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Abstract— Reinforcement Learning (RL) has demonstrated
impressive performance in various areas such as video games
and robotics. However, ensuring safety and stability, which
are two critical properties from a control perspective, remains
a significant challenge when using RL to control real-world
systems. In this paper, we first provide definitions of safety
and stability for the RL system, and then combine the Control
Barrier Function (CBF) and Control Lyapunov Function (CLF)
methods with the actor-critic method in RL to propose a
Barrier-Lyapunov Actor-Critic (BLAC) framework which helps
maintain the aforementioned safety and stability for the system.
In this framework, CBF constraints for safety and CLF con-
straint for stability are constructed based on the data sampled
from the replay buffer, and the augmented Lagrangian method
is used to update the parameters of the RL-based controller.
Furthermore, an additional backup controller is introduced
in case the RL-based controller cannot provide valid control
signals when safety and stability constraints cannot be satisfied
simultaneously. Simulation results1 show that this framework
yields a controller that can help the system approach the desired
state and cause fewer violations of safety constraints compared
to baseline algorithms2.

I. INTRODUCTION

The remarkable success of Reinforcement Learning (RL)
in solving complex sequential decision-making problems
has inspired researchers to explore its potential in real-
world applications. However, the trial-and-error nature of
RL may lead agents to exhibit actions resulting in harmful
consequences during learning. For example, it is crucial to
take the challenges, such as real-world uncertainties [2],
[3], into consideration when training RL agents directly in
real environments where safety is fundamental. Furthermore,
stability is one of the paramount properties that need to
be guaranteed. Stability means the state will stay close or
converge to the equilibrium, and is a pre-requisite for any
performance guarantee in a control system [4].

Safety in RL has been gaining attention from researchers.
However, in previous studies, safety constraints are usually
defined based on the cumulative cost of an entire trajectory,
rather than on the individual cost signals at each timestep
along the trajectory. Consequently, safety violations at spe-
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1The code can be found in the GitHub repository: https:
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-Critic-Reinforcement-Learning-Approach-for-Safe-a
nd-Stable-Control

2For a more comprehensive version of this paper, please refer to [1] (
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cific timesteps are wrapped by the trajectory expectation, and
certain states may be permitted to be unsafe [5], [6].

Recently, there has been growing interest in combining
control-theoretic methods with RL to ensure safety for the
system. Concepts such as Safe Set Algorithm (SSA) [5]
and Control Barrier Function (CBF) [7]–[11] have been
applied as safety constraints to help RL training maintain
safety. However, according to [8], the supervised learning
of the CBF layer in [7] has the potential to introduce
approximations that may adversely impact RL training. Also,
applying a filter to aid the RL-based controller in choosing
a safe action at each timestep can lead to a jerky output, or
trajectory, which is often undesirable in many applications.

The Lyapunov function, a popular tool in the control
community, has recently been applied to RL as well [12].
[4] applies Lyapunov functions to model-free RL to help
guarantee the stability for various systems. However, con-
sidering the sample efficiency, and the fact that usually at
least a nominal model is available in real applications like
robotic arms, model-based RL methods can be used since
they are more sample efficient than model-free RL methods.

In this paper, our focus is on helping guarantee safety
and stability for systems that can be expressed by Markov
decision process (MDP). Our main work and contributions
can be summarized as follows:

• An RL-based controller is proposed by combining CBF
and Control Lyapunov Function (CLF) with the Soft
Actor-Critic (SAC) algorithm [13], and the augmented
Lagrangian method is used to solve the correspond-
ing constrained optimization problem. The RL-based
controller assists to guarantee both safety and stability
simultaneously with separate CBF constraints and CLF
constraint, respectively, and the augmented Lagrangian
method can update the controller parameters efficiently
while making the hyperparameter tuning for different
learning rates easier, which might be difficult for the
primal-dual update widely used in previous studies.

• A backup controller is proposed to replace the RL-based
controller when no feasible solution exists to satisfy
both safety and stability constraints simultaneously. The
inequality constraints of the backup controller are con-
structed based on CBFs, which help the system achieve
and maintain safety. The CLF constraint is incorporated
into the objective function to prevent the system from
diverging too far from equilibrium while satisfying CBF
constraints.

