
On Joint Convergence of Traffic State and Weight Vector in
Learning-Based Dynamic Routing with Value Function Approximation

Yidan Wu, Jianan Zhang and Li Jin

Abstract— Learning-based approaches are increasingly pop-
ular for traffic control problems, but they are applied typi-
cally as black boxes with limited theoretical guarantees and
interpretability. In this paper, we address these challenges
by analyzing dynamic routing over parallel servers, a rep-
resentative traffic control task, through a semi-gradient on-
policy control algorithm, a key reinforcement learning method.
We consider a linear value function approximation on an
unbounded state space and derive a Lyapunov function from the
approximator. In particular, the structure of the approximator
naturally enables idling policies, which is an interesting and
useful advantage over existing dynamic routing schemes. Our
results demonstrate that the convergence of the approximation
weights is coupled with the convergence of the traffic state.
Specifically, we show that if the system is stabilizable, then (i)
the weight vector converges to a bounded region, and (ii) the
traffic state is bounded in the mean. Additionally, empirical
evidence shows that our proposed algorithm is computationally
efficient with an insignificant optimality gap, which is effectively
practical in real-world applications.

Index terms: Dynamic routing, reinforcement learning,
Lyapunov method, value function approximation.

I. INTRODUCTION

Dynamic routing is a classical control problem in trans-
portation, manufacturing, and networking. This problem was
conventionally challenging, because analytical characteriza-
tion of the steady-state distributions of the traffic state and
thus of the long-time performance metrics (e.g., queuing
delay) are very difficult [1], [2]. Recently, there is a rapidly
growing interest in applying reinforcement learning (RL)
methods to dynamic routing and network control problems
in general. RL methods are attractive because of their
computational efficiency and adaptivity to unknown/non-
stationary environments [3]. However, there is still a non-
trivial gap between the demand for theoretical guarantees
on key performance metrics and the black-box nature of RL
methods. In particular, most existing theoretical results on
RL are developed in the context of finite Markov decision
processes (MDPs), while dynamic routing may be considered
in infinite state spaces, especially for stability and throughput
analysis.

In this paper, we make an effort to respond to the above
challenge by studying the behavior of a parallel service sys-
tem (Fig. 1) controlled by a class of semi-gradient SARSA
(SGS) algorithms with linear function approximation; these

This work was in part supported by NSFC Project 62103260, SJTU UM
Joint Institute, J. Wu & J. Sun Foundation, and US NSF CMMI-1949710.

Y. Wu and L. Jin are with the UM Joint Institute, Shanghai Jiao
Tong University, China. J. Zhang is with the School of Electronics,
Peking University, China. (Emails: wyd510@sjtu.edu.cn, li.jin@sjtu.edu.cn,
zhangjianan@pku.edu.cn)

methods are attractive because of (i) adaptivity to unknown
model parameters and (ii) potential to obtain near-optimal
policies. Importantly, we jointly consider the convergence of

Fig. 1: A parallel service system.

the algorithm training process and of the traffic state process.
The specific research questions are:

1) How is the convergence of the weight vector coupled
with the convergence of the traffic state?

2) Under what conditions does the proposed SGS algo-
rithm ensure the joint convergence of the weights and
the state?

The above questions involve two bodies of literature,
viz. dynamic routing and reinforcement learning. Classical
dynamic routing schemes rely on Lyapunov methods to
study traffic stability and provide a solid foundation for our
work [4], [5]. However, these methods are less powerful to
search for routing policies that optimizing average system
time. In particular, existing results usually assume non-
idling policies, which may be quite restrictive. Recently, RL
is used for finding optimal routing policies and provides
important tools and insights for practice [6]. In particular,
Liu et al. proposed a mixed scheme that uses learning
over a bounded set of states and uses a known stabilizing
policy for the other states [7]; Xu et al. proposed a deep
RL-based framework for traffic engineering problems in
communication networks [8]; Lin et al. proposed an adaptive
routing algorithm utilizing RL in a hierarchical network [9].
However, existing theory on RL mostly, to the best of our
knowledge, considers MDPs with finite or bounded state
spaces [10], [11], [12]; the theory on infinite/unbounded
state spaces is limited to very special problems (e.g., linear-
quadratic regulation [13]). Hence, existing learning-based
routing algorithms either rely on empirical evidence for

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 6413

convergence or build on finite MDP theories. Thus, there is
a lack of solid theory on the convergence of value function
approximation over unbounded state spaces; such a theory
is essential for developing interpretable and reliable routing
schemes.

In response to the above research gaps, we jointly consider
the convergence of traffic state and of the weight vector in
dynamic routing. The traffic state characterizes the queuing
process in the parallel service system illustrated in Fig. 1.
The routing objective is to minimize the expected total
system time, which includes waiting times and service times.
The weights parameterize the approximate action value func-
tion, and thus determine the routing policy. In particular, the
algorithm naturally makes possible idling policies, which is
an advantage over existing methods. The weights are updated
by a semi-gradient on-policy algorithm.

