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Abstract— This study addresses linear attacks on remote state
estimation within the context of a constrained alarm rate. Smart
sensors, which are equipped with local Kalman filters, transmit
innovations instead of raw measurements through a wireless
communication network. This transmission is vulnerable to
malicious data interception and manipulation by attackers.
The aim of this research is to identify the optimal attack
strategy that degrades the system performance while adhering
to stealthiness constraints. A notable innovation of this paper
is the direct association of the attack’s stealthiness with the
alarm rate, diverging from traditional approaches that rely
on the covariance of the innovation or the Kullback–Leibler
divergence, which are conventional metrics that have been
extensively explored in previous studies. Our findings reveal
that the optimal attack strategy exhibits some structural char-
acteristics in systems of low dimensions. The performance of
the proposed attack strategy is demonstrated through numerical
examples.

I. INTRODUCTION

The advancement of modern industrial applications has
significantly encouraged the use of wireless network tech-
nologies. However, these advancements also introduce new
challenges related to cybersecurity threats [1]–[3]. Among
these threats, denial-of-service (DoS) attacks [4] and false
data injection attacks [5] are particularly noteworthy. In
certain scenarios, malicious entities have the capability to
intercept and alter data packets during transmission, aim-
ing to impair the performance of systems. Specifically, the
manipulation of data to maximize performance degradation
while evading detection by anomaly detectors is termed
an optimal deception attack. This concept has attracted
significant research interest over the past decade.

Deception attacks on remote state estimation have gar-
nered significant attention in recent years. In scenarios where
sensors measure system states and transmit packets to a
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remote end, attackers can cleverly alter the transmitted data
to mislead Kalman filters into making suboptimal estima-
tions. A landmark development was the introduction of
the optimal innovation-based linear attack, characterized by
simply inverting the sign of nominal innovations [6]. This
approach has been expanded to various contexts, including
scenarios where attackers utilize additional sensors to acquire
side information about system states [7], [8], employ histor-
ical information [9], [10], and launch attacks with relaxed
stealthiness constraints [11], [12], as well as on event-based
estimation [13] and using nonlinear mappings [14]. Despite
recent discoveries that the optimal information-based attack
is an affine function of the minimum mean square error
(MMSE) estimate of prediction errors [15], linear attacks
continue to be a focal point of interest due to their simplicity
and effectiveness in evading whiteness detectors [16], [17].

Stealthy attacks are characterized by varying definitions
based on the approach to stealthiness constraint formula-
tion, typically categorized into deterministic and stochastic
frameworks. Deterministic stealthiness involves measuring
the discrepancy between the post-attack and nominal system
outputs, aiming to keep this difference within a predefined
boundary. The stochastic approach, on the other hand, fo-
cuses on analyzing the residual sequence from the compro-
mised system. In the context of Kalman filters, maintaining
the unchanged probability density function (pdf) of the in-
novation (residual) sequence is considered the most stringent
form of stealthiness constraint, a principle employed in [6].
Maintaining the unchanged pdf of the innovation sequence,
given that the autocorrelation of the nominal innovation se-
quence is zero, equates to preserving both the unchanged pdf
of each innovation and the sequence’s whiteness property.
Although whiteness was not emphasized in studies like [6],
[7], [11], [12], [14], the inherent innovation-based nature
of their attacks ensures the generation of white residuals.
Conversely, strategies leveraging historical information in-
herently produce auto-correlated residuals, as seen in [10],
[15], [18], [19].

Despite extensive research on innovation-based attacks
with various stealthiness constraints, the question of the
optimal linear attack that preserves the alarm rate remains
unanswered. The approach in [6] maintains the alarm rate
using a highly strict stealthiness constraint, which is a
sufficient but not a necessary condition for keeping the
alarm rate unchanged. Current literature lacks comprehensive
solutions to this problem. This paper aims to bridge this
gap by exploring the optimal linear attack strategy within
the context of a constrained alarm rate, especially in low-
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dimensional systems.
The remainder of this paper is organized as follows.