• A framework called Barrier-Lyapunov Actor-Critic
(BLAC) is proposed by combining the RL-based and
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backup controllers, and we test it on two simulation
tasks. Our results show that the framework helps guar-
antee safety and stability of the system, and therefore
achieves better results compared to baseline algorithms.

II. PROBLEM STATEMENT

A Markov decision process (MDP) with control-affine
dynamics can be defined by the tuple M, which is
(X ,U , f, g, d, r, c, γ, γc). X ⊂ Rn and U ⊂ Rm are state
and control signal spaces, and the state transitions for the
MDP are obtained by the following control-affine system:

xt+1 = f(xt) + g(xt)ut + d(xt). (1)

Here, xt ∈ X is the state at timestep t, ut ∈ U is the control
signal at timestep t, and the RL-based controller π is sampled
from a distribution π(ut|xt). f : Rn → Rn and g : Rn →
Rn×m define the known nominal model of the system. r, c
are the reward and cost, respectively, and γ and γc are the
discount factors. d : Rn → Rn denotes the unknown model
which is continuous with respect to the state. Similar to [7],
[8], we use a Gaussian process (GP) to estimate the unknown
dynamics d from data. Consequently, when constructing CBF
and CLF constraints in Section III, we replace d using the
mean and variance given by the GP. Due to poor scalability
with a large number of data points, we cease GP updates
after a certain number of episodes.

Here we present additional notation that will be used
later. Based on (1), the transition probability can be denoted
as P (xt+1|xt, ut) ≜ I{xt+1=f(xt)+g(xt)ut+d(xt)} where
I{xt+1=f(xt)+g(xt)ut+d(xt)} is an indicator function that
equals 1 if xt+1 satisfies (1) given xt and ut, and 0 oth-
erwise. Similar to [4], the closed-loop transition probability
is denoted as Pπ(xt+1|xt) ≜

∫
U π(ut|xt)P (xt+1|xt, ut)dut.

Moreover, the closed-loop state distribution at timestep t is
denoted by υ(xt|ρ, π, t), which can be calculated iteratively
using the closed-loop transition probability: υ(xt+1|ρ, π, t+
1) =

∫
X Pπ(xt+1|xt)υ(xt|ρ, π, t)dxt, ∀t ∈ N, and

υ(x0|ρ, π, 0) = ρ is the initial state distribution.

A. Definition of Safety

Assuming there are k different safety constraints that need
to be satisfied, the system is considered safe if

hi(xt) ≥ 0 ∀t ≥ 0 (2)

holds for each i = 1, . . . , k. Each hi : Rn → R is a function
defined for the i-th safety constraint, and a safe set Ci ⊂ Rn

can be defined by the super-level set of hi as follows:

Ci = {x ∈ Rn|hi(x) ≥ 0}. (3)

A safe set C ⊂ Rn can therefore be defined as the intersection

of all Ci: C =
k⋂

i=1

Ci =
k⋂

i=1

{x ∈ Rn|hi(x) ≥ 0}. We require

the system state to remain within this set C, i.e., the safe
set C should be forward invariant. Therefore, the system is
required to be safe at every time-step, and thus the constraint
here is stricter than that constructed by the expected return of
costs, which was widely used in previous studies. A Control

Barrier Function can be used to ensure forward invariance
of the safe set.

Definition 1 (Discrete-time Control Barrier Function [7]).
Given a set Ci ⊂ Rn defined by (3), the function hi is called
a discrete-time control barrier function (CBF) for system (1)
if there exists η ∈ [0, 1] such that

sup
ut∈U

{
hi

(
f(xt) + g(xt)ut + d(xt)

)
− hi(xt)

}
≥ −ηhi(xt)

(4)
holds for all xt ∈ Ci.

The existence of a CBF means the existence of a controller
such that the set Ci is forward invariant. Consequently, safety
is maintained if there exists a controller such that ∀i ∈ [1, k],
hi

(
f(xt)+ g(xt)ut+d(xt)

)
−hi(xt) ≥ −ηhi(xt) holds for

all xt ∈ C.