Our main result (Theorem 1) states that the proposed
algorithm ensures joint convergence of the traffic state and
the weight vector if and only if the system is stabilizable.
Importantly, we study the coupling between the long-time
behavior of the traffic state and that of the weight vector,
which extends the existing theory on finite-state RL [11]
to unbounded state spaces. The convergence of traffic state
results from a Lyapunov function associated with the approx-
imate value function [14] which verifies the drift criterion
[15]. The convergence of weights results from stochastic
approximation theory [16]. We compare the proposed algo-
rithm with a much more sophisticated neural network-based
algorithm and show that our algorithm converges much faster
than the benchmark with only an 8% optimality gap.

In summary, the contributions of this paper are as follows.
1) We propose a structurally intuitive and technically

sound algorithm to learn near-optimal routing policies
over parallel servers.

2) We study joint convergence of traffic state and weight
vector under the proposed algorithm; this is theoretically
interesting in itself.

3) We show empirical evidence for the computational ef-
ficiency and near-optimality of the proposed algorithm.

The rest of this paper is organized as follows. Section II
introduces the parallel service system model, the MDP
formulation, and the SGS algorithm. Section III presents and
develops the main result on joint convergence. Section IV
compares the SGS algorithm with two benchmarks. Sec-
tion V gives the concluding remarks.

II. MODELING AND FORMULATION

Consider the system of parallel servers with infinite buffer
sizes in Fig. 1. In this section, we model the dynamics of the
system, formulate the dynamic routing problem as a Markov
decision process (MDP), and introduce our semi-gradient
SARSA (SGS) algorithm.

A. System modeling

Let N = {1, 2, 3, . . . , N} be the set of parallel servers.
Each server n has an exponentially distributed service rate
µn and job number xn(t) at time t ∈ R≥0. The state of the

system is x = [x1, x2, . . . , xN]T , and the state space is ZN
≥0.

Jobs arrive at origin S according to a Poisson process of rate
λ > 0. When a job arrives, it will go to one of the N servers
according to a routing policy

π : N × ZN
≥0 → [0, 1].

That is, π(a|x) is the probability of routing the new job
to server a conditional on state x. This paper focuses on
a particular class of routing policies which we call the
weighted shortest queue (WSQ) policy. WSQ is based
on the approximation for the action value function Q̂ :
N × ZN

≥0 × RN
>0 → R≥0 defined as:

Q̂(x, a;w) :=

N∑
n=1

wn(xn + I{n=a})
2, (1)

where w = [w1, w2, . . . , wN]T ∈ RN
>0 is the weight vector.

For technical convenience, we consider the softmax version
of WSQ

πw(a|x) =
exp(−Q̂(x, a;w)/ι)∑N
b=1 exp(−Q̂(x, b, w)/ι)

, (2)

where ι ∈ (0,∞) is the temperature of the softmax function.
Note that πw(a|x) converges to a deterministic policy greedy
w.r.t. Q̂ as ι approaches 0 [11].

We say that the traffic in the system is stable if there exists
a constant M <∞ such that for any initial condition,

lim
t→∞

1

t

∫ t

s=0

E[∥x(s)∥1]ds < M, (3)

which indicates that the length of the queues remains
bounded in the mean for all time [17].

We say that the system is stabilizable if

λ <

N∑
n=1

µn. (4)

Note that the above ensures the existence of at least a
stabilizing Bernoulli routing policy.

B. MDP formulation

Since routing actions are made only at transition epochs
[18, p.72], the routing problem of the parallel queuing
system can be formulated as a discrete-time (DT) MDP with
countably infinite state space ZN

≥0 and finite action space
N . With a slight abuse of notation, we denote the state
and action of the DT MDP as x[k] ∈ ZN

≥0 and a[k] ∈ N ,
respectively. Specifically, x[k] = x(tk), where tk is the k-th
transition epoch of the continuous-time process. As indicated
in Section II-A, the routing policy can be parameterized via
weight vector w ∈ RN

>0.
The transition probability p(x′|x, a) of the DT MDP can

be derived from the system dynamics in a straightforward
manner. Let ei ∈ {0, 1}N denote the unit vector such that
ei,i = 1 and ei,j = 0, j ̸= i. Then we have

p(x′|x, a) =


λ

λ+
∑N

n=1 µnI{xn>0}
x′ ∈ {x+ ea}Na=1,

µnI{xn>0}

λ+
∑N

n=1 µnI{xn>0}
x′ = x− en.