Section II formulates the problem. Section III depicts the
design of stealthy linear attacks. Section IV gives numerical
examples to verify the theoretical results. Finally, Section V
concludes this paper.

Notations: Sn++ (Sn+) denotes the set of n × n positive
(semi)-definite matrices. If X ∈ Sn+, denote X ⪰ 0 (or
X ≻ 0 if X ∈ Sn++). X ⪰ Y if X − Y ∈ Sn+. For
X ∈ Rm×n, XT ∈ Rn×m is the transpose of X , and σi(X)
denotes the ith largest singular value of X . For X ∈ Rm×m,
Tr(X) represents the trace of X . I denotes the identity
matrix. For x ∈ Rm, ∥x∥ represents the Euclidean norm
of x. Pr(·) denotes the probability of an event. E[·] denotes
the expectation of a random variable. cov(·) is the covariance
of a random vector. Ja, bK = {x ∈ Z|a ≤ x ≤ b}.

II. PROBLEM FORMULATION

The system architecture explored in this study is depicted
in Fig. 1. The smart sensor can process measurements using a
local Kalman filter, with the resulting innovations transmitted
sequentially via a wireless network. This setup is vulnerable
to malicious attackers capable of intercepting and tampering
with the data in transit. The attacker’s goal is to impair
the system’s performance without triggering the anomaly
detection mechanisms.

A. Process Model

In this study, we focus on a linear time-invariant (LTI)
process, described as follows:

xk+1 = Axk + wk (1a)
yk = Cxk + vk (1b)

where xk ∈ Rn is the system state, yk ∈ Rm is the sensor
measurement, and wk ∈ Rn and vk ∈ Rm represent zero-
mean independent and identically distributed (i.i.d.) Gaussian
noises with covariances Q ∈ Sn+ and R ∈ Sm++, respectively.
The initial state x0 ∈ Rn is zero-mean Gaussian. For all
k ≥ 0, wk, vk, and x0 are mutually independent. Assume that
rank(C) = m, the pair (A,C) is observable, and (A,

√
Q)

is controllable.
For system (1), the following Kalman filter is adopted to

estimate the system state:

x̂−
k = Ax̂k−1 (2a)

P−
k = APk−1A

T +Q (2b)

Kk = P−
k CT(CP−

k CT +R)−1 (2c)

zk = yk − Cx̂−
k (2d)

x̂k = x̂−
k +Kkzk (2e)

Pk = P−
k −KkCP−

k . (2f)

In (2), x̂−
k denotes the a priori MMSE estimate of xk, and

P−
k is the a priori estimation error covariance; similarly, x̂k

is the a posteriori MMSE estimate of xk, and Pk denotes
the corresponding estimation error covariance.
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Fig. 1. Deception attacks on remote state estimation.

For notational simplicity, we define the following two
matrix-valued functions h, g̃ : Sn+ → Sn+ as

h(X) ≜ AXAT +Q (3)

g̃(X) ≜ X −XCT(CXCT +R)−1CX. (4)

Thus, the recursion of the estimation error covariance in (2)
simplifies to Pk = g̃(P−

k ) and P−
k+1 = h(Pk). Let P̄ denote

the steady-state a priori estimation error covariance, which
is the unique positive semidefinite solution of h[g̃(X)] = X .
We assume for simplicity that the filter has reached the steady
state when k = 0. Consequently, the Kalman gain in (2c)
simplifies to a constant matrix:

K = P̄CT(CP̄CT +R)−1. (5)

As indicated in Fig. 1, innovations are transmitted rather
than raw measurements, facilitated by a local Kalman filter
incorporated within the smart sensor.