B. Definition of Stability

In a stabilization task, our goal is to find a controller that
can drive the system state to the equilibrium, i.e., the desired
state, eventually. To achieve this goal, given the state xt and
control signal ut, we define the instantaneous cost signal to
be c(xt, ut) = ∥xt+1 − xdesired∥ where xt+1 is the next state
according to (1), and xdesired denotes the desired state (i.e.,
equilibrium). Since we investigate the stability of a closed-
loop system under a nondeterministic RL-based controller
π, we combine π(ut|xt), which is a Gaussian distribution in
this paper, with the cost signal c(xt, ut) to define the cost
function under the controller π as

cπ(xt) = Eut∼πc(xt, ut) = Eut∼π[∥xt+1 − xdesired∥]. (5)

The cost function cπ(xt) represents the expected value of the
norm of the difference between the next state xt+1 given by
(1), and the desired state xdesired, over ut sampled from the
distribution π(ut|xt). It is natural to expect that the value
of cπ(xt) should decrease as t increases to drive the system
state towards the equilibrium, and we hope that eventually
cπ(xt) = 0, which means the state reaches the equilibrium.
However, as the control signal is sampled from a Gaussian
distribution, the state at time-step t is also distributed, which
necessitates the use of the concept of “expected value” for
cπ(xt). Therefore, we adopt the definition of stability as
presented in [4] in this paper.

Definition 2 (Stability in Mean Cost). Let υ(xt|ρ, π, t)
denote the closed-loop state distribution at timestep t. The
equilibrium of a system is said to be stable in mean cost
if there exists a positive constant b such that for any initial
state x0 ∈ {x0|cπ(x0) < b}, the condition

lim
t→∞

Ext∼υ

[
cπ(xt)

]
= 0 (6)

holds. If b is arbitrarily large, the equilibrium is globally
stable in mean cost.

C. Definition of the Safe and Stable Control Problem

Based on the previous subsections, similar to [14], we give
the formal definition of the safe and stable control problem:
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Problem 1 (Safe and Stable Control Problem). Given a
control-affine system xt+1 = f(xt) + g(xt)ut + d(xt),
a unique desired state (equilibrium) xdesired, a set Xb =
{x0|cπ(x0) < b} where b is an arbitrarily large positive
number and x0 denotes the initial state, a set of unsafe
states Xunsafe ⊆ X , and a set of safe states Xsafe ⊆ X
such that xdesired ∈ Xsafe and Xsafe ∩ Xb ̸= ∅, find
a controller π generating control signal ut such that all
trajectories satisfying xt+1 = f(xt) + g(xt)ut + d(xt) and
x0 ∈ Xsafe ∩ Xb have the following properties:

• Safety: xt ∈ Xsafe ∀t ≥ 0.
• The Equilibrium Is Stable in Mean Cost:

limt→∞ Ext∼υ

[
cπ(xt)

]
= 0 where υ(xt|ρ, π, t) is

the closed-loop state distribution at timestep t.

Therefore Xsafe is a safe set that is forward invariant, and
the controller is used to help the system arrive at the desired
state xdesired while avoiding the unsafe states.

III. FRAMEWORK DESIGN

A. Value Function of the Cost

To assist in maintaining stability for the system, inspired
by the commonly-used value functions in the RL literature,
we define the value function of the cost at state xt as

Lπ(xt) = Eτ∼π

[ ∞∑
i=0

γi
ccπ(xt+i)

]
. (7)

Here τ={xt, xt+1, xt+2, · · · } is a trajectory under controller
π starting from the initial state xt. Based on this definition,
Lπ(xt) can also be approximated by a neural network.

To achieve stability, a natural approach is to consider
imposing a condition in the algorithm that ensures that the
value of Lπ(xt) decreases along the trajectory τ . Inspired
by the concept of exponentially stabilizing CLF and [4], we
first make two assumptions for the MDP:

Assumption 1. The state and control signal are sampled
from compact sets, and the reward and cost values obtained
at any timestep are bounded by rmax and cmax, respectively.
Therefore, the value function of the reward and cost are
upper bounded by rmax

1−γ and cmax

1−γc
, respectively.

Assumption 2 (Ergodicity). The Markov chain induced by
controller π is ergodic with a unique stationary distribution
qπ(x) = limt→∞ υ(xt = x|ρ, π, t), where υ(xt|ρ, π, t) is the
closed-loop state distribution.