6414

The one-step random cost of the MDP is given by

c[k + 1] =∥x[k + 1]∥1(tk+1 − tk),

where ∥·∥1 is the 1-norm for RN . Let c̄(x, a) = E[c[k +
1]|x[k] = x, a[k] = a] denote the expected value of cost.
The total discounted cost over infinite-horizon process is thus
given by

Qπ(x, a) =Eπ

[∞∑
ℓ=0

γℓ∥x[ℓ+ 1]∥1(tℓ+1 − tℓ)
∣∣∣x, a],

where γ ∈ (0, 1) is the discount factor of infinite-horizon
MDP. Let Q∗(x, a) denote the solution of Bellman optimal
equation, that

Q∗(x, a) = c̄(x, a) + γmin
a′

∑
x′

p(x′|x, a)Q∗(x′, a′),

and let π∗ denote the greedy policy with respect to Q∗.
Closed-form solution to Qπ is not easy. Hence, we use

the Q̂ function defined by (1) as a proxy for Qπ . Motivated
by [11], [16], we consider the function approximator as

Q̂(x, a;w) =

N∑
n=1

wnϕn(x, a), (5)

ϕn(x, a) = (xn + I{n=a})
2, n = 1, 2, . . . , N,

where ϕn : N ×ZN
≥0 → R≥0 and {{ϕn}x,a}Nn=1 are linearly

independent basis functions. Let w∗ denote the optimal
solution to

min
w

∑
x∈ZN

≥0,

a≤N

d∗(x)π∗(a|x)
(
Q∗(x, a)− Q̂(x, a;w)

)2
,

where d∗(x) is the invariant state distribution under policy
π∗. We select quadratic basis functions because Qπ is non-
linear and the quadratic function is one of the simplest non-
linear functions. Besides, the analysis is generalizable to
polynomials with higher order.

C. Semi-gradient SARSA algorithm

Inspired by [11], let w[k] denote the weight vector at the
k-th transition epoch, which is updated by an SARSA(0)
algorithm

w[k + 1] = Γ
(
w[k] + αk∆[k]∇wQ̂(x[k], a[k];w[k])

)
;

in the above, Γ : RN
>0 → RN

>0 is a projection operator, αk is
the stochastic step size, ∆[k] is the temporal-difference (TD)
error, and ∇wQ̂(x[k], a[k];w[k]) is the gradient, which are
specified as follows.

The projection Γ(·) is defined with a positive constant CΓ:

Γ(w) =

{
|w| ∥w∥≤ CΓ,

CΓ
|w|
∥w∥ ∥w∥> CΓ,

where ∥·∥ is the standard 2-norm, and |w| is the vector that
consists of the absolute value of the items in w. Besides,
we use ⟨x, y⟩ := xT y denote the standard inner product in
Euclidean spaces.

The temporal difference (TD) error ∆[k] and the gra-
dient ∇wQ̂(x[k], a[k];w[k]) are as follows. Let ϕ =
[ϕ1, ϕ2, . . . , ϕN]T , then we can compactly write

Q̂(x, a;w) = ϕT (x, a)w,

▽wQ̂(x, a;w) = ϕ(x, a).

Then, for any k ∈ Z≥0, the TD error and the gradient are
collectively given by

δw[k](x[k], w[k]) = ∆[k]∇wQ̂(x[k], a[k];w[k])

=

(
− ϕT

(
x[k], a[k]

)
w[k] + c[k + 1]

+ γϕT
(
x[k + 1], a[k + 1]

)
w[k]

)
ϕ
(
x[k], a[k]

)
.

The step sizes {αk} are generated by the following
mechanism. We define an auxiliary sequence {α̃k̃; k̃ ∈ ZN

≥0}
satisfying the standard step size condition [10]

∞∑
k=0

α̃k̃ =∞,

∞∑
k=0

α̃2
k̃
<∞. (6)

The step sizes can not be too small to stop the iteration pro-
cess, while also can not be too large to impede convergence.
Let Bα denote a finite positive constant and define

k̃ = maxδw[k](x[k],w[k])≤Bα

k′<k

k′.

Then the step size sequence {αk} can be constructed as

αk =

{
α̃k̃ δw[k](x[k], w[k]) ≤ Bα,

0 o.w.,

where Bα is a finite positive constant. That is, {αk} consists
of zeros and elements from the deterministic sequence {α̃k̃}
as demonstrated in Table I. Thus the weight vector w[k+1]
is updated only when the constraint Bα is satisfied.

TABLE I: A sample of stochastic step sizes {αk}.

k δw[k](x[k], w[k]) ≤ Bα? αk =

0 Yes α̃0

1 Yes α̃1

2 No 0
3 Yes α̃2

...
...

...

The update equation thus becomes

w[k + 1] = Γ
(
w[k] + αkδw[k](x[k], w[k])

)
. (7)

It is known that SARSA chatters when combined with linear
function approximation [10]. We say that Algorithm 1 is
convergent to a bounded region if there exists a positive finite
constant B such that

lim
k→∞

E[∥w[k]− w∗∥] ≤ B, (8)

for every initial traffic state x[0] ∈ ZN
≥0 and every initial

weight w[0] ∈ RN
>0.