B. Anomaly Detector

From (2), the innovation zk follows a zero-mean Gaussian
distribution. The steady-state covariance of zk satisfies Σ =
CP̄CT + R. Additionally, the sequence {zk} exhibits zero
autocorrelation. To monitor the transmitted data, a commonly
utilized anomaly detector is the χ2 detector. The detection
index for this detector is expressed by

dk = zTk Σ
−1zk. (6)

Here, dk adheres to a χ2 distribution with m degrees
of freedom. To assess the system’s condition, we use the
following hypothesis test:{

H0 : dk ≤ δα

H1 : dk > δα
(7)

where H0 denotes normal system operation, H1 indicates an
anomaly, and δα is the threshold, which can be determined
by the following equation:

Fm(δα) =
1

Γ(m/2)
γ

(
m

2
,
δα
2

)
= 1− α. (8)

Here, Fm(·) signifies the cumulative distribution function
of the χ2-distribution with m degrees of freedom, Γ and γ
denote the gamma function and the lower incomplete gamma
function, respectively, and α is the preset significance level.
Therefore, the false alarm rate when the system is operating
normally is Pr(dk > δα) = α.
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C. Deception Attacks

The primary aim of the attacker is to degrade the estima-
tion accuracy of the system while ensuring that the attack
remains undetected. The linear attack model introduced in
[6] is considered as follows:

z̃k = Tkzk + bk (9)

where z̃k represents the manipulated innovation, Tk ∈
Rm×m is the attack coefficient matrix, and bk ∈ Rm is a
zero-mean i.i.d. Gaussian noise with covariance Πk.

To effectively remain undetected by the anomaly detector
at each moment, attackers must judiciously select Tk and
Πk for crafting z̃k. The most straightforward approach is
adopting the so-called strict stealthiness as described in [6],
where z̃k and zk have an identical pdf. This approach ensures
that the alarm rates of the χ2 detector remain unchanged,
preserving the stealthiness of the attack. Moreover, the
sequence z̃k, produced under the attack model, retains zero
autocorrelation, thus maintaining the innovation sequence’s
whiteness. This simplicity offers an advantage over some
more complex strategies such as in [9], [10].

In our study, while adhering to the attack model specified,
we explore a new version of the stealthiness constraint.
Unlike the constraints based on the Kullback–Leibler (KL)
divergence seen in work like [11], [12], [20], our focus
is directly on the alarm rate triggered by the χ2 detector.
Considering the system’s normal operational alarm rate is
α, an attack that does not alter this rate is considered
stealthy under our framework. Therefore, the criterion for
our proposed deception attack is defined as:

Pr(z̃Tk Σ
−1z̃k > δα) = α. (10)

It is important to note that the stringent stealthiness condition
set forth in [6] is merely a sufficient, not a necessary,
condition for meeting the above criterion. For χ2 detectors,
directly monitoring the alarm rate offers a clear indicator
of the system’s state, distinguishing between normal and
compromised conditions.

With z̃k in (9), the state estimate at the remote end will
be calculated as follows:

x̃−
k = Ax̃k−1 (11a)

x̃k = x̃−
k +Kz̃k. (11b)

To measure the impact of the deception attack, we consider
the following estimation error covariances:

P̃−
k = E[(xk − x̃−

k )(xk − x̃−
k )

T] (12a)

P̃k = E[(xk − x̃k)(xk − x̃k)
T]. (12b)

From (12b), we see that

E[∥xk − x̃k∥22] = Tr(P̃k). (13)

Assuming the attacker has the capability to initiate consec-
utive attacks over the time interval [ǩ, k̂], their objective
is to maximize the accumulative trace of the estimation
error covariance, denoted as

∑k̂
k=ǩ Tr(P̃k). This term, also

called accumulative estimation error for simplicity, serves as
a key metric for assessing the effectiveness of the attacks in
degrading the system’s estimation accuracy.

D. Problem of Interest

In this study, our goal is to identify the optimal linear de-
ception attack strategy that preserves the alarm rate, focusing
on maximizing the accumulative estimation error. Techni-
cally, we need to optimize the attack coefficients (Tk,Πk) to
maximize

∑k̂
k=ǩ Tr(P̃k) while satisfying constraint (10).