These assumptions are common; for more content on the
relationship between models of control systems and Markov
chains, as well as ergodicity, we refer the interested reader to
[15]. We now introduce Lemma 1 invoked by [4] as follows:

Lemma 1. Under Assumptions 1, 2, the system defined in
(1) is stable in mean cost if there exist positive constants α1,
α2, β, and a controller π, such that

α1cπ(x) ≤ Lπ(x) ≤ α2cπ(x) (8)

Ex∼µπ,x′∼Pπ

[
Lπ(x

′)−Lπ(x)
]
≤−βEx∼µπ

[
Lπ(x)

]
(9)

hold for all x ∈ X . Here Lπ defined in (7) is the value
function of the cost under the controller π, and

µπ(x) ≜ lim
N→∞

1

N

N∑
t=0

υ(xt = x|ρ, π, t) (10)

is the sampling distribution, where υ(xt|ρ, π, t) is the closed-
loop state distribution at timestep t.

Proof. The proof of this lemma closely resembles that of
Theorem 1 in [4], and interested readers are encouraged to
refer to that paper for further details.

According to the proof presented in [16], Lπ naturally
satisfies the constraints (8) under Assumption 1. In the next
subsection, we present a method to obtain a controller that
results in an Lπ satisfying (9), and thus we can call Lπ an
exponentially stabilizing CLF, abbreviated as CLF hereafter.

B. Augmented Lagrangian Method for Parameter Updating

We now turn our attention to updating an RL-based
controller π to meet conditions (4) and (9). A primal-dual
method is commonly used to update the parameter of the
RL-based controller, however, this method often requires
hyperparameter tuning, which might be challenging for ad-
justing the learning rates used to update the parameters of
different neural networks and Lagrangian multipliers. Here
we adopt the augmented Lagrangian method, inspired by its
effectiveness in solving constrained optimization problems
and [17], to update the parameters of the RL-based controller.

Practically, we need to construct the conditions based on
data. Transition pairs (xt, ut, rt, ct, xt+1) are stored in the
replay buffer, and we sample a batch of these transition pairs,
denoted as D, randomly at each time-step to construct the
CBF and CLF constraints with the system model for safety
and stability, respectively:

hi(x̂t+1)− hi(xt) ≥ −ηhi(xt) ∀i ∈ [1, k],

Lπ(x̂t+1)− Lπ(xt) ≤ −βLπ(xt),

(11)
for each xt ∈ D. Here x̂t+1 = f(xt)+g(xt)u+d(xt) is the
predicted next state, and d(xt) is estimated and replaced by
the mean value given by GP. Note that u here is the control
signal generated by the current controller, and thus, these
constraints are functions of the controller π. To apply the
augmented Lagrangian method, these inequality constraints
are converted to equality constraints using ReLU [17] for
each xt ∈ D:

ReLU
(
hi(xt)− hi(x̂t+1)− ηhi(xt)

)
= 0 ∀i ∈ [1, k],

ReLU
(
Lπ(x̂t+1)− Lπ(xt) + βLπ(xt)

)
= 0.

(12)
Then the actor-critic approach is used to learn the RL-
based controller. We represent the parameters of the RL-
based controller and two action-value networks by θ and
ϕi, i = 1, 2, respectively. Moreover, we use Lν , which is
called Lyapunov network, to approximate Lπ defined in (7)
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with parameters ν. Using these notations, we formulate a
new constrained optimization problem as follows:

min
θ
− V πθ

s.t. Ext∼D,u∼π

[
ReLU

(
hi(xt)−hi(x̂t+1)−ηhi(xt)

)]
=0

∀i ∈ [1, k]

Ext∼D,u∼π

[
ReLU

(
Lν(x̂t+1)−Lν(xt)+βLν(xt)

)]
=0.
(13)

Here expected values are used to construct constraints since
we sample a batch of xt from the replay buffer. The objective
function −V πθ (xt) is:

−V πθ = −Ext∼D,ξ∼N
[
min
j=1,2

Qϕj (xt, ũθ(xt, ξ))