6415

Algorithm 1 (SGS) Computation of Q̂ for Q

Input: Initial weights w[0], ∥w[0]∥< CΓ, WSQ policy πw[0],
step sizes sequence αk, γ

1: Initialize weights w[0]← w[0]
2: for k = 0, 1, . . . do
3: Execute action a[k]
4: Obtain new state x[k+1] and immediate reward c[k+

1]
5: Select a[k + 1] according to policy πw[k]

6: Calculate δw[k](x[k], w[k])
7: w[k + 1]← Γ(w[k] + αk · δw[k](x[k], w[k]))
8: end for

III. JOINT CONVERGENCE GUARANTEE

In this section, we develop the main result of this paper,
which states that the proposed semi-gradient SARSA (SGS)
algorithm ensures joint convergence of traffic state and
weight vector if and only if the parallel service system is
stabilizable.

Theorem 1. (Joint convergence) Consider a stabilizable par-
allel service system with arrival rate λ > 0 and service rates
µ1, µ2, . . . , µN > 0. Suppose that the step size condition (6)
holds. Then, the traffic state x[k] converges in the sense of
(3) and the weight w[k] converges in the sense of (8).

The above result essentially states that the joint conver-
gence of w[k] and x[k] relies on step size constraint (6).
They are standard for reinforcement learning methods, which
ensures that (i) sufficient updates will be made, and (ii)
randomness will not perturb the weights at steady state [16].

The rest of this section is devoted to the proof of the
above theorem. Section III-A proves the stability of traffic
state, section III-B presents unboundedness of

∑∞
k=0 αk, and

section III-C proves the convergence of the approximation
weights.

A. Convergence of x[k]

In this section we construct a Lyapunov function and argue
the drift to show the convergence of traffic state x[k], with
policy π and proper temperature parameter ι. In particular,
we considering the Lyapunov function

V̂w(x) =

N∑
n=1

wnx
2
n

with the same weight vector as (5). We show that there exist
ι > 0, ϵv > 0, Bv < ∞ such that for all x ∈ ZN

≥0 and for
all w ∈ RN

>0

LV̂w(x) = −ϵv
N∑

n=1

wnxn +Bv, (9)

where L is the infinitesimal generator of the system under
the (softmax) WSQ policy.

Let ln = I{xn≥1}, m = argminn≤N wn(2xn + 1). We
have

LV̂w(x) =
∑N

n=1
lnµnwn(−2xn + 1)

+
∑N

a=1
πw(a|x)λawa(2xa + 1).

Suppose that ι is sufficiently small, since (ln − 1)xn = 0,
we have

LV̂w(x) ≤
N∑

n=1

(
λ

µn∑N
k=1 µk

− µn

)
wn(2xn + 1) +Bv.

Then (9) holds when (4) holds. We can use Foster-Lyapunov
criterion [15, Theorem 4.3.] conclude (3).

B. Unboundedness of
∑∞

k=0 αk

In this section, we show that
∑∞

k=1 αk =∞ a.s..

Lemma 1. Under the constraints in Theorem 1, let Wp(x) =∑N
n=1 e

νwn(2xn+1)/wn, ν > 0, then there exists function
gp ≥ 1 and finite non-negative constant Bw satisfying

∆Wp(x) = E[Wp(x[k + 1])−Wp(x[k])|x[k] = x]

≤ −gp(x) +Bw. (10)

Furthermore, we have

lim
K→∞

1

K

∑K−1

k=0
E[gp(x)] ≤ Bw.

Proof: Considering similar definition of m, ln in section III-
A. Similarly, under the (softmax) WSQ policy, we have

∆Wp(x) =

N∑
a=1

πw(a|x)
[N∑
n ̸=a

ln
wn
·
(
eνwn(2xn−2µn+1)

− eνwn(2xn+1)
)
− 1

wa

(
(1− la) · eνwa(2xa+2λ+1)

+ la · eνwa(2xa+2(λ−µa)+1) + eνwa(2xa+1)
)]

.

Note that there is ln · eνwn2xn = (ln − 1) + eνwn2xn and
suppose that ι is sufficiently small, we have

∆Wp(x) =

N∑
n ̸=m

eνwn(2xn+1) · (e−2νwnµn − 1)/wn

+ eνwm(2xm+1) · (e2νwm(λ−µm) − 1)/wm +B0, (11)

where B0 = 1
wm

(eνwm(2xm+1) − eνwm(2λm−2µm+1)) +∑N
n ̸=m eνwn(1−e−2νwnµn)) 1

wn
is a finite positive constant.

In the case of λ ≤ µm, the drift equation (11) naturally
satisfies (10). When λ > µm, we have

∆Wp(x) ≤
N∑

n ̸=m

eνwn(2xn+1) · Λ(ν),

Λ(ν) =
µn(e

2νwm(λ−µm) − 1)

wm

∑N
k ̸=m µk

+
(e−2νwnµn − 1)

wn
.

Note that Λ(0) = 0, Λ(∞) → ∞. The derivate of Λ(ν) at
ν = 0 is calculated as

dΛ

dν

∣∣∣
ν=0

= 2µn(
λ− µm∑N
k ̸=m µk

− 1).