III. MAIN RESULTS

To delve into the optimal attack strategy, we need to first
obtain the recursion of the estimation error covariance in-
duced by attacks. From (12b), the estimation error covariance
can be rewritten as

P̃k = E[(xk − x̂k)(xk − x̂k)
T] + E[(xk − x̂k)(x̂k − x̃k)

T]

+ E[(x̂k − x̃k)(xk − x̂k)
T] + E[(x̂k − x̃k)(x̂k − x̃k)

T].

With the law of iterated expectations, we have

E[(xk − x̂k)(x̂k − x̃k)
T]

= E
[
E[(xk − x̂k)(x̂k − x̃k)

T|z0:k]
]
= 0.

It follows that

P̃k = P + E[(x̂k − x̃k)(x̂k − x̃k)
T] (14)

where P = g̃(P̄ ). From (2a), (2e), and (11), one can obtain

x̂k − x̃k = A(x̂k−1 − x̃k−1) +K(zk − z̃k).

With x̂−
ǩ
= x̃−

ǩ
, we have

x̂k − x̃k =

k−ǩ∑
i=0

AiK(zk−i − z̃k−i). (15)

Note that ∀i ̸= 0, E[zkzTk−i] = 0. Substituting (9) into (15)
yields that

E[(x̂k − x̃k)(x̂k − x̃k)
T] =

k−ǩ∑
i=0

AiKE[(zk−i − Tk−izk−i

− bk−i)(zk−i − Tk−izk−i − bk−i)
T]KT(Ai)T.

Combining the above equation with (14), we obtain

P̃k = P +

k−ǩ∑
i=0

AiK
(
Πk−i +Σ− Tk−iΣ− ΣTT

k−i

+Tk−iΣT
T
k−i

)
KT(Ai)T.

(16)

For notational simplicity, we define the following variable:

Ψk =

k̂−k∑
i=0

KT(Ai)TAiK (17)

which has a recursion

Ψk = Ψk+1 +KT(AT)k̂−kAk̂−kK. (18)
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We then obtain
k̂∑

k=ǩ

Tr(P̃k) = (k̂ − ǩ + 1)Tr(P ) +

k̂∑
k=ǩ

Tr[Ψk(Πk +Σ

−TkΣ− ΣTT
k + TkΣT

T
k )]. (19)

Owing to the structure of (19), the design of the optimal
attack sequence {Tk} can be decoupled. That is, the optimal
attack coefficient at instant k, T ∗

k , has no impact on the
optimal solution for Tk+1. So we can solve the coefficients
separately, which is different from the coupled problem in
[12], [15].

To sum up, the optimal deception attack that maximizes∑k̂
k=ǩ Tr(P̃k) can be obtained by solving the following

optimization problem:

max
Tk,Πk

Tr[Ψk(Πk + TkΣT
T
k − TkΣ− ΣTT

k )]

s.t. Pr[(Tkzk + bk)
TΣ−1(Tkzk + bk) > δα] = α

E[bkbTk ] = Πk.

(20)

Denote the objective function of problem (20) as Jk. Note
that the constant part in Tr(P̃k), namely Tr(P + ΨkΣ), is
not included in Jk. Denote the optimal solution to (20) as
{T ∗

k ,Π
∗
k}; the corresponding objective value is J∗

k . Then the
covariance of z̃∗k satisfies

cov(z̃∗k) = T ∗
kΣ(T

∗
k )

T +Π∗
k. (21)

If we consider another attack with coefficient T ⋆
k ∈ Rm×m

and Π⋆
k = 0, the attack model is z̃⋆k = T ⋆

k zk. Let cov(z̃⋆k) =
cov(z̃∗k), i.e.,

T ∗
kΣ(T

∗
k )

T +Π∗
k = T ⋆

kΣ(T
⋆
k )

T. (22)

It is easy to see that T ⋆
k satisfies the constraint of (20). Note

that both T ∗
k and −T ∗

k satisfies the constraint, and thus, we
see from the objective function of (20) that

Tr[Ψk(T
∗
kΣ+ Σ(T ∗

k )
T)] ≤ 0,Tr[Ψk(T

⋆
kΣ+ Σ(T ⋆

k )
T)] ≤ 0.

