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Abstract— This paper studies the finite-time horizon
Markov games where the agents’ dynamics are decoupled
but the rewards can possibly be coupled across agents. The
policy class is restricted to local policies where agents make
decisions using their local state. We first introduce the notion
of smooth Markov games which extends the smoothness
argument for normal form games ( [1], [2]) to our setting,
and leverage the smoothness property to bound the price
of anarchy of the Markov game. For a specific type of
Markov game called the Markov potential game, we also
develop a distributed learning algorithm, multi-agent soft
policy iteration (MA-SPI), which provably converges to a
Nash equilibrium. Sample complexity of the algorithm is also
provided. Lastly, our results are validated using a dynamic
covering game.

I. INTRODUCTION

Multiagent Markov Decision Processes (MDPs) have
found numerous applications, such as autonomous ve-
hicles [3], swarm robotics [4], collaborative manufac-
turing [5], decentralized energy management [6], and
social network analysis [7], among many others. In these
problems, a critical question is how individual agents can
learn effective strategies collectively in complex multi-
agent environments.

Given the success of reinforcement learning (RL) for
MDPs, many studies have focused on the empirical and
theoretical performance of RL in multi-agent settings
(e.g., [8]–[15]). The study of multi-agent RL is inher-
ently more complex than that of single-agent RL due
to the (strategic) interactions between agents. Conse-
quently, most provable algorithms in multi-agent RL (e.g.,
[10]–[13]) only consider convergence to Nash equilibria
(NEs) or their extensions (e.g., coarse correlated equilibria
(CCE)) instead of global optimality. However, in many
cases, NE may have poor performance because it only
considers the individual rationality of each agent and
hence does not necessarily result in the best overall
outcome for the system as a whole. Therefore, in addition
to understanding the convergence to a NE, it is also crucial
to investigate the quality of the NEs compared to the
global optimal solution, where all agents in the system
coordinate and cooperate to achieve a common objective.

Runyu (Cathy) Zhang, Yuyang Zhang and Na Li are with the John A.
Paulson School of Engineering and Applied Sciences, Harvard Univer-
sity (e-mail: runyuzhang@fas.harvard.edu, yuyangzhang@g.harvard.edu,
nali@seas.harvard.edu). Rohit Konda, Bryce Ferguson, Jason Marden
are with the Department of Electrical and Computer Engineering,
University of California, Santa Barbara(e-mail: rkonda@ucsb.edu, blfer-
guson@ece.ucsb.edu, jrmarden@ece.ucsb.edu).

Due to the difficulty in characterizing which specific
NE (or CCE) an algorithm converges to, one way to
characterize the quality of solutions is to study the worst-
case performance of NEs, such as Price of Anarchy
(PoA, [16]), which is defined as the ratio between the
performance of the worst NE and the global optimum.
The PoA has been well studied in the static game settings
where there is only a single stage/state. In many appli-
cations such as traffic routing [17], resource allocation
[18]–[20], and auctions [21], PoA bounds have been
established. Moreover, [1] introduces a general approach
for generating the PoA bounds for a class of games called
smooth games. However, it is unclear how to extend these
results to the Markov settings where there are many states
and stages.

Several recent works, such as [22] and [23], have
extended the smoothness property to the Markov game
settings. However, one limitation of their approach is that
they define smoothness directly on the value functions,
which are long-term accumulative rewards, of the Markov
game. Value functions are typically hard to compute, mak-
ing it difficult to verify the smoothness condition. These
studies suggest that analyzing the PoA for Markov games
may be fundamentally more challenging than for static
games due to the increased complexity of the problem
structure.

Our Contributions: Given the difficulty of studying
PoA for general Markov games, this paper focuses on a
specific type of Markov games, where one agent’s state
transition only depends on its own state and action but
everyone’s stage reward is coupled with each other’s state
and action. This setting finds many applications such as
multi-robots, traffic systems, and sensor networks.

The first part of this paper is dedicated to addressing
the challenges associated with the study of PoA, where
we provide both positive and negative results. In the
case of the former, we extend the smoothness arguments
presented in previous work [1], [2] for normal form static
games, to identify a sufficient condition for a lower bound
on the PoA. This is accomplished by taking advantage
of the unique structure of our problem, which allows for
verification of smoothness solely for the stage rewards,
as opposed to the value functions. Compared with ex-
isting conditions presented in [22], [23], our smoothness
condition is significantly easier to verify. In terms of
negative results, we provide a counterexample to illustrate
that the PoA of the stage rewards alone fails to lower-
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bound the PoA of the Markov game, thus emphasizing
the importance of our proposed smoothness condition.

Furthermore, we develop a novel distributed learning
algorithm - multi-agent soft policy iteration (MA-SPI) -
for a specific type of Markov game called the Markov
potential game (MPG), which provably converges to a
Nash equilibrium. Notably, MA-SPI can be implemented
in a fully decentralized manner, where agents only require
local information to update their policies. We also proved
that it takes Õ

(
n4H7

c6ϵ4 + n2 maxi|Si|2 maxi|Ai|2H4

c2ϵ2

)
samples

to learn a policy that is ϵ close to a NE. Here n is the
number of agents, H is the horizon length, |Si|, |Ai| is the
size of i-th agent’s local state and action space and the
constant c represents the level of sufficient exploration of
the system states (rigorously defined in Assumption 1).