6416

Then the derivative of Λ is negative when λ <
∑N

n=1 µn,
which implies that there exist ν0 > 0 as the second zero of
Λ(ν) and Λ(ν) < 0, ν ∈ (0, ν0). Now we can conclude that
with a proper selection of ν, (10) is guaranteed. There exists
a finite positive constant Bp satisfies

gp(x) = Bp

∑N

n=1
eνwn(2xn+1)/wn + 1.

Following the proof in [19], summing the inequality over
epochs k ∈ {0, . . . ,K − 1} yields a telescoping series on
the left hand side of (10), result in

E[Wp(x[K])]− E[Wp(x[0])]

≤ K(B0 + 1)−
K−1∑
k=0

E[Bp

∑N

n=1
eνwn(2xn+1)/wn + 1].

Since E[Wp(x[0])] ≥ 0, we have

lim
K→∞

1

K

K−1∑
k=0

E[Bp

∑N

n=1
eνwn(2xn+1)/wn + 1] ≤ Bw,

where Bw = B0 + 1. The above inequality implies the
boundedness of E[

∑N
n=1 e

νwn(2xn+1)], thus the higher order
stability of system states [17].

Proposition 1. ∀w ∈ RN
>0, the chain induced by πw is

ergodic and positive Harris recurrent.

Proof: To argue for the irreducibility of the chain, note that
the state x = 0 can be accessible from any initial condi-
tion with positive probability. According to [20, Theorem
11.3.4], the proof of ergodic and positive Harris recurrent is
straightforward with Lemma 1.

Proposition 2. With Proposition 1, the step size sequence
{ak} in SGS satisfies (6).

Proof: Let X̃ := {x : ∥x∥≤ BX̃ , x ∈ Z≥0}, where BX̃
is a finite positive constant and there is X̃ ∈ Zn

≥0. Then
the boundedness ∆[k]∇wQ̂(a[k], x[k], w[k]) ≤ Bα can be
satisfied by constraining x[k] ∈ X̃ and tk+1 − tk ≤ BT ,
where BT < ∞ is a positive constant. That is, the weight
vector w[k + 1] is updated only when the state and time
interval (i.e., the immediate cost) are not too large.

Let use τX̃ :=
∑∞

k=1 Ix[k]∈X̃ denote the occupation time
of states x ∈ X̃ , since the chain is positive Harris recurrent,
we have P (τX̃ =∞) = 1. Since the arrival rate and service
rates are well-defined, we have P (tk+1− tk ≤ BT) ≥ PT >
0. Then we have

∞∑
k=0

αk ≥ PT

τX̃∑
xk∈X̃

α̃k̃ + 0 =∞ a.s.,

∞∑
k=0

α2
k ≤

∞∑
k=0

α̃2
k̃
<∞ a.s.

as desired.

C. Convergence of w[k]

In the following, we establish the convergence of w[k] by
showing (i) the convergence under fixed-policy evaluation
and (ii) the difference among optimal weight vectors due to
policy improvement is bounded.

Proposition 3. (Lipschitz continuity of πw(a|x)) For our
WSQ policy, there exists Lπ > 0 such that ∀w,w′, a, x,

∥πw(a|x)− πw′(a|x)∥≤ Lπ∥w − w′∥.

Proof: Note that the boundedness of derivative towards w
implies the Lipschitz continuity. With the well constructed
sequence {αk}, we have

|πw(a|x)− πw′(a|x)|= 0 = Lπ∥w − w′∥, x ̸∈ X̃ .

For x ∈ X̃ , according to (2), we have πw(a|x) ∈ (0, 1) and∣∣∣dπw(a|x)
dw

∣∣∣ ≤ ∣∣∣N
ι

max
a,b≤N

2 · |xa − xb|
∣∣∣,

which is bounded.
With the above Proposition 1-3, we can analysis the

fixed policy performance and bound the difference among
distinct policies. For a better elucidation, we use subscript
w∗[k] denote the invariant steady-state dynamic of the chain
under fixed policy πw[k], and use subscript k denote the real
dynamic at the k-th transition. That is dw∗[k](·) denotes the
invariant distribution of policy πw[k], and dk(·) denotes the
state distribution at the k-th transition. Suppose that under
the fixed policy πw[k] and according to [21], we have

δ̄w[k](x[k], w[k]) = Aw∗[k]w[k] + bw∗[k],

where Aw∗[k] is defined as

Aw∗[k]

=
∑

a′≤N,

x′∈ZN≥0

(∑
a≤N,

x∈ZN≥0

dw∗[k](x)πw[k](a|x)pw∗[k](x
′|a, x)

× γϕ(x, a)− dw∗[k](x
′)ϕ(x′, a′)

)
πw[k](a

′|x′)ϕT (x′, a′).