For T ∗
k and T ⋆

k , the difference between the objective values
satisfies

J⋆
k − J∗

k = Tr{Ψk[(T
∗
k − T ⋆

k )Σ + Σ(T ∗
k − T ⋆

k )
T]}.

Note that (22) leads to (−T ⋆
k )Σ(−T ⋆

k )
T ⪰ (−T ∗

k )Σ(−T ∗
k )

T.
Using the similar proof in [12, Th.1], one can verify that
there exists T ⋆

k such that Tr[Ψk(T
∗
k − T ⋆

k )Σ] ≥ 0, and thus
J⋆
k − J∗

k ≥ 0. We then conclude that the optimal Πk can
be represented as Π∗

k = 0. It follows that bk = 0 is an
optimal solution, and the attack model reduces to z̃k = Tkzk.
Accordingly, problem (20) can be rewritten as

max
Tk

Tr[Ψk(TkΣT
T
k − TkΣ− ΣTT

k )]

s.t. Pr[zTk T
T
k Σ−1Tkzk > δα] = α.

(23)

Let Hk = Σ− 1
2TkΣ

1
2 . Then we have

Jk = Tr[Ψk(Σ
1
2HkH

T
k Σ

1
2 − Σ

1
2HkΣ

1
2 − Σ

1
2HT

k Σ
1
2 )]

= Tr[Σ
1
2ΨkΣ

1
2 (HkH

T
k −Hk −HT

k )]. (24)

The constraint of (23) becomes

Pr(zTk Σ
− 1

2HT
k HkΣ

− 1
2 zk > δα) = α. (25)

Let ξk = Σ− 1
2 zk. With this whitening, we have E[ξkξTk ] = I .

In fact, ξk is a vector composed of m i.i.d. random variables
that follow standard normal distributions. We rewrite (25) as

Pr(ξTk H
T
k Hkξk ≤ δα) = 1− α. (26)

Consider the following singular value decomposition:

Hk = ŪkΣ̄kV̄
T
k (27)

Then HT
k Hk = V̄kΣ̄

2
kV̄

T
k and HkH

T
k = ŪkΣ̄

2
kŪ

T
k . It is clear

that Ūk has no impact on the constraint of (26), which can
be rewritten as

Pr(ξTk V̄kΣ̄
2
kV̄

T
k ξk ≤ δα) = 1− α. (28)

With ξ̂k = V̄ T
k ξk, (28) becomes Pr(ξ̂Tk Σ̄

2
k ξ̂k ≤ δα) = 1−α.

Additionally, E[ξ̂k ξ̂Tk ] = V̄ T
k V̄k = I . We see that ξ̂k and ξk

share the same pdf. Then (28) reduces to

Pr(ξTk Σ̄
2
kξk ≤ δα) = 1− α (29)

which is independent of V̄k as well. Therefore, if Σ̄k satisfies
(29), then we can arbitrarily select Ūk and V̄k. We now use
the following spectral decomposition:

Σ
1
2ΨkΣ

1
2 = Φ̄kΛ̄kΦ̄

T
k (30)

where Λ̄k = diag{λ̄k1, λ̄k2, . . . , λ̄km} denote the eigenval-
ues, arranged in nonincreasing order. We then rewrite (24)
as

Jk = Tr
[
Φ̄kΛ̄kΦ̄

T
k (ŪkΣ̄

2
kŪ

T
k − ŪkΣ̄kV̄

T
k − V̄kΣ̄kŪ

T
k )
]
.

