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Abstract— Point processes have a wide range of current
applications in areas such as high frequency finance, neural
coding, and streaming data. The Hawkes model is widely used
due to its flexibility and relatively manageable model fitting.
However it is not capable of modelling inhibition though this
occurs widely in practice. Here we introduce a new nonlinear
Hawkes model and develop model fitting, and tuning parameter
selection. We illustrate it with a simulation and application to
data where it reveals a strong inhibitory effect.

I. INTRODUCTION
In a growing number of application areas the data take the

form of point processes. For example, spiking activity in the
brain [1], high-frequency financial market movements [2],
genomics [3], streaming data [4] and email records [5].
All these data share two important properties: they exhibit
history dependence and are characterized by bursts of activity
localized in time.

The Hawkes process [6], a point process conditional
intensity model that accommodates these properties, has been
applied successfully in numerous areas. In seismology, the
Hawkes process has been used to study aftershocks following
an earthquake [7]. In [8], a limited memory Hawkes process
was used to model functional relationships between neurons.
Interactions of motifs along a genome have been modeled
with a bivariate Hawkes process [3]. Patterns of criminal
behaviour in burglary and gang violence in Los Angeles
have been studied employing the Hawkes process [9]. In [10],
the authors demonstrated that the clustering properties of the
trades-through in a limit order book can be well modelled
with a Hawkes process. In [11], the Hawkes process has been
used to model viral dynamics in social media systems and
tested on some You-tube data. Similarly a Hawkes process
has been employed to infer the underlying network of social
interactions [12], [5].

In all of the aforementioned works, the Hawkes models
are constructed to model self-excitatory behaviour. But there
is growing evidence from a number of application areas
to indicate the presence of both self-excitatory as well as
inhibitory effects. For example, inhibitory effects between
neurons are crucial for regulating neuronal activity [13], [14].
Despite these observations, modeling of such behavior has
received little attention in the point process literature.

In [15], the conditional intensity is the composite function
of the so-called scaled softplus function and the exponential
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Hawkes model. The positivity constraint on the model pa-
rameters is relaxed but this approach requires estimating an
additional scale parameter for each scalar process. In [16],
the conditional intensity is the composition of the sigmoid
function and the unconstrained Hawkes exponential model.
A maximum likelihood approach where the conditional in-
tensity can take negative values has been discussed but the
optimization maximizes an approximate log-likelihood ratio
[17]. In [18], a maximum likelihood approach based on the
notion of an underlying intensity (allowed to be negative)
and restart time (instant when the intensity becomes non-
negative) has been discussed but the exact maximum likeli-
hood computation is limited to the exponential model only.
A log-linear parameterization of the conditional intensity
function (CIF) naturally ensures positivity with negative
parameter values but is known to be highly sensitive to model
fitting. In [19], this is achieved by pruning the number of
parameters by assuming all scalar processes have the same
baseline intensity and using a quasi-Newton method. The
nonparametric approaches [20], [21] allow some inhibitory
effect but do not ensure positivity of the CIF.

An important consequence of allowing inhibitory effects
is that the cluster process interpretation [22] of the Hawkes
process is not valid [23].

In this paper, we discuss a model for the conditional
intensity that accommodates modeling of both self-excitatory
as well as inhibitory effects. More specifically, we make the
following contributions:

(i) We develop a maximum likelihood procedure for
model fitting and discuss an information theoretic
approach to model selection.

(ii) For optimization by gradient ascent, we employ an
adaptive step size selection method which is compu-
tationally more efficient than backtracking line search.
This delivers a significant speed up.

(iii) The maximum likelihood procedure is demonstrated
via a simulation example and tested on some neural
data from the cat primal visual cortex. The data shows
a strong inhibitory component.

The remainder of the paper is structured as follows.
In section II, we review the Hawkes-Laguerre conditional
intensity model and propose an approach to make it flexible
enough to accommodate inhibitory interaction. In section
III a maximum likelihood procedure for model fitting and
computational details are discussed. In section IV, we present
a simulation example and some data analysis. The paper
concludes with some final comments in section V.
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II. CONDITIONAL INTENSITY MODELS
Suppose Nt is a scalar counting process, i.e., Nt = #

events of a process up to and including time t. Under no
simultaneity of events, the stochastic (conditional) intensity
is the probability of an event in the next small time interval
given the history up to the present time. Let λt denote the
conditional intensity, then it is given by,

P(dNt = 1|Ht) = λtδ + o(δ)

where dNt = Nt+δ −Nt is a counting increment, Ht is the
history of the counting process Nt and limδ→0

o(δ)
δ = 0.

