running
U-OCO on the nominal (red dashed) and uncertain (blue solid) plant. U-
OCO is stable for the nominal plant and unstable for the uncertain plant.

Fig. 5. Per-step cost (top) and disturbance estimate (bottom) of running
C-OCO with β = 1.5 on the nominal (red dashed) and uncertain (blue
solid) plant. C-OCO is stable for the nominal and uncertain plants.

model and perfect disturbance estimation. This mismatch
introduces an error in the coefficient update Mt+1 which
causes instability. The instability is illustrated by the per-
step cost and estimated disturbance growing unbounded.
On the other hand, U-OCO performance is stable without
uncertainty because the disturbance is estimated perfectly.
Thus, the constraint β is needed for the coefficient update to
ensure stability for the uncertain plant.

Figure 5 shows the per-step cost c(xt, dt) and estimated
disturbance ŵt of C-OCO for β = 1.5 at each time t. Again,
we compare the performance of the nominal (red dashed)
and uncertain (blue solid) plant. As mentioned before, an
error in the disturbance estimate introduces an error in the
ideal cost gradient. The ideal cost gradient error can cause
the gradient step Mstep = Mt−∇Mg(Mt) to grow too large
in the wrong direction. When the constraint β is chosen such
that the robust stability condition (Theorem 1) is satisfied, the
effect of uncertainty induced error on the gradient step of the
coefficient update is limited. This is illustrated in Figure 5 as
the performance of C-OCO on the uncertain plant eventually
recovers the performance on the nominal model with β =
1.5. Thus, imposing the constraint β can ensure that OCO
is robust to uncertainty.
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As mentioned in Section IV-C, the choice of β is critical.
In order to compute the stability bound β∗, we first make
an additional assumption about the uncertainty. We assume
the uncertainty ∆(z) can be decomposed into a normalized
uncertainty ∆̃(z) and a frequency-dependent uncertainty
weight Wu(z) in the form:

∆(z) = ∆̃(z)Wu(z), (35)

where ∥∆̃∥ ≤ 1 and Wu(z) is stable. Roughly, Wu(z) rep-
resents the amount of uncertainty present at each frequency.
The set of uncertain plants Gδ can then be expressed as:

Gδ =
{
G̃(z) = G(z)

(
I + ∆̃(z)Wu(z)

)
: ∥∆̃∥ ≤ 1

}
. (36)

We use the following uncertainty weight Wu(z):

Wu(z) =
−z2 + 1.79z − 0.7903

z2 − 1.672z + 0.9048
.

Wu(z) is small in magnitude at low frequencies and larger
at higher frequencies. Note that we now consider the uncer-
tainty ∆(z) from the previous example as our uncertainty
weight Wu(z). The previous example is thus a special case
where the normalized uncertainty is a static gain ∆̃(z) = 1.

Given the uncertainty weight Wu, we compute the stability
bound β∗ by first modifying the block diagram (Figure 1)
and LFT (Figure 3) to reflect the uncertainty decomposition
described here. Likewise, the LFT equations can be derived
by separating the normalized uncertainty ∆̃ and LTV learn-
ing dynamics MLTV apart from the remaining LTI dynamics
P . The key point is that P now includes the uncertainty
weight Wu which will reduce the conservativeness of the
stability bound β∗.

As mentioned in Section III-B, we can set d2 = 1
without loss of generality. Additionally, we know that δ = 1
since we assume ∥∆̃∥∞→∞ ≤ 1. Note again that we have
chosen to use the induced ℓ∞-norm for reasons discussed
in Section III-C. Next, we select any β > 0 as our initial
guess for the robust stability bound β∗. Finally, we partition
the dynamics P according (18), construct the P̃11 dynamics
according to (19), and compute ∥P̃11∥∞→∞ for a range of
d1 values. If the minimum ∥P̃11∥∞→∞ over the range of d1
values is greater than 1, we decrease β until we obtain the
largest β such that ∥P̃11∥∞→∞ < 1. Note that the induced
ℓ∞-norm of an LTI system is equal to the ℓ1-norm of its
impulse response. We compute an upper bound on the ℓ1-
norm based on bounding the tail end of the impulse response
(see Section 4.3 of [23]). For our example, the robust stability
bound is β∗ = 1.063.

Figure 6 shows the averaged per-step cost JT (x, u)/T
of C-OCO with H = 1 as a function of β. Again, we
compare the performance with the nominal (red dashed) and
uncertain (blue solid) plants. The uncertainty was constructed
by randomly generating normalized uncertainties ∆̃(z) with
∥∆̃∥∞→∞ = 1 and multiplying by Wu(z) according to (35).
When β = 0, the OCO has no freedom to learn the
disturbance, and pure state-feedback (SF) is recovered for
both the nominal (red square) and uncertain plants. As β

Fig. 6. Average per-step cost of running C-OCO for H = 1 and varying β
on the nominal (red dashed) and 100 uncertain (blue solid) plants. C-OCO
improves performance for the nominal and uncertain plants until β is too
large, causing some uncertain plants to become unstable.