Since we have shown that Ūk and V̄k have no impact on the
constraint, we just need to consider the objective function.
Based on the properties of singular values, one can prove

Jk ≤
k∑

i=1

σi

[
Φ̄kΛ̄kΦ̄

T
k (ŪkΣ̄

2
kŪ

T
k − ŪkΣ̄kV̄

T
k − V̄kΣ̄kŪ

T
k )
]

≤
k∑

i=1

σi(Λ̄k)σi(Σ̄
2
k + 2Σ̄k)

= Tr[Λ̄kΣ̄
2
k + 2Λ̄kΣ̄k].

It is easy to verify that Ūk = −Φ̄k and V̄k = Φ̄k yields
Jk = Tr[Λ̄kΣ̄

2
k + 2Λ̄kΣ̄k], and thus V̄k = −Ūk = Φ̄k is an

optimal solution.
Now the optimization variable reduces to Σ̄k and the

optimization problem can be simplified as

max
Σ̄k

Tr(Λ̄kΣ̄
2
k + 2Λ̄kΣ̄k)

s.t. Pr(ξTk Σ̄
2
kξk ≤ δα) = 1− α.

(31)

Notice that Σ̄k ∈ Rm×m is a diagonal matrix and it has
only m degrees of freedom. Compared with the original
optimization problem with respect to Tk ∈ Rm×m, which
has m2 degrees of freedom, this is a large reduction of
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complexity. We then rewrite Σ̄k = diag{σ̄k1, σ̄k2, . . . , σ̄km},
ξk = [ξk1, ξk2, . . . , ξkm]T, and (31) becomes

max
{σ̄ki}m

i=1

m∑
i=1

(λ̄kiσ̄
2
ki + 2λ̄kiσ̄ki)

s.t. Pr

(
m∑
i=1

ξ2kiσ̄
2
ki ≤ δα

)
= 1− α.

(32)

Because of the constraint in (32), it is not easy to obtain an
analytical solution. However, for low-dimensional systems,
say when m = 2, numerical solutions are readily attainable.
In such a case, the decision variables reduce to σ̄k1 and
σ̄k2. Given that {λ̄ki} is arranged in nonincreasing order,
the objective function of (32) implies σ̄k1 > σ̄k2. Notice that
σ̄ki = 1, ∀i ∈ J1,mK satisfies the constraint of (32). With
some elementary deduction, we establish upper and lower
bounds for σ̄ki:

0 ≤ σ̄k2 ≤ 1 ≤ σ̄k1 ≤

√
δα

F−1
1 (1− α)

where F−1
1 (·) is the inverse cumulative distribution function

of the χ2 distribution with a single degree of freedom,
as detailed earlier in (8). We then need to numerically
obtain the feasible region about σ̄k1 and σ̄k2, applicable
uniformly across all k. Since the objective function of (32)
is rather simple, we can obtain the optimal values of σ̄k1

and σ̄k2 efficiently through recursive algorithms. Moreover,
since these computations can be executed offline, they do not
impinge upon the real-time execution demands of deploying
the attack sequence.

Now denote the optimal solution to (31) as Σ̄∗
k. From (27),

we have H∗
k = −Φ̄kΣ̄

∗
kΦ̄

T
k , and accordingly, the optimal

attack coefficient satisfies

T ∗
k = −Σ

1
2 Φ̄kΣ̄

∗
kΦ̄

T
kΣ

− 1
2 (33)

bk = 0. (34)

The corresponding optimal accumulative estimation error is

k̂∑
k=ǩ

Tr(P̃k) =

k̂∑
k=ǩ

Tr[Λ̄k(Σ̄
∗
k + I)2] + (k̂ − ǩ + 1)Tr(P ).

The time-varying nature of the attack coefficient Tk is
evident. As discussed previously, setting Σ̄k = I meets
the constraint detailed in (31). Substituting Σ̄∗

k with the
identity matrix simplifies Tk to −I , aligning with the strategy
highlighted in [6]. This approach yields the accumulative
estimation error as

k̂∑
k=ǩ

Tr(P̃k) = 4

k̂∑
k=ǩ

Tr(Λ̄k) + (k̂ − ǩ + 1)Tr(P ).