A. Linear Hawkes Model

The Hawkes process [6], models the conditional intensity
as a filtered version of the counting increments (jumps) in
the counting process with a linear causal filter; thus, incor-
porating history dependence. Formally, the Hawkes process
is given by [6],

λt = c+

∫ t

0

g(t− u)dNu, (1)

where c is a deterministic component of background rate
which corresponds to events generated by a Poisson process.
The (convolution) integral is a stochastic component where
g(u) is a causal impulse response. We call it the Hawkes
impulse response (HIR) [24].

For the marginal rate, λe = E(λt) to be meaningful, we
must have c > 0 and the Hawkes’ stability condition H =∫∞
0
g(u)du < 1 must be satisfied [6]. We call H the memory

parameter [24].
For modelling, it is necessary to parameterize g(u). We

have used Laguerre polynomials in our previous work, as
we do now due to their enormous flexibility in modeling
the dynamics. For a comparative study which shows the
superiority of the Laguerre approach to the others see [24].

The Laguerre parameterization of g(u) is

g(u) = Σqm=1αmφm(u) (2)

φm(u) = e−βu
(βu)m−1

(m− 1)!
β

with
∫∞
0
φm(u)du = 1. β is the reciprocal of a user

chosen time constant and 0 < q < ∞ is the number of
Laguerre polynomial terms for g(u). Using the Laguerre
parameterization, H =

∫∞
0
g(u)du = Σqm=1αm. So, under

the requirement αm ≥ 0 the stability condition becomes
simply 0 < H < 1.

Substituting (2) in (1), we have a linear (in the parameter)
Hawkes-Laguerre (LHL) model

λt = ξTt θ, (3)

where ξt = [1, x1(t), x2(t), ..., xq(t)]
T with xm(t) =∫ t

0
φm(t− u)dNu , 1 ≤ m ≤ q, and θ = [c, α1, ..., αq]

T .
A simple approach to preserve positivity of the conditional

intensity is to impose positivity constraints on the impulse
response parameters αm, 1 ≤ m ≤ q. However, this limits
the ability of the Hawkes process to model inhibitory effects

in addition to self-excitatory behavior. Explicit conditions
that allow some of the parameters to assume negative values
can be derived that guarantee positivity of the conditional
intensity but these become too complicated to ensure except
for a very small model order q.

B. Nonlinear Hawkes-Laguerre Model

Here, we take a different approach. We let,

λt = |ξTt θ|, (4)

This circumvents both issues, i.e., avoids positivity con-
straints on αm, 1 ≤ m ≤ q to accommodate inhibitory
effects in addition to self-excitatory behavior and avoids con-
ditions on the parameters that need to be satisfied to preserve
positivity of the conditional intensity. We call the resultant
model the nonlinear Hawkes-Laguerre (NHL) model.

A potential drawback of this approach is the loss of the
linear structure which is appealing in (3). Notwithstanding,
in the sequel, we develop a maximum likelihood procedure
and discuss computational strategies that deliver an efficient
algorithm.

In previous work, we have investigated the alternative ’log-
linear’ model

lnλt = ξTt θ

with unconstrained parameters for modeling inhibitory be-
havior. However we found ensuring stability of the model
and convergence of a maximum likelihood procedure to be
very challenging. The proposed model (4) does not suffer
from a convergence problem. We discuss stability below.

For future reference, we note the derivatives,

dλt
dθ

=
ξTt θ

|ξTt θ|
ξt, λt 6= 0

= sgn(ξTt θ)ξt (5)
d2λt

dθdθT
= 2δ(ξTt θ)ξtξ

T
t (6)

where δ(.) is the Dirac delta function.
Since the Hessian (6) involves the delta function, this

precludes the development of a Newton method. In the next
section, we pursue a gradient-based approach for maximum
likelihood estimation.

Although [25] have provided checkable stability condi-
tions for nonlinear Hawkes models we do not pursue stability
here. This is because, although our model falls within the
class of models they treat, checking their stability condition
turns out to be a non-trivial problem.