In addition to theoretical analysis, we also evaluate our
results using a dynamic covering game as an example,
where a group of collaborative agents work together to
cover as many rewards as possible. The game’s smooth-
ness and price of anarchy were analyzed for three different
reward designs: identical-interest, marginal-contribution,
and utility-sharing. Additionally, we apply the MA-SPI
algorithm to the dynamic covering game and numerically
show that MA-SPI converges to a Nash equilibrium.

II. PROBLEM SETTINGS AND PRELIMINARIES

A. Markov games with decoupled dynamics

In this paper, we consider a Markov game model with
decoupled dynamics

M := {{Si,Ai, Pi, ri, ρi}ni=1, v,H}, (1)

where there are n agents, and H is the horizon of the
Markov game. si,h ∈ Si is the local state of agent i at
horizon h and ai,h ∈ Ai is the local action. The dynamics
of agents are decoupled in the sense that agent i’s next
state si,h+1 is fully determined by the local action and the
current local state si,h+1 ∼ Pi,h(·|si,h, ai,h). We denote
the global state and global action as the concatenation of
local states and actions, i.e., sh = {s1,h . . . , sn,h}, ah =
{a1,h . . . , an,h}, and thus the state/action space is a prod-
uct space of the local state/action spaces S = S1 × · · · ×
Sn,A = A1×· · ·×An. Agent i’s stage reward at horizon
h is ri,h : S × A → [0, 1], which can possibly depend
on other agents’ states and actions. Apart from individual
rewards, there’s a social welfare function vh : S×A → R
that measures the social welfare of the system at horizon
h. ρi is the initial local state distribution for agent i. A
stochastic policy π = {πh : S → ∆(A)}Hh=1 (where
∆(A) is the probability simplex over A) specifies a
strategy in which agents choose their actions based on the
current state in a stochastic fashion. Throughout the paper,
we consider the local policy class Πlocal, where agents
need to take actions independently based on their own
local state, i.e., ai,h ∼ πi,h(·|si,h).Within the local policy
class, the joint policy can be written as the product of

individual policies, i.e. πh(ah|sh) =
∏n

i=1 πi,h(ai,h|si,h).
For a given policy agent i’s total reward is denoted as

Ji(π) := Eπ
sj,1∼ρj

H∑
h=1

ri,h(sh, ah),

and the total social welfare is

W (π) := Eπ
si,1∼ρi

H∑
h=1

vh(sh, ah). (2)

Here the notation Eπ denotes the expectation taken over
the trajectory by implementing policy π. Agent i’s objec-
tive is to maximize its own total reward Ji.

Remark 1 (Justification and Limitation of the setting).
The settings described above can find many applications
such as sensor coverage, autonomous vehicles, and multi-
robotics. In these applications, individual agents (i.e.,
sensors, vehicles, and robots) have their own dynamics
which depend on their own state and action. In Section VI,
we provide details on modeling a dynamic covering game
using our framework. Nevertheless, one major limitation
in our current setting is that the policy class is constrained
to fully localized policy whereas in practice, agents could
decide their actions based on more information such as
neighboring agents’ states. We leave it as our important
future work to generalize the policy class. □

Throughout the paper, we use the index notation −i to
denote all the agents other than agent i, for example π−i

is used to denote (π1, . . . , πi−1, πi+1, . . . , πn).

Definition 1 (Nash equilibrium (NE)). A policy πNE =
{πNE

1 , · · · , πNE
n } is called a Nash equilibrium (NE) if for

any i ∈ [n],
Ji(π

NE) ≥ Ji(πi, π
NE
−i)

We also denote the set of Nash equilibria as ΠNE.
Given a policy π, we denote the Nash gap for the policy

by:

NE-Gapi(π) := max
π′
i

Ji(π
′
i, π−i)− Ji(πi, π−i).

NE-Gap(π) :=
n∑

i=1

NE-Gapi(π)

A policy π is called an ϵ-NE if NE-Gap(π) ≤ ϵ.

Definition 2 (Price of anarchy (PoA)). For a Markov
game M defined as Equation (1),

PoA(M) :=
minπNE∈ΠNE W (πNE)

maxπ∈Πlocal W (π)

From the definition of PoA, we can see that for any
πNE, the performance can be lower bounded by PoA, that
is,

W (πNE) ≥ PoA(M) · max
π∈Πlocal

W (π).

In this paper, we mainly focus on two goals: i) firstly,
to provide a lower bound for PoA for a class of Markov
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games so that the bound could be used to bound the
performance ratio for any πNE; ii) secondly, to design a
distributed reinforcement learning algorithm that enables
agents to reach a NE by only using their local information
(local states si, actions ai and local rewards ri), even
without knowing the Markov model M.