− α log πθ(ũθ(xt, ξ)|xt)
] (14)

which is the same as the commonly-used objective function
in SAC [13] with only small differences in notation. Also,
ũθ(xt, ξ) = tanh(µθ(xt) + σθ(xt)⊙ ξ), ξ ∼ N (0, I), where
µθ and σθ denote the mean and standard deviation of the con-
troller π, which is a Gaussian distribution, and ⊙ represents
element-wise multiplication. Additionally, loss functions of
the action-value networks Qϕi

, i = 1, 2, coefficient α, and
Lyapunov network Lν are:

JQ(Qϕi)=E(xt,ut,rt,xt+1)∼D,ξ∼N

[[
rt+γ

(
min
j=1,2

Qtarg,ϕj(xt+1,

ũθ(xt+1, ξ))−α log πθ(ũθ(xt+1, ξ)|xt+1)
)
−Qϕi

(xt, ut)
]2]

,

(15)

Jα(α)=−α× Ext∼D,ξ∼N
[
log πθ(ũθ(xt, ξ)|xt)+H

]
, (16)

JL(Lν)=E(xt,ct,xt+1)∼D

[[
ct+γcLtarg,ν(xt+1)−Lν(xt)

]2]
,

(17)

where Qtarg,ϕi , i = 1, 2 are the target action-value networks,
and H is a designed threshold set to be the lower bound of
the entropy of the controller πθ. The constrained optimization
problem (13) can be solved by the augmented Lagrangian
method, and the augmented Lagrangian function is:

LA(θ, λi, ζ; ρλi
, ρζ) = −V πθ

+

k∑
i=1

λi×Ext∼D,u∼π

[
ReLU

(
hi(xt)−hi(x̂t+1)−ηhi(xt)

)]
+

k∑
i=1

ρλi

2

[
Ext∼D,u∼π

[
ReLU

(
hi(xt)−hi(x̂t+1)−ηhi(xt)

)]]
2

+ζ×Ext∼D,u∼π

[
ReLU

(
Lν(x̂t+1)−Lν(xt)+βLν(xt)

)]
+
ρζ
2

[
Ext∼D,u∼π

[
ReLU

(
Lν(x̂t+1)−Lν(xt)+βLν(xt)

)]]
2,

(18)

where λi and ζ are the Lagrangian multipliers for CBF
and CLF constraints, respectively, and ρλi

and ρζ are the
corresponding coefficients for the additional quadratic terms.
Since it is usually not easy to solve the problem

θk+1 = argmin
θ
LA(θ, λi,k, ζk; ρλi,k

, ρζk) (19)

directly in RL, we still apply gradient descent to update θ,
and gradient ascent to update λi and ζ, while increasing
the value of ρλi and ρζ gradually to find a solution for the
constrained optimization problem (13). The pseudocode is
provided as a part of Algorithm 1.

C. Backup Controller Design

Due to the existence of several constraints, the feasibility
of the constrained optimization problem (13) becomes a
crucial problem during the learning process. Typically, there
are two scenarios where infeasibility can cause problems:

• The CLF constraint for stability is violated, for example,
the agent is required to cross an obstacle to reach
the equilibrium by the stability constraint, but this is
prevented by the safety constraint, and thus the agent is
trapped in some specific positions near the obstacle.

• The CBF constraint for safety is violated, for example,
the desired state is not fixed and can fall in a danger
region at some time-steps, which means satisfying the
CLF constraint can breach the safety constraint then.

The frequent invalid control signals provided by the RL-
based controller due to the infeasibility may prevent the
system from approaching its desired state quickly, or violate
the safety constraints severely. Given that safety takes prior-
ity when safety and stability constraints cannot be satisfied
simultaneously, similar to [7], [8], we propose to design a
backup controller by formulating an additional constrained
optimization problem that leverages CBFs as constraints to
achieve and maintain safety. However, compared to previous
studies, the objective function of this backup controller is
designed not only to minimize the difference between the
actual control signal and nominal control signal, but also
to prevent the system from deviating too much from its
equilibrium by incorporating the CLF constraint. We first
establish a QP-based controller as follows:

min
umodi,ϵ

1

2
uT

modi Qumodi + kϵ,iϵ
2
i−κ∇xLν(xt)·g(xt)umodi

s.t. hi

(
f(xt) + g(xt)(unominal − umodi) + d(xt)

)
− hi(xt) ≥ −ηhi(xt)− ϵi ∀i ∈ [1, k],

(20)

where xt is the current state of the system, Q is a symmetric
positive semidefinite matrix, and similar to [7], [8], d(xt)
is estimated and replaced by the mean and variance given
by GP. ϵi is the slack variable introduced to enforce the
feasibility of the constrained optimization problem with the
coefficient kϵ,i. umodi = unominal − uactual, where umodi is
the optimization variable, unominal is the nominal control
signal, and uactual is the actual control signal to perform.
Additionally, ∇xLν(x) is the gradient of the Lyapunov
network with respect to the state, and κ is a coefficient.