III. MAXIMUM LIKELIHOOD ESTIMATION
The point process log-likelihood ratio is given by [26],

L =

∫ T

0

lnλtdNt −
∫ T

0

λtdt

The gradient with respect to the parameter vector θ is

dL
dθ

=

∫ T

0

1

λt

dλt
dθ

dNt −
∫ T

0

dλt
dθ

dt
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Substituting for dλt

dθ from (5),

dL
dθ

=

∫ T

0

sgn(ξTt θ)

λt
ξtdNt −

∫ T

0

sgn(ξTt θ)ξtdt (7)

We develop a gradient ascent approach to maximum
likelihood estimation.

A. Gradient Ascent

The gradient ascent step is given by,

θ(i+1) = θ(i) + γ(i)
dL
dθ

∣∣∣
θ=θ(i)

, θ(0) = θo. (8)

γ(i) is a step size determined using a line search method.
Backtracking line search (or Armijo’s rule) [27], [28], is
an efficient alternative to exact line search. It is an iterative
procedure that involves function evaluation to test a stopping
condition. If the function evaluation is not cheap, backtrack-
ing line search can be slow. In such a case, the Barzilai-
Borwein line search [29], [30], can be considered which is
not an iterative procedure. We used it in our scalar work, but
a lot of trial and error was required to get it to work in the
vector case.

B. Barzilai-Borwein Line Search

The adaptive step size is computed in such a manner
that the gradient update rule (8) approximates the Newton
method without explicitly computing the Hessian. With
minimum overhead, the Barzilai-Borwein line search can
often significantly improve the performance of the gradient
method. Since the Barzilai-Borwein line search is a two-
point method, requiring the previous iterate and gradient, we
apply backtracking line search to determine the initial step
size only.

Using starting values, θo and γo, the initial step size γ(0) is
determined using backtracking line search by setting γ(0) ←
bγ(0) until

L(θo + γ(0)∇L(θo)) > L(θo) + aγ(0)||∇(L(θo))||2 (9)

is satisfied where ∇L(θ) := dL
dθ . b ∈ (0, 1) controls the

shrinkage of the step size and a ∈ (0, 1) controls the
relaxation of the gradient to satisfy (9). The gradient ascent
step (8) delivers θ(1) and the gradient ∇L(θ(1)) can be
computed. The step size γ(i), i ≥ 1 is computed using the
Barzilai-Borwein line search as [29], [30],

γ(i) =
(θ(i) − θ(i−1))T (∇L(θ(i))−∇L(θ(i−1)))

||∇L(θ(i))−∇L(θ(i−1))||2
(10)

In [29], the authors have shown that the gradient method
with step size given by (10) is R-superlinearly convergent
for the quadratic problem. For more general problems there
is no convergence guarantee and γ(i) given by (10) may be
too small or too large. Therefore, we need to ensure that γ(i)

satisfies
0 < γ ≤ γ(i) ≤ γ̄, for all i. (11)

The update step (8) is repeated until ||∇L(θ(i))|| < ε for
some small positive value ε.
The algorithm is summarized below.

C. Computational Details

In the gradient computation (7), the first term∫ T

0

sgn(ξTt θ)

λt
ξtdNt =

NT∑
j=1

sgn(ξTTj
θ)

λTj

ξTj

can be computed exactly with ξTj
, 1 ≤ j ≤ NT precom-

puted. The second term in (7) can be approximated using a
small discretization step δ,∫ T

0

sgn(ξTt θ)ξtdt ≈ δ
n∑
k=1

sgn(ξTtkθ)ξtk

where tk := kδ for 1 ≤ k ≤ n with T = nδ. ξtk , 1 ≤ k ≤ n
can be precomputed.

IV. SIMULATION & DATA ANALYSIS

In this section, we apply the new algorithm to simulated
data and real data. And compare it to an EM fit based on a
linear Hawkes-Laguerre model.

The aim of the simulation is to test whether the new
gradient ascent algorithm is competitive/reliable on a prob-
lem for which we already have a reliable algorithm. For
fitting linear Hawkes-Lauerre models based on a variety of
ways of modelling the HIR, the EM algorithm is widely
used and robust [24]. However because the EM is mul-
tiplicative it cannot easily fit negative parameters. Further
it is not clear how to develop the EM algorithm for a
nonlinear Hawkes-Laguerre model. For these reasons we
have compared the new algorithm to EM on a linear Hawkes-
Laguerre model. Note that when all parameters are positive
the nonlinear Hawkes-Laguerre model reduces to a linear
Hawkes-Laguerre model. As we shall see the new algorithm
is very competitive.

With that in mind we were confident to apply the new
algorithm to some neuronal data from the cat primary visual
cortex.
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A. Simulation
We consider a scalar Hawkes-Laguerre model (3) as

follows
(i) Model order is q = 3.