If Σ̄∗
k ̸= I , then the approach delineated in [6] emerges

as merely a suboptimal solution with respect to the alarm
rate constraint. The notable distinction lies in the require-
ment from [6] for the innovations’ covariance under attack,
cov(z̃k), to match that of the original, cov(zk), a stipula-
tion absent in our discussion where the focus is solely on

maintaining the alarm rate. Further intuitive comparisons are
forthcoming in the subsequent section.

IV. NUMERICAL EXAMPLES

In this section, we consider a two-dimensional LTI system.
The system parameters are given as follows:

A =

[
0.55 0.25
−0.05 0.64

]
, C =

[
0.9 −0.8
0.1 0.7

]
Q = diag{0.5, 0.7}, R = diag{0.6, 0.8}.

(35)

To estimate the system state in (35), a Kalman filter is
used. In nominal conditions, the steady-state estimation error
covariance satisfies

P̄ =

[
0.727 0.132
0.132 0.872

]
, P =

[
0.463 0.215
0.215 0.449

]
.

To monitor the system, we employ a χ2 detector with a
permissible false alarm rate set at 1%, corresponding to a
significance level, α, of 0.01. The detection threshold, δα, is
determined to be 9.21 following (8).

The attacker initiates data manipulation from the 21st
sampling instant, continuing until the 50th instant, designated
as ǩ = 21 and k̂ = 50. Using the steady-state Kalman gain
K and matrix A, we can calculate Ψk for each relevant k.
For the duration between k = 21 and k = 50, we derive
the optimal attack coefficient Tk following (33). To assess
the efficacy of this attack, 106 Monte Carlo simulations
are conducted to average the estimation error covariances.
The outcomes of this attack, depicted in Fig. 2, are then
contrasted with the conventional attack strategy from [6]. For
a comprehensive comparison, we also examine the attack
strategy from [11] that employs the KL divergence as a
metric for stealthiness. It is crucial to note, however, that
the attack from [11] would modify the alarm rate with any
nonzero KL divergence. To minimize the change in the alarm
rate, a minimal KL divergence of 10−4 is chosen for this
comparison.

From Fig. 2, it is evident that the attack strategy we pro-
pose results in the most significant deterioration of estimation
performance, leading to an accumulative estimation error of
167.3. In comparison, the attacks described in [6] and [11]
lead to accumulative estimation errors of 163.9 and 165.0,
respectively.

To confirm that our proposed attack strategy does not
affect the alarm rate, we calculate the average alarm rates
resulting from the different attacks, as shown in Fig. 3.
Notably, while the attack from [11] causes a change in the
alarm rate, the other two strategies do not. This outcome
affirms that our attack strategy consistently satisfies the
constraint regarding the alarm rate.

For a clearer understanding, we also present a single-
instance simulation of the proposed attack strategy in Fig. 4,
illustrating the detection index as per (6) alongside the
designated threshold δα. It is apparent that the proposed
attack maintains the alarm rate unchanged.
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Fig. 2. Attack performance of different strategies.
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Fig. 3. Average alarm rates of different attacks.
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V. CONCLUSION AND FUTURE WORK

In this paper, we explore the optimal linear attack strategy
for remote state estimation. Unlike previous studies that
focus on stealthiness defined through innovation covariance
or the KL divergence, we anchor our stealthiness constraint
in the alarm rate. We demonstrate that, for low-dimensional
systems, the optimal linear attack reveals intriguing structural
properties, negating the need for a random compensation

term in its design. Our work also establishes the relation-
ship between the proposed strategy and prior approaches,
highlighting the superiority of our method through numerical
simulations. Future directions include extending the analysis
to attacks on high-dimensional systems under constrained
alarm rates and investigating defense mechanisms against
these stealthy attacks, potentially employing Stackelberg
games to determine optimal defense strategies.
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