B. Other preliminaries

Throughout this paper, we will need the following
notations and definitions.

We define the state distribution of agent i as dπi,h :
Si → [0, 1] such that dπi

i,h(si) denotes the probability of
state si being visited at horizon h by implementing policy
π, i.e. dπi

i,h(si) = Pr{si,h = si|si,1 ∼ ρi, ai,τ ∼ πi(·|sτ )}.
Because the transition probabilities are decoupled and
local policies are considered, we have that the total state
distribution can be written as: dπh(s) = Pr{sh = s} =∏

i d
πi

i,h(si).
Agent i’s Q-functions is defined as

Qπ
i,h(s, a) := Eπ

[
H∑

h′=h

ri,h′(sh′ , ah′)
∣∣∣sh = s, ah = a

]
Similar to [12], we define the following ‘averaged’
Q-functions apart from the standard definition of Q-
functions, which will play an important role in later
algorithm design.

Q
π

i,h(si, ai) := E
j ̸=i

sj∼d
πj
j,h(·)

E
j ̸=i

aj∼πj(·|sj)

Qπ
i,h(si, s−i, ai, a−i) (3)

Note that our definition of the “averaged” Q-function
differs from that in [12]. Specifically, we not only take
a weighted average over other agents’ actions but also
their local states.

III. SMOOTH MARKOV GAMES AND PRICE OF
ANARCHY

Characterizing the exact PoA can be challenging even
in the normal form game setting, as it compares the
performance ratio of the worst NE against the global
optimal. The smoothness argument [1] serves as a useful
tool for PoA analysis which can give a canonical PoA
lower bound. In this section, we first identify a class of
Markov games named (λ, µ)-generalized smooth Markov
games, which is an extension of the smoothness argument
in [1], [2] for normal form games, and show that (λ, µ)-
generalized smooth Markov games have a uniform lower
bounds on the PoA.

Definition 3 ((λ, µ)-generalized smoothness). For µ ≥
0, λ > 0, a Markov game M defined as in Equation (1) is
called (λ, µ)-generalized smooth if the following inequal-
ity holds for any state and action pairs (sh, ah), (s

⋆
h, a

⋆
h)

n∑
i=1

ri,h(sh, ah)− ri,h(s
⋆
i,h, s−i,h, a

⋆
i,h, a−i,h)

≤ (1 + µ)vh(sh, ah)− λvh(s
⋆
h, a

⋆
h), ∀h ∈ [H],

Definition 3 is an extension of the generalized smooth-
ness introduced in [2] to the Markov game setting. The
definition implies that at each horizon h, the normal
form game formed induced by stage reward {ri,h}ni=1

and social welfare function vh satisfies the generalized
smoothness argument in [2]. Notably, this condition is
much easier to verify than the smoothness conditions
in [22], [23] as it only requires checking the reward
and welfare functions at each horizon without any value
function computation. The following theorem shows that
we can obtain a similar bound on PoA for the extension
to the Markov game setting.

Theorem 1. Any (λ, µ)-generalized smooth Markov game
M satisfies the following PoA bound:

PoA(M) ≥ λ

(1 + µ)

Proof. We use π⋆ = (π⋆
1 , . . . , π

⋆
2) to denote the globally

optimal policy in the local policy class. From the defini-
tion of (λ, µ)-generalized smoothness,

0 ≤
n∑

i=1

(Ji(π
NE)− Ji(π

⋆
i , π

NE
−i)) (4)

=

n∑
i=1

EπNE

H∑
h=1

ri,h(sh, ah)−

E(π⋆
i ,π

NE
−i)

H∑
h=1

ri,h(s
⋆
i,h, s−i,h, a

⋆
i,h, a−i,h) (5)

= Es∼πNE,s⋆∼π⋆

H∑
h=1

(
n∑

i=1

(ri(sh, ah)

− ri(s
⋆
i,h, s−i,h, a

⋆
i,h, a−i,h))

)
(6)

≤ Es∼πNE,s⋆∼π⋆

H∑
h=1

((µ+1)v(sh, ah)−λv(s⋆h, a
⋆
h)) (7)

= (µ+ 1)W (πNE)− λW (π⋆),

where the inequality (4) is derived by the defini-
tion of NE, (5) to (6) holds because the trajectory
{si,h, ai,h}Hh=1 of agent i is independent of any other
agents {s−i,h, a−i,h}Hh=1, (6) to (7) holds because of the
smoothness condition. Thus we have

W (πNE)

W (π⋆)
≥ λ

µ+ 1
, =⇒ PoA(M) ≥ λ

µ+ 1
.