The choices of coefficients, nominal control signal, and the
condition for using the backup controller depend on the task.
When the CBFs are not affine with respect to the control
signal, it is possible to apply local first-order linearization
to the CBFs to obtain approximate affine surrogate CBFs,
or other types of constrained optimization problems can be
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used to construct the backup controller. In summary, the
framework combining the RL-based and backup controllers
can be summarized as Algorithm 1.

Algorithm 1 Barrier-Lyapunov Actor-Critic (BLAC)
1: Initialization: RL-based controller network πθ, coeffi-

cient α, action-value networks Qϕi
, i = 1, 2, Lyapunov

network Lν , Lagrange multipliers λi and ζ, replay buffer
B, coefficients of quadratic terms ρλi

and ρζ , learning
rates η1, η2, and η3, quadratic term coefficient factor
Cρ ∈ (1,∞)

2: for k = 1, . . . ,K do
3: if Backup controller should be used according to the

condition specific to the task then
4: Solve the constrained optimization problem (20)
5: Apply the control signal uactual
6: else
7: Sample and apply control signal ut

8: Store the transition pair (xt, ut, rt, ct, xt+1) in B
9: Sample a batch of transition pairs randomly from

B, and construct CBF and CLF constraints with the
system model

10: Update the Lyapunov network and action-value
networks by using (17) and (15) according to

νk+1 ← νk − η1∇νJL(Lνk
)

ϕik+1
← ϕik − η1∇ϕiJQ(Qϕik

)

11: Update the controller network and coefficient α by
using (18) and (16) according to

θk+1 ← θk − η2∇θLA(θk, λi,k, ζk; ρλi,k
, ρζk)

αk+1 ← αk − η2∇αJα(αk)

12: Update the Lagrangian multipliers using (18) ac-
cording to
λi,k+1 ← λi,k + η3∇λiLA(θk+1, λi,k, ζk; ρλi,k

, ρζk)

ζk+1 ← ζk + η3∇ζLA(θk+1, λi,k, ζk; ρλi,k
, ρζk)

13: Update coefficients of quadratic terms by ρλi,k+1
←

Cρρλi,k
, ρζk+1

← Cρρζk , and GP model
14: end if
15: end for
16: return πθ, Qϕi

, i = 1, 2, and Lν .

IV. SIMULATIONS

In this section, we test the framework on two tasks to
answer the following questions 3:

• Does the BLAC framework assist in guaranteeing the
stability for the system when compared to other baseline
algorithms? Since in these tasks high rewards will be
given when the system approaches and achieves the de-
sired state (equilibrium), we use the cumulative reward
as a measure, where a higher cumulative reward can

3For brevity, we provide a brief overview of the “Unicycle” task in
this paper. For a more comprehensive discussion which includes additional
details about the “Unicycle” task, the description of the “Simulated Cars”
task and relevant experiment results, please refer to [1].

indicate that the system can converge to the equilibrium
faster with fewer deviations.

• Does the BLAC framework cause fewer violations of
safety constraints compared to baseline algorithms?

We use LAC [4], CPO [18], PPO-Lagrangian and TRPO-
Lagrangian [19] for comparison. Furthermore, to demon-
strate whether the CLF constraint contributes to maintaining
stability and therefore improves performance, we remove the
CLF constraint in the BLAC framework to create an addi-
tional algorithm Barrier Actor-Critic (BAC) for comparison.

The task “Unicycle” is modified from the first environment
in [8]. In this experiment, a unicycle is required to arrive at
a desired location, i.e., destination, while avoiding collisions
with obstacles. The model of the unicycle is given by:

xt+1 = xt +

 ∆T cos(θt) 0
∆T sin(θt) 0

0 ∆T

 (ut + ud,t).