≤ −γAEw∗[k]

[
ϕ(x′, a′)ϕT (x′, a′)

]
, γA ∈ R>0,

which is negative definite since γ ∈ (0, 1). Analogous, we
have bw∗[k] = Ew∗[k][ϕ

T (x, a)c], bk = Ek[ϕ
T (x, a)c], Ak =

Ek[ϕ(x, a)(γϕ
T (x′, a′) − ϕT (x, a))] and E[δw[k](x,w)] =

Akw + bk.
According to [20, Theorem 14.0.1], we have

sup
fp:|fp|≤gp

∞∑
t=0

∣∣∣∑
x′

ptk(x
′|x)fp(x′)−

∑
x′

dw∗[k](x
′)fp(x

′)
∣∣∣

< Bf (Wp(x) + 1), x[k] = x, x ∈ X̃ , (12)

where Bf is a finite positive constant. ptk(x
′|x) indicates the

transition probability from state x to x′ after t steps under
policy πw[k], and there is p(x′|x) =

∑N
a=1 π(a|x)p(x′|a, x).

According to [16], with (12) holds, the iterative algorithm (7)
has a unique solution w∗ satisfies that δ̄(x,w∗) = 0 under

6417

fixed policy. With a little abuse of notation, let w∗
k denote

the solution of
δ̄w[k](x[k], w

∗
k) = 0

in SGS under fixed policy πw[k].
According to the inequality ekx >

∑∞
q=0

kqxq

q! and note
that there is ϕ(x, a) = O(x2), the boundedness of gp(x) de-
fined in Lemma 1 implies the boundedness of Aw∗[k], bw∗[k].
With the constructed step size {αk}, we have ∥Aw∗[k]∥< Bϕ,
∥bw∗[k]∥< Br, and E[α2

k∥δw[k](x,w) − δ̄w[k](x,w)∥2] ≤
α2
kB

2
δ , where Bϕ, Br, Bδ are finite positive constants.

Following [11], considering the weights update equation,
the auxiliary sequence {u[k]} is defined as

u[0] := w[0],

u[k + 1] := Γ(u[k]) + αkδw[k](x[k],Γ(u[k])).

Since the Q̂ and policy π are both linearly related to w,
we have w[k] = Γ(u[k]),∀k ∈ Z≥0. Let y′ = u[k + 1] −
w∗

k+1, y = w[k]− w∗
k, then we have

E[
1

2
∥y′∥2] = E

[1
2
∥y∥2

]
+ E

[〈
y, αkδw[k](x[k], w[k]) + w∗

k − w∗
k+1

〉]
︸ ︷︷ ︸

T2

+ E
[1
2
∥αkδw[k](x[k], w[k]) + w∗

k − w∗
k+1∥2

]
︸ ︷︷ ︸

T3

,

where ⟨·, ·⟩ is defined as section II-C. The second item can
be rewritten as

T2 =
〈
y,E
[
αkδw[k](x[k], w[k])︸ ︷︷ ︸

T21

]〉
+ ⟨y, w∗

k − w∗
k+1⟩.

For T3, we have

T3 = E
[1
2
∥w∗

k − w∗
k+1∥2

]
+ E

[〈
w∗

k − w∗
k+1, T21

〉]
+ E

[1
2
∥T21∥2

]
.

Now we are ready to analyze the boundedness of each
item. Note that αk ̸= 0 only when x[k] ∈ X̃ , with [11,
Theorem 4.4., Lemma C.5., Lemma D.10.] and the analysis
of δw[k] and w∗

k, we have

αk∥δw[k](x[k], w)∥≤ αk(LF ∥w∥+UF),

and

∥w∗
w − w∗

w′∥ ≤ (B2
ABϕLDP +BALD)LπBr︸ ︷︷ ︸

Lw

∥w − w′∥

≤ αkLw(UF + LFCΓ + CΓ) = αkLBW ,

where BA, UF , LF are finite positive constants that BA >
supw∥A−1

w∗∥, αkUF ≥ ∥αkbk∥, LF ≥ ((1+γ)(BX̃ +1)2+
1), and LD, LDP are Lipschitz constants of state distribution
and transition probability. We have

T21 = αk δ̄w[k](·) + αkδw[k](·)− αk δ̄w[k](·),

where (·) is short for (x[k], w[k]). By leveraging [11,
Lemma D.2.], suppose that k is sufficient large, we have
∥αk δ̄w[k](·)∥≤ (kα − 1)∥y∥, kα =

√
1−Bϕαk ∈ (0, 1).

Then we have

T2 ≤ E[
(
(kα − 1)∥y∥+αkBδ + αkLBW

)
∥y∥],

where kα =
√
1−Bϕαk ∈ (0, 1). Analogously, we have

T3 ≤ E[
1

2
(kα − 1)2∥y∥2+αk(kα − 1)(Bδ + LBW)∥y∥

+ α2
k(

1

2
B2

δ +BδLBW +
1

2
L2
BW)].

According to the above analysis, we have

E[
1

2
∥u[k + 1]− w∗

k+1∥2]

=
1

2
E
[(

kα∥w[k]− w∗
k∥+αk(LBW +Bδ)

)2]
.