Remark 2. The proof of Theorem 1 can be easily extend
to ϵ-NEs and thus a performance lower bound can also
be derived for ϵ-NEs:

−ϵ ≤ (µ+ 1)W (πϵ-NE))− λW (π⋆)

=⇒ W (πϵ-NE)) ≥ λ

µ+ 1
W (π⋆)− ϵ

µ+ 1
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A. A counter-example for general Markov games

Theorem 1 suggests that as long as the stage rewards of
the Markov game form a (λ, µ)-generalized smooth game
for every horizon h, then the PoA bound analysis can
be generalized from the static normal form game to the
Markov game. Given this positive result, a natural follow-
up question is, whether the statement can be generalized
to general Markov games in the sense that stage-wise PoA
lower bound can also bound the PoA for the Markov game
which is not necessarily a smooth game. Unfortunately,
this statement is not necessarily true.

Fig. 1: State Transition

We can construct a sim-
ple counter-example with
n = 2, H = 3. In this
counter-example, the reward
functions ri,h’s only depend
on states (but not actions),
and for any 1 ≤ h ≤ H ,
{ri,h(·)}ni=1 forms a nor-
mal form game on the state
space with PoA({ri,h(·)}ni=1) ≥ 1/2, yet the PoA for
the Markov game PoA(M) = 7/16 < 1/2. The counter-
example is constructed as follows: both agent 1 and 2
follow the (local) state transition dynamics as shown in
Figure 1. The reward table for h = 2 and h = 3 is shown
as in Table I, II. It can be verified that the PoA is 1/2 for
Table I (the worst NE is a mixed NE where both agents
play X and Y with probability 1/2) and 1 for Table II
(there’s a unique NE which is also the global optimal).
From another perspective, the Markov game is equivalent
to a normal form game on the action space at h = 1,
whose reward table is shown in Table III. Thus the PoA
for the dynamic game is the same as Table III, which is
PoA(M) = 7/16 < 1/2 (the worst NE is a mixed NE
where both agents play A with probability 3/4 and Y with
probability 1/4).

X Y
X 2 0
Y 0 2

TABLE I: Reward
table for h = 2

X Y
X 0 1
Y 1 2

TABLE II: Reward
table for h = 3

A B
A 2 1
B 1 4

TABLE III: Equivalence
to a normal form game

IV. LEARNING THE NASH EQUILIBRIUM FOR
MARKOV POTENTIAL GAMES

The PoA lower bound proved by the previous section
suggests that as long as an algorithm finds a NE for a
(λ, µ)-generalized smooth Markov game, it is at most
λ/(µ + 1) suboptimal in terms of the performance ratio.
However, finding a NE is known to be intractable for
general sum games [24], [25], thus as a starting point,
in this paper we mainly focus on an important subclass,
namely the Markov potential game, and propose a multi-
agent soft policy iteration (MA-SPI) algorithm that learns
a NE efficiently using samples.

Definition 4. (Markov Potential Game (MPG, [12], [13],
[26], [27])) A Markov game M defined as Equation (1)
is a Markov potential game if there exists stage potential
functions {ϕh : S ×A → R}Hh=1 such that for all agents’
rewards and state-action pairs at all horizon 1 ≤ h ≤ H ,

ri,h(s
′
i,h, s−i,h, a

′
i,h, a−i,h)− ri,h(si,h, s−i,h, ai,h, a−i,h)

= ϕh(s
′
i,h, s−i,h, a

′
i,h, a−i,h)− ϕh(si,h, s−i,h, ai,h, a−i,h).

(8)

From the definition of MPG, we can define the total
potential function as a function on the policy space

Φ(π) := Eπ
si,1∼ρi

H∑
h=0

ϕh(sh, ah), (9)

and it is not hard to verify that for any
(πi, π−i), (π

′
i, π−i) ∈ Πlocal the total potential function

satisfies:

Ji(πi, π−i)− Ji(π
′
i, π−i) = Φ(πi, π−i)− Φ(π′

i, π−i).
(10)

The notion of the Markov potential game is first pro-
posed for continuous dynamical systems in [26], [27]. The
idea is then generalized to the Markov game setting in
[12], [13], where Equation (10) is directly used as the
definition of MPG. However, Equation (10) is hard to
check for general Markov games. In contrast, thanks to
the decoupled dynamics and local policy class considered
in this paper, the condition can be further simplified
as Definition 4, whose condition is defined over stage
rewards, much easier to verify.

For the learning algorithm, we also make the following
assumption on the MPG.

Assumption 1 (Sufficient Exploration). For any policy
π, there exists a uniform constant c > 0 such that
dπi,h(si) > c, ∀ i, h, si.

Assumption 1 requires that any state at any horizon
h has a positive probability of being visited. Similar
assumptions are standard for proving convergence for
sample-based RL algorithms (e.g., [28], [29]). We would
like to note that Assumption 1 is admittedly stronger
than assumptions in [28] (they only require a certain
discounted state visitation distribution to be positive, yet
we require the state visitation distribution at every horizon
h to be positive). We leave it to future work to extend this
assumption.

A. Algorithm design: multi-agent soft policy iteration

Our algorithm can be summarized as the following soft
policy iteration update:

π
(t+1)
i,h (ai|si) = (1− ηt)π

(t)
i,h(ai|si)+

ηt1{ai = argmax
a′
i

Q̂
(t)
i,h(si, a

′
i)}.