Here xt = [x1t, x2t, θt]
T where x1t and x2t are the X-

coordinate and Y-coordinate of the unicycle at the timestep
t, θ is the angle between the X-coordinate and the direction
of the unicycle’s movement at t. Also, ut = [vt, ωt]

T is the
control signal where vt and ωt are the linear and angular
velocities, respectively. ∆T represents the time interval and
ud,t = −0.1[cos(θt), 0]T is unknown to the nominal model,
and therefore is the unknown part and GPs can be used.
Then, to formulate collision-free safety constraints, a point
at a distance lp ≥ 0 ahead of the unicycle is considered, and
we define the function p : R3 → R2 to be

p(xt) =

[
x1t

x2t

]
+ lp

[
cos(θt)
sin(θt)

]
.

The reward signal is defined as −K1(vt − vs)
2 +K2∆d,

where vs is the predefined velocity, ∆d is the decrease in the
distance between the unicycle and destination in two consec-
utive timesteps, and K1 and K2 are coefficients set to 0.1 and
30, respectively. The cost signal is ∥p(xt+1)− p(xdesired)∥
where p(xdesired) = [x1desired, x2desired]

T denotes the position
of the desired location. CBFs are defined as hi(xt) =
1
2

(
(p(xt)− pobsi)

2− δ2
)

where pobsi is the position of the i-
th obstacle, and δ denotes the minimum required distance
between the unicycle and obstacles. When the stability
constraint is violated if safety and stability constraints cannot
be satisfied simultaneously, the unicycle can get trapped near
obstacles, and then the RL-based controller is replaced by the
backup controller where unominal is set to be the maximum
allowable control signal to encourage exploration while
maintaining safety. The RL-based controller will resume
when the unicycle moves away from the trapped position for
a long distance, or when the predetermined time threshold
for using the backup controller is exceeded.

Simulation results are shown in Figure 1. Compared to
other baselines, our framework enables the system to achieve
higher cumulative reward in fewer episodes, indicating that
the framework helps the unicycle approach and successfully
reach its destination (equilibrium) after a shorter training
process. Additionally, the fluctuations of the cumulative
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Fig. 1. The cumulative reward and cumulative number of safety violations of each episode in the unicycle environment are compared for the proposed
BLAC (in blue) and other baselines. Each plot shows the mean of ten experiments using different seeds. The shading represents the standard deviation.

reward are smaller than those of any other baseline algorithm,
suggesting that the system performance in obtaining high
rewards can quickly recover to its original high level after
deterioration. Regarding safety, as evidenced by the cumula-
tive number of safety violations per episode, our framework
results in much fewer violations compared to LAC, CPO,
PPO-Lagrangian, and TRPO-Lagrangian where CBFs are
not used, which means CBFs can help maintain safety. Our
framework is thus suitable for safety-critical applications.

V. CONCLUSIONS
In this paper, we propose the BLAC framework, which

combines separate CBF and CLF constraints with the actor-
critic RL method to help to guarantee both safety and
stability of the controlled system. This framework imposes
safety constraints for each step in the trajectory instead of
the trajectory expectation and thus imposes stricter safety
constraints, which is crucial in real-world safety-critical
applications. Moreover, our framework contributes to guar-
anteeing stability of the system, facilitating the system to
approach the desired state (equilibrium) and obtain higher
cumulative reward in tasks where high rewards are offered
when the system gets closer to or reaches the desired state,
such as navigation tasks. With the augmented Lagrangian
method and backup controller, higher cumulative reward and
fewer safety constraint violations are seen in experiments.

However, there are also some limitations of this frame-
work: 1. The CBFs are predefined before the learning pro-
cess, but in real-world applications, it may be nontrivial to
construct valid CBFs; 2. The framework requires knowledge
of the control-affine model of the system. Also, performance
comparisons can be conducted between this RL-based con-
trol policy and other model-based optimal control policies
[20]; 3. The framework is only tested on tasks where the
relative-degree of the CBFs is 1, and therefore, more research
where CBFs with high relative-degree are used should be
conducted in the future. We believe that addressing these
current limitations could be interesting future directions.
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