Then we have

zk+1 ≤ kαzk + αk(LBW +Bδ),

where zk+1 =
√
E[∥u[k + 1]− w∗

k+1∥2]. Since kα ∈ (0, 1)

and ∥w[k]− w∗
k∥≤ ∥u[k]− w∗

k∥, by iteration, we have

zk+1 =

√∏k

ℓ=k0

(1− αℓBϕ) · zk0

+ (LBW +Bδ)
∑k

ℓ=k0

αℓ

√∏k

j=ℓ
(1− αjBϕ).

Note that {αk} is constrained by (6) and the inequality 1−
x ≤ e−x holds, we have

zk+1 ≤
Bδ + LBW

Bϕ
.

Considering the relationship between the policy and weight
vector, we have

E[∥w[k]− w∗∥] ≤ E[∥w[k]− w∗
k∥] + E[∥w∗

k − w∗
w∗∥]

≤ E[∥w[k]− w∗
k∥] + LwE[∥w[k]− w∗∥].

When the immediate cost c is constrained such that Lw < 1,
we have

E[∥w[k]− w∗∥] ≤ 1

1− Lw
E[∥w[k]− w∗

k∥] ≤
1

1− Lw
zt.

Then finally we can conclude that

E[∥w[k]− w∗∥] ≤ Bδ + LBW

(1− Lw)Bϕ
,

which yields (8).

IV. EXPERIMENTS

To evaluate the performance of the semi-gradient SARSA
(SGS) algorithm with weighted shortest queue (WSQ) policy,
we consider two benchmarks:

1) Neural network (NN)-WSQ: We constructed a NN for
approximation of Q(x, a). The algorithm is similar to
Algorithm 1, except that the weights update is replaced
by NN update with adaptive moment estimation (Adam)

6418

algorithm [22]. Specifically, the NN has two fully
connected layer with a rectified linear unit (ReLU)
activation function. The loss function is the mean square
error between the one-step predicted and calculated
state-action-value. Since an exact optimal policy of
the original MDP is not readily available, the policy
computed by NN is used as an approximate optimal
policy.

2) Join the shortest queue (JSQ) policy: For routing
decisions under JSQ policy, we simply select the
path with the shortest queue length, that is aJSQ =
argminn≤N xn.

Consider the network in Fig. 1 with three parallel servers.
Suppose that the service rate µ1 = 0.5, µ2 = 2.5, µ3 = 5
and the arrival rate λ = 2, all in unit sec−1. The WSQ
policy temperature parameter is set as ι = 0.01. For SGS
algorithm, we initialize the weight as w1 = w2 = w3 = 0.5.
For simulation, a discrete time step of 0.1 sec is used. All
experiments were implemented in Google Colab [23], using
Intel(R) Xeon(R) CPU with 12.7GB memory. We trained
SGS for 106 epochs, NN for 4 × 106 epochs, and then
evaluate them for 106 epochs each. The results are as follows.

For the performance, the weight of SGS converges to w =
[0.60 0.49 0.15], which is reasonable and consistent with the
expectation of our policy that the weight of a slower server
is higher. Note that there is a peak value of NN after the
number of epochs growing larger than 102 epochs, which
may be due to the explorative behavior of the transient NN
based algorithm. Our WSQ policy is not restricted to non-
idling conditions, since w1(2× 0 + 1) > w3(2× 1 + 1), the
server with higher service rate (i.e., server 3) is more likely
to be selected, even the slower server (i.e., server 1) is empty.

Fig. 2: The performance compare between SGS and NN.

TABLE II: Average system times of various schemes.

Algorithm Normalized Average System Time

Neural network (NN) 1.00
Semi-gradient SARSA (SGS) 1.08
Join the shortest queue (JSQ) 2.78

Table II lists the normalized average system time results

under various methods. The results are generated from test
simulations of 105 sec. Although NN performs better in long
terms of learning as expected, SGS performs better with just
a few number of iterations as demonstrated in Fig. 2.

The job will spend more time going through the queuing
network under JSQ policy at the average of 0.8581 sec.
For WSQ, though the implementation efficiency of SGS is
slightly worse than NN, SGS gives the best trade-off between
computational efficiency and implementation efficiency: the
average system time of SGS is 0.3318 sec, only 8% longer
than the result of 0.3078 sec of NN, while with more
than four times fewer training epochs. More importantly,
SGS algorithm theoretically ensures the convergence of the
optimal routing decision, while NN might be diverge and let
alone the existence of the optimal decision.