(11)

Here Q̂
(t)
i,h is an estimation of the averaged-Q function

Q
(t)

i,h defined in Equation (3). Note that when the stepsize
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ηt = 1, the algorithm is equivalent to each agent executing
the policy iteration algorithm, i.e., choosing greedy actions
that maximize the current estimation of its own averaged-
Q functions. However, for multi-agent systems, the greedy
update with ηt = 1 might cause miscoordination and
thus fail to converge, hence we introduce the soft policy
iteration by setting the next iteration’s policy as a convex
combination of the current policy and the greedy policy.

Given Equation (11), the key part of the algorithm lies
in how to estimate the averaged-Q functions. To start with,
we present the following property of the averaged Q-
functions (the proof is deferred to the online version of
this paper [30]):

Lemma 1. The averaged Q-functions Q
π

i,h in Equation
(3) satisfies the following Bellman equation:

Q
π

i,h(si, ai) = rπi,h(si, ai)+∑
s′i,a

′
i

Pi,h(s
′
i|si, ai)πi,h+1(a

′
i|s′i)Q

π

i,h+1(s
′
i, a

′
i),

(12)

where

rπi,h(si, ai) := E
j ̸=i

sj∼d
πj
j,h(·)

E
j ̸=i

aj∼πj(·|sj)

ri,h(si, s−i, ai, a−i)

The key idea of our sample-based algorithm is to
estimate Q

π

i,h(si, ai) and then perform soft policy iteration
(Equation (11)). Given Equation (12), we start by estimat-
ing rπi,h(si, ai) and Pi,h(s

′
i|si, ai) and then calculate the

estimated averaged-Q functions using Equation (12).
In our algorithm, there are two different types of data

collection processes, namely the pre-data collection and
the on-policy data collection. In the pre-data collection
step, the dataset DK is collected by setting each agent’s
policy the uniform random policy. The on-policy data
collection step is collected by running a specific policy,
for each policy π(t), the dataset D

(t)
J is collected by

implementing π(t).
The estimated state transition probability P̂i,h(s

′
i|si, ai)

uses the dataset DK from the pre-data collection which
contains TK samples DK = {{s(k)i,h , a

(k)
i,h}Hh=1}

TK

k=1 ∈ DK ,
i.e.,

P̂i,h(s
′
i|si, ai) :=



∑TK
k=11{s

(k)
i,h+1=s

′
i,s

(k)
i,h=si,a

(k)
i,h=ai}∑TK

k=1 1{s(k)
i,h=si,a

(k)
i,h=ai}

,

if
∑TK

k=1 1{s
(k)
i,h = si, a

(k)
i,h = ai} ≥ 1;

1{s′i = si},
if
∑TK

k=1 1{s
(k)
i,h = si, a

(k)
i,h = ai} = 0.

(13)
The averaged reward rπi,h(si, ai) for each given policy

π is estimated using the on-policy dataset DJ which
contains TJ samples D

(t)
J = {{s(k)i,h , a

(k)
i,h}Hh=1}

TJ

k=1, i.e.

r̂πi,h(si, ai) :=


∑TJ

k=1ri,h(si,ai,s
(k)
−i,h,a

(k)
−i,h)1{s

(k)
i,h=si}∑TJ

k=1 1{s(k)
i,h=si}

,

if
∑TJ

k=1 1{s
(k)
i,h = si} ≥ 1;

0, if
∑TJ

k=1 1{s
(k)
i,h = si} = 0.

(14)

Then we can replace Pi,h and rπi,h in Equation (12)
with P̂i,h and r̂πi,h and get the equation for the estimated
averaged-Q functions which can be solved by backward
dynamic programming.

Q̂π
i,h(si, ai) = r̂πi,h(si, ai)+∑
s′i,a

′
i

P̂i,h(s
′
i|si, ai)πi,h+1(a

′
i|s′i)Q̂π

i,h+1(s
′
i, a

′
i),

Q̂π
i,H+1(si, ai) = 0.

(15)

Lastly, the policy update is given by Equation (11).
A full description of the multi-agent soft policy iteration
(MA-SPI) algorithm is in Algorithm 1

Algorithm 1 Multi-Agent Soft Policy Iteration (MA-SPI)

1: Pre-Data Collection: Get dataset DK :=
{{s(k)i,h , a

(k)
i,h}Hh=1}

TK

k=1 by sampling s
(k)
i,1 ∼ ρi, a

(k)
i,h ∼

Unif(Ai), 1 ≤ h ≤ H.
2: Estimation of Pi,h(s

′
i|si, ai)’s: Estimate the state

transition probabilities Pi,h(s
′
i|si, ai)’s using Equa-

tion (13) and dataset DK .
3: for t = 1, 2, . . . , TG + 1 do
4: for Agent i = 1, 2, . . . , n do
5: On-policy Data Collection: Get dataset D(t)

J :=

{{s(k)i,h , a
(k)
i,h}Hh=1}

TJ

k=1 by sampling s
(k)
i,1 ∼

ρi, a
(k)
i,h ∼ π

(t)
i,h(·|s

(k)
i,h ), 1 ≤ h ≤ H .