Fig. 7. Average per-step cost of running C-OCO for H = 5 and varying β
on the nominal (red dashed) and 100 uncertain (blue solid) plants. C-OCO
improves performance for the nominal and uncertain plants until β is too
large, causing some uncertain plants to become unstable.

is increased, the OCO is allowed more freedom to learn
the disturbance, and we see similar improved performance
in both the nominal and uncertain plants. However, when
β is ”too large” such that the robust stability condition
(Theorem 1) no longer holds, C-OCO on the uncertain plant
may become unstable. Figure 6 shows the stability bound
at β∗ = 1.063 which appears somewhat conservative. Once
the constraint β becomes inactive, C-OCO recovers U-OCO
performance for the nominal and uncertain plants. For the
nominal plant, this indicates a limit as to how much the OCO
can improve upon the baseline controller. For the uncertain
plants, this indicates a limit as to how much the OCO
performance can be degraded by uncertainty. Hence, there
is a trade off between OCO performance and robustness to
uncertainty.

Again, Figure 7 shows the averaged per-step cost
JT (x, u)/T of C-OCO as a function of β, this time with
H = 5. The results are similar to the case when H = 1, but
the nominal plants appear to go unstable at larger values of
β. This illustrates that increasing the learning horizon H may
increase robustness, however the stability bound β∗ = 1.063
is more conservative. This suggests that the true stability
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bound also depends on the learning horizon H which is
not taken advantage of in the robust stability condition in
Theorem 1.

VI. CONCLUSION

In this paper, we establish a robust stability condition
using the small gain theorem for a class of OCO controllers
with memory and use the result to compute the robust
stability bound. In particular, we impose the stability bound
as a constraint on the controller point-wise in time. We
provide numerical results to illustrate that imposing the
robust stability constraint will ensure stability in the presence
of bounded uncertainties. Future work will focus on reducing
the conservatism of the robust stability bound β∗, computing
the exact projection, and developing an OCO controller for
the output-feedback case.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2347026. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] O. Anava, E. Hazan, and S. Mannor, “Online convex optimization
against adversaries with memory and application to statistical arbi-
trage,” 2014.

[2] E. Hazan, “The Convex Optimization Approach to Regret Minimiza-
tion,” in Optimization for Machine Learning. The MIT Press, 09 2011.
[Online]. Available: https://doi.org/10.7551/mitpress/8996.003.0012

[3] M. Zinkevich, “Online convex programming and generalized in-
finitesimal gradient ascent,” in Proceedings of the 20th international
conference on machine learning (icml-03), 2003, pp. 928–936.

[4] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms
for online convex optimization,” Machine Learning, vol. 69, no. 2-3,
pp. 169–192, 2007.

[5] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and trends in Machine Learning, vol. 4, no. 2, pp. 107–
194, 2011.

[6] E. Hazan, “Introduction to online convex optimization,” Foundations
and Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[7] N. Agarwal, E. Hazan, and K. Singh, “Logarithmic regret for online
control,” in Advances in Neural Information Processing Systems, 2019,
pp. 10 175–10 184.

[8] D. Foster and M. Simchowitz, “Logarithmic regret for adversarial
online control,” in International Conference on Machine Learning,
2020, pp. 3211–3221.

[9] G. Goel, N. Agarwal, K. Singh, and E. Hazan, “Best of both worlds
in online control: Competitive ratio and policy regret,” arXiv preprint
arXiv:2211.11219, 2022.

[10] N. Agarwal, B. Bullins, E. Hazan, S. Kakade, and K. Singh, “Online
control with adversarial disturbances,” in International Conference on
Machine Learning. PMLR, 2019, pp. 111–119.

[11] K. Zhou, J. Doyle, and K. Glover, Robust and optimal control.
Pearson, 1995.

[12] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design, 2nd ed. John Wiley and Sons, 2005.

[13] Y. Rahman, A. Xie, J. B. Hoagg, and D. S. Bernstein, “A tutorial and
overview of retrospective cost adaptive control,” in 2016 American
Control Conference, 2016, pp. 3386–3409.

[14] R. Venugopal and D. S. Bernstein, “Adaptive disturbance rejection
using ARMARKOV/Toeplitz models,” IEEE Transactions on Control
Systems Technology, vol. 8, no. 2, pp. 257–269, 2000.

[15] M. A. Santillo and D. S. Bernstein, “Adaptive control based on
retrospective cost optimization,” Journal of guidance, control, and
dynamics, vol. 33, no. 2, pp. 289–304, 2010.

[16] G. Goel and B. Hassibi, “Measurement-feedback control with optimal
data-dependent regret,” arXiv preprint arXiv:2209.06425, 2022.

[17] ——, “Regret-optimal estimation and control,” arXiv preprint
arXiv:2106.12097, 2021.

[18] ——, “Regret-optimal measurement-feedback control,” in Learning
for Dynamics and Control. PMLR, 2021, pp. 1270–1280.

[19] ——, “Regret-optimal control in dynamic environments,” arXiv
preprint arXiv:2010.10473, 2020.

[20] J. Doyle, “Guaranteed margins for LQG regulators,” IEEE Transac-
tions on Automatic Control, vol. 23, no. 4, pp. 756–757, 1978.

[21] H. K. Khalil, Nonlinear Systems, third ed. ed. Upper Saddle River,
NJ: Prentice-Hall, 2002.

[22] A. Packard and J. Doyle, “The complex structured singular value,”
Automatica, vol. 29, no. 1, pp. 71–109, 1993.

[23] M. Dahleh and I. Diaz-Bobillo, Control of uncertain systems: a linear
programming approach. Prentice-Hall, 1995.

8883