V. CONCLUSION

In this paper, we propose a semi-gradient SARSA(0)
(SGS) algorithm with linear value function approximation for
dynamic routing over parallel servers. We extend the analysis
of SGS to infinite state space and show that the convergence
of the weight vector in SGS is coupled with the convergence
of the traffic state, and the joint convergence is guaranteed
if and only if the paralle service system is stabilizable.
Specifically, the approximator is used as Lyapunov function
for traffic state stability analysis; and the constraint and
convergence analysis of weight vector is based on stochastic
approximation theory. Besides, our analysis can be extended
to polynomial approximator with higher order. We compare
the proposed SGS algorithm with a neural network-based
algorithm and show that our algorithm converges faster
with a higher computationally efficiency and an insignificant
optimality gap.

However, this paper focus on a general setting on the
learning step sizes {αk} and discount factor γ. We dis-
cover that the convergence performance of the learning
algorithm is highly associated with the setting of the fine-
tuning parameters {αk} and γ, which may indicate that a
better and more particular design of learning step sizes and
discount factor may lead to a stronger theoretical guarantee
of joint-convergence. Our ongoing work is trying to figure
out the specific relationship between the parameter and the
convergence. Possible future work includes (i) sensitivity
analysis and precise design of {αk} and γ; (ii) extension
of the joint convergence result as well as SGS algorithm to
a general service network and (iii) the analysis of fixed-point
convergence condition.

REFERENCES

[1] J. G. Dai and M. Gluzman, “Queueing network controls via deep
reinforcement learning,” Stochastic Systems, vol. 12, no. 1, pp. 30–67,
2022.

[2] Q. Xie and L. Jin, “Stabilizing queuing networks with model data-
independent control,” IEEE Transactions on Control of Network Sys-
tems, vol. 9, no. 3, pp. 1317–1326, 2022.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[4] P. Kumar and S. P. Meyn, “Stability of queueing networks and
scheduling policies,” IEEE Transactions on Automatic Control, vol. 40,
no. 2, pp. 251–260, 1995.

6419

[5] J. G. Dai and S. P. Meyn, “Stability and convergence of moments for
multiclass queueing networks via fluid limit models,” IEEE Transac-
tions on Automatic Control, vol. 40, no. 11, pp. 1889–1904, 1995.

[6] S. Bradtke and M. Duff, “Reinforcement learning methods for
continuous-time markov decision problems,” Advances in Neural
Information Processing Systems, vol. 7, 1994.

[7] B. Liu, Q. Xie, and E. Modiano, “Rl-qn: A reinforcement learning
framework for optimal control of queueing systems,” ACM Transac-
tions on Modeling and Performance Evaluation of Computing Systems,
vol. 7, no. 1, pp. 1–35, 2022.

[8] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 1871–1879.

[9] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware adaptive
routing in multi-layer hierarchical software defined networks: A rein-
forcement learning approach,” in 2016 IEEE International Conference
on Services Computing (SCC). IEEE, 2016, pp. 25–33.

[10] G. J. Gordon, “Reinforcement learning with function approximation
converges to a region,” Advances in Neural Information Processing
Systems, vol. 13, 2000.

[11] S. Zhang, R. T. Des Combes, and R. Laroche, “On the convergence of
sarsa with linear function approximation,” in International Conference
on Machine Learning. PMLR, 2023, pp. 41 613–41 646.

[12] D. P. De Farias and B. Van Roy, “On the existence of fixed points for
approximate value iteration and temporal-difference learning,” Journal
of Optimization Theory and Applications, vol. 105, pp. 589–608, 2000.

[13] F. L. Lewis and D. Liu, Reinforcement learning and approximate
dynamic programming for feedback control. John Wiley & Sons,
2013.

[14] Y. Wu, F. Shu, J. Zhang, and L. Jin, “Learning-based adaptive dynamic
routing with stability guarantee for a single-origin-single-destination
network,” in 2024 43nd Chinese Control Conference (CCC). IEEE,
2024, pp. 00–00.

[15] S. P. Meyn and R. L. Tweedie, “Stability of markovian processes iii:
Foster–lyapunov criteria for continuous-time processes,” Advances in
Applied Probability, vol. 25, no. 3, p. 518–548, 1993.

[16] J. Tsitsiklis and B. Van Roy, “Analysis of temporal-diffference learn-
ing with function approximation,” Advances in Neural Information
Processing Systems, vol. 9, 1996.

[17] S. Meyn, Control techniques for complex networks. Cambridge
University Press, 2008.

[18] R. G. Gallager, Stochastic Processes: Theory for Applications. Cam-
bridge University Press, 2013.

[19] L. Georgiadis, M. J. Neely, L. Tassiulas et al., “Resource allocation and
cross-layer control in wireless networks,” Foundations and Trends®
in Networking, vol. 1, no. 1, pp. 1–144, 2006.

[20] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability.
Springer Science & Business Media, 2012.

[21] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of reinforce-
ment learning with function approximation,” in Proceedings of the
25th International Conference on Machine Learning, 2008, pp. 664–
671.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[23] “Google Colaboratory,” https://colab.research.google.com/, accessed:
2023-03-28.

6420