6: Estimation of rπi,h(si, ai)’s: Calculate
r̂πi,h(si, ai)’s by Equation (14).

7: Estimation of Q
π

i,h(si, ai)’s: Caculate
Q̂π

i,h(si, ai)’s by Equation (15)
8: Policy Update: Update policy π

(t+1)
i by Equa-

tion (11).
9: end for

10: end for

B. Sample Complexity
Theorem 2. Under Assumption 1, for any ϵ ≤ 1 and any
δ < 1, by running Algorithm 1 with

TG≥
64n2H3

(
(Φmax−Φmin+1)/2 + ln(8nH

3
2 c−1ϵ−1)

)2

c2ϵ2

TJ ≥
2048n2H4 ln(8δ−1nHTG

∑
i |Si||Ai|)

c4ϵ2

TK ≥
2048n2maxi|Si|2maxi|Ai|2H6 ln(8δ−1nHTG

∑
i|Si|2|Ai|)

c4ϵ2
,

it can be guaranteed that the output policies π(t)’s from
Algorithm 1 satisfy:

TG∑
t=1

1√
t
NE-Gap(π(t)) ≤ ϵ

√
TG

2
+

ϵ
∑TG

t=1
1√
t

2
, (16)

which implies that:

min
1≤t≤TG

NE-Gap(π(t)) ≤ ϵ. (17)
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The sample complexity of Algorithm 1 is given by
TGTJ + TK . From Theorem 2, by setting

TG ∼ Õ

(
n2H3

c2ϵ2

)
, TJ ∼ Õ

(
n2H4

c4ϵ2

)
,

TK ∼ Õ

(
n2 maxi|Si|2 maxi|Ai|2H4

c2ϵ2

)
,

where Õ hides the log factors, running Algorithm 1
can find an approximate NE with NE gaps smaller
than ϵ. Thus the complexity for finding an ϵ-NE is
Õ
(

n4H7

c6ϵ4 + n2 maxi|Si|2 maxi|Ai|2H4

c2ϵ2

)
.

V. PROOF SKETCHES FOR THEOREM 2

This section provides a brief proof sketch of our sample
complexity result. Due to space limitations, we defer the
detailed proofs into the online version of this paper [30].
The proof of the theorem can be decomposed into the
following three major steps.
Step 1: iteration complexity of MA-SPI. The proof of
Theorem 2 is based on the following main lemma on the
iteration complexity of MA-SPI.

Lemma 2. Suppose

max
si,ai

∣∣∣∣(Q̂π(t)

i,h −Q
π(t)

i,h )(si, ai)

∣∣∣∣ ≤ ϵQ,

∀ 1 ≤ i ≤ n, 1 ≤ h ≤ H, 1 ≤ t ≤ TG

then running Equation (11) with ηt = 1√
4n2H3t

will
guarantee that
TG∑
t=1

1√
t
NE-Gap(π(t)) ≤

√
4n2H3

c
(Φmax−Φmin+1+ln(TG)) +

2nHϵQ
c

TG∑
t=1

1√
t
,

which implies that

min
1≤t≤TG

NE-Gap(π(t)) ≤
√
4n2H3 (Φmax − Φmin + 1 + ln(TG))

2c
√
TG︸ ︷︷ ︸

Part I

+
2nHϵQ

c︸ ︷︷ ︸
Part II

.

Lemma 2 suggests that the minimum NE-gap depends
on two terms. The first term (Part I) diminishes to zero
at rate Õ

(
1√
TG

)
, whereas the second term (Part II) is a

bias term that is caused by the estimation error ϵQ of the
averaged Q-functions. Thus, in order to reach an ϵ-NE, in
the proof we set both Part I and II to be smaller than ϵ

2 ,
and this gives a lower bound for TG and an upper bound
for ϵQ. Lemma 2 is proved by a sufficient ascent lemma
whose detail is in the supplementary material [30].
Step 2: sensitivity of ϵQ to the estimation errors. The
rest of the proof focuses on the analysis of ϵQ. In this step,
we first bound ϵQ by the estimation errors of rπi,h(si, ai)
and Pi,h(s

′
i|si, ai), which is stated as follows:

Lemma 3. Suppose∣∣r̂πi,h(si, ai)− rπi,h(si, ai)
∣∣ ≤ ϵr,∀si ∈ Si, ai ∈ Ai,h,∣∣∣P̂i,h(s

′
i|si, ai)−Pi,h(s

′
i|si, ai)

∣∣∣≤ϵP ,∀s′i, si∈Si, ai∈Ai,h,

then Q̂π
i,h calculated from Equation (15) satisfies:

max
si,ai

∣∣∣(Q̂π
i,h−Q

π

i,h)(si, ai)
∣∣∣≤ϵr(H+1−h)+ϵPH(H+1−h)|Si|.

Lemma 3 is proved by induction on the Bellman
equation (Equation 12).
Step 3: bound the estimation errors of rπi,h(si, ai) and
Pi,h(s

′
i|si, ai) The last step is bounding the estimation

errors of the averaged-reward rπi,h(si, ai) and transition
probability Pi,h(s

′
i|si, ai).

Lemma 4. Under Assumption 1, fix s′isi, ai, h, for ϵ ≤ 1,

Pr
(∣∣∣r̂πi,h(si, ai)− rπi,h(si, ai)

∣∣∣ ≥ ϵ
)
≤ 4 exp

(
− ϵ2c2TJ

32

)
.

Pr
(∣∣∣P̂i,h(s

′
i|si, ai)−Pi,h(s

′
i|si, ai)

∣∣∣≥ϵ
)
≤4exp

(
− ϵ2c2TK

32|Ai|2

)
.

Finally, by combining the above three steps and setting
ϵQ, ϵr, ϵP to appropriate values, we can calculate lower
bounds for TG, TJ , TK in order to get an ϵ-NE.

VI. APPLICATION TO THE DYNAMIC
COVERING GAME

Fig. 2: Multi-agent Dynamic Cov-
ering Game.

In this section, we use
a simple dynamic covering
game to illustrate our results.
In a dynamic covering game,
at each time, the agents’ lo-
cal states form a static cover-
ing game and the transition of
the local states is governed by
some local transition. While
the PoA bounds for cover-
ing games in the static set-
ting are well-established (e.g.
[1], [19]), not much is known for the dynamic setting.
In this section, we look into three most commonly
used reward functions (namely the identical-interest,
marginal-contribution and utility-sharing), analyze their
PoA bounds, and simulate the proposed soft policy it-
eration algorithm.

Specifically, we consider a group of n collaborative
agents in a covering game on a 2D grid of size N
([N ] × [N ]). For a grid (j, k), there is a reward of value
wjk. The local state of each agent is its grid position,
si,h ∈ [N ] × [N ]. The local action ai,h represents the
actions that an agent can take (such as moving up, down,
left, right) on the grid. Each agent can have its own local
station transition P (si,h+1|si,h, ai,h), either deterministic
or stochstic. Given a position si,h for agent i, the local
area it can cover is denoted by ŝi,h ⊂ [N ] × [N ] which
includes the grid si,h and neighboring grids, e.g., the blue
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area in Figure 2. 1 The social welfare function v at time
step h is how much treasure the agents cover at time step
h:

v(sh) :=
∑

(j,k)∈∪n
i=1ŝi,h

wjk

For different choices of stage reward function ri,h, agents
might converge to different NEs. Here we mainly look into
the performance of the following three different types of
reward functions:

1) Identical-interest (II): ri,h(sh) = v(sh). The most
natural idea might be setting all agents’ stage re-
wards to be the same as the social welfare v, since
this aligns with the ultimate objective.

2) Marginal-contribution (MC). ri,h(sh) = v(sh) −
v(∅, s−i,h). This type of reward design is also
known as ‘marginal contribution’ [31] in static
covering games/submodular games. The reward
of agent i is the change in the total reward
if agent i is removed. It is easy to see that
this design is equivalent to setting ri(sh) =∑

(j,k)∈ŝi,h
wjk1{Only i covers (j, k)}.

3) Utility-sharing (US) [19]. ri(sh) =
∑

(j,k)∈ŝi,h
wjk·

f(#agents that cover (j, k)), where f is a mono-
tonically decreasing function. Here the reward for
covering (j, k) is wjkf(#agents that cover (j, k)).
The agents will get a smaller reward for covering a
grid that is already covered by many other agents.
This type of reward assignment is also closely
related to Shapley value and its variants. More
discussions are available in [32]–[34].

A. Smoothness and PoA Bounds

In this section, we establish the smoothness and PoA
bounds for all the above discussed reward functions.

Lemma 5. 1) The sets of NEs for identical-interest
and marginal-contribution are the same.

2) For marginal-contribution, the Markov game is
(1, 1)-smooth, and thus the PoA for both marginal-
contribution and identical-interest is bounded by
PoA(M) ≥ 1

2
3) For untility-sharing, the Markov game is (1, µf )-

smooth, where µf = supn nf(n)− f(n+ 1). More
specifically, for

f(n) =
(n−1)!

∑+∞
i=n

1
i!

e−1 , (18)

µf = 1
e−1 and thus the price of anarchy is bounded

by PoA(M) ≥ 1− 1
e .

Proof. The first statement is trivial from the fact that II
and MC share the same stage potential function, which
can be chosen as the social welfare i.e., ϕ = v. The
smoothness condition for the second statement and third
statement follows naturally from the smoothness analysis
for the static covering game (see, e.g., [1] for the second

1Without causing confusion, we use the notation si,h to denote the
local state of agent i and ŝi,h to denote the local area it can cover from
the position.

Fig. 3: Left: Social NE-Gap of Algorithm 1; Right: Social Welfare of Algorithm 1;

statement and [19] for the third statement). And the PoA
bounds follow from Theorem 1.

B. Numerical Simulations

In this section, we test the MA-SPI algorithm (Algo-
rithm 1) in a dynamic covering game on a 2D grid of
size 7. The state space of any agent i consists of the 49
grids. Treasure w = 1 is set in grids (0, 0), (0, 1), (1, 0),
(0, 5), (0, 6), (1, 6), (5, 0), (6, 0), (6, 1), i.e. in three cor-
ners of the grid, as is shown in Figure 2.

There are 3 agents in the game, whose initial positions
are randomly selected uniformly among the 49 grids. Each
agent has 4 actions, i.e. up, right, down and left. When any
agent takes any action, the exact action is executed with
probability 2/3, a random action of the four is executed
with probability 1/3. When an action is executed, the
agent transits to the corresponding grid or stays still if
the corresponding grid is outside of the 2D plane.

Every agent interacts with the environment for H =
10 time steps. At every time step, every agent covers an
area with size 3 centered at its state, and receives reward
according to the reward function and the treasures in its
area of coverage.

We first verify that a covering game forms a MPG with
any of the three types of reward functions. For II and MC
reward designs, it is obvious that the welfare function v
can serve as the stage potential function ϕ in Equation
(8). For utility-sharing, the stage potential function can
be chosen as [19]:

ϕ(sh, ah) =
∑

(j,k)∈ŝh
wj,k

∑#agents that cover (j,k)
l=1 f(l),

which satisfies the condition in Equation (8). For any
reward design, function ϕ gives the potential function Φ
following Equation (9), and therefore proves that the game
is an MPG.

Moreover, it can be verified by induction that this game
satisfies Assumption 1 with c = 1

49 × ( 16 )
10. We simulate

Algorithm 1 in the environment described above. In the
actual training process, the algorithm parameters are set to
TG = 40, TJ = 800, TK = 50000, which is sufficient to
show convergence for our algorithm. For the US reward
design, the utility function f is set to Equation (18).

Figure 3 shows the NE-Gap and the social welfare
in the training process for all three types of reward
functions respectively. For all the reward designs, the
NE-gap converges to almost zero, and the social welfare
achieves around 50, with the PoA being approximately
PoA ≈ 50/70 > 1− 1

e , which aligns with Lemma 5.
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VII. CONCLUSIONS AND FUTURE WORKS

This paper studies the price of anarchy (PoA) and
efficient learning of a specific type of Markov games with
decoupled dynamics. Firstly, the generalized smoothness
condition is proposed to obtain a unified lower bound
of PoA. For a specific type of Markov games known
as the Markov potential games, we propose a distributed
learning algorithm, multi-agent soft policy iteration (MA-
SPI), which provably converges to a Nash equilibrium.
Our results are also validated using a dynamic covering
game example. As future works, it would be valuable
to investigate how to achieve efficient learning and PoA
analysis for broader equilibrium notions beyond Nash
equilibrium, such as coarse correlated equilibria. In addi-
tion, we plan to explore algorithm design for more general
policy classes where agents have access not only to their
local states but also to their neighbors’ information.
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[27] D. González-Sánchez and O. Hernández-Lerma, Discrete–time
stochastic control and dynamic potential games: the Euler–
Equation approach. Springer Science & Business Media, 2013.

[28] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “On the
theory of policy gradient methods: Optimality, approximation, and
distribution shift,” The Journal of Machine Learning Research,
vol. 22, no. 1, pp. 4431–4506, 2021.

[29] G. Qu and A. Wierman, “Finite-time analysis of asynchronous
stochastic approximation and q-learning,” in Proceedings of Thirty
Third Conference on Learning Theory (J. Abernethy and S. Agar-
wal, eds.), vol. 125 of Proceedings of Machine Learning Research,
pp. 3185–3205, PMLR, 09–12 Jul 2020.

[30] R. Zhang, Y. Zhang, R. Konda, B. Ferguson, J. Marden, and N. Li,
“Markov games with decoupled dynamics: Price of anarchy and
sample complexity,” arXiv preprint arXiv:2304.03840, 2023.

[31] A. Vetta, “Nash equilibria in competitive societies, with applica-
tions to facility location, traffic routing and auctions,” in The 43rd
Annual IEEE Symposium on Foundations of Computer Science,
2002. Proceedings., pp. 416–425, IEEE, 2002.

[32] L. S. Shapley, “Notes on the n-person game—ii: The value of an
n-person game.(1951),” Lloyd S Shapley, 1951.

[33] A. Ghorbani and J. Zou, “Data shapley: Equitable valuation of data
for machine learning,” in International Conference on Machine
Learning, pp. 2242–2251, PMLR, 2019.

[34] Y. Kwon and J. Zou, “Beta shapley: a unified and noise-reduced
data valuation framework for machine learning,” arXiv preprint
arXiv:2110.14049, 2021.

8101