(ii) HIR parameter values are α = (0.2, 0.3, 0.4)T .
(iii) A time constant of 1 s is taken (⇒ β = 1).
(iv) Background rate c = 0.1.

The Hawkes stability condition, αT 1 = 0.9 < 1 is satisfied.
The data were simulated using Ogata’s thinning procedure

[31] to generate about 3,500 counts. The incremental counts
of the time binned process using 100 time bins are shown
in Fig. 1(a) which shows the self-exciting property of the
model.

For system identification, the model order q was deter-
mined using the Bayesian Information Criterion (BIC) [32],

BIC = −2L+ (1 + q) logNT

by fitting the conditional intensity model (4) for 1 ≤ q ≤
6. Fig. 1(b) shows the relative BIC values after subtracting
the BIC value for q = 0, which corresponds to the Poisson
process. The BIC minimizer coincides with the true model
order q = 3.

The starting values in θo were set to 10−2 and γo = 1. To
choose the initial step size using backtracking line search,
we used typical values for the pair (a, b) = (0.5, 0.9). Using
the Barzilai-Borwein line search in subsequent iterations, we
found that (10) frequently yielded a step size value that was
either too small or negative and setting the lower bound γ =
10−3 yielded an acceptable convergence rate. The step size
was never found to be too large and the upper bound γ̄ = 1
was never attained.

For q = 3, the log-likelihood ratio iterates are shown in
Fig. 1(c) which increase monotonically and flatten after 10
iterations. The gradient ascent (GA) iterates are shown in
Fig. 1(d). α2 and α3 take about 2000 iterations to converge
for the stopping criterion, ||∇L(θ(i))|| < 10−6. In Table I,
we show the parameter estimates and the relative error at
convergence. We find that αT 1 = 0.924 < 1.

The true and estimated Hawkes impulse response are
shown in Fig. 1(e) where the contribution of the higher-
order terms is clearly visible. The estimated impulse response
shows slight deviation from the true response. The condi-
tional intensity constructed from the parameter estimates is
shown in Fig. 1(e).

The performance of the gradient ascent algorithm was
compared to the EM algorithm [24] which uses a multiplica-
tive update rule to ensure positivity of the impulse response
parameters. The BIC values, log-likelihood iterates, and
parameter estimates using the EM algorithm coincide with
the corresponding values obtained using the gradient ascent
algorithm and therefore are omitted. The computational effort
(per iteration) of the gradient ascent algorithm is higher but
takes fewer iterations to converge.

B. Neuronal Activity Data
The data comprise neuronal responses recorded in the cat

primary visual cortex. Spontaneous activity was recorded
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Fig. 1: Simulation: (a) Incremental counts in 100 bins, (b)
Relative BIC values, (c) log-likelihood ratio iterates, (d)
Gradient ascent iterates, (e) Hawkes impulse response, and
(f) Conditional intensity estimate.

for about 162 s which generated 489 counts in channel 1.
The incremental counts in 100 time bins are shown in Fig.
2(a). Model order selection was done using the BIC values
assembled for 1 ≤ q ≤ 6. Fig. 2(b) shows the relative BIC
values for 1 ≤ q ≤ 3 after subtracting the BIC value for
q = 0. The minimum BIC value was attained for q = 3
(the last three values: 1475.49, 1120.85 and 30752.95 are
not shown).

We call the fitted nonlinear Hawkes-Laguerre model the
GA-NHL model. Below we compare it with a linear Hawkes-
Laguerre model fitted using the EM algorithm which we call
the EM-LHL fit.

For q = 3, Fig. 2(c) shows the log-likelihood iterates
which increase monotonically and flatten after 10 iterations.
The GA-NHL iterates are shown in Fig. 2(d). α2 and α3

take about 1000 iterations to converge. Note that α2 starts
at a positive value and converges to a negative value that is
significantly different from zero. This suggests the presence
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TABLE I: Simulation: Gradient Ascent Estimates and Rela-
tive Error.

c = 0.1 α1 = 0.2 α2 = 0.3 α3 = 0.4
Estimates 0.089 0.211 0.210 0.503
Relative Error 0.111 0.054 0.298 0.256

TABLE II: Neuronal Activity: GA-NHL and EM-LHL Esti-
mates.

c α1 α2 α3

GA-NHL 0.240 0.890 -1.053 1.085
EM-LHL 0.279 0.531 0.000 0.378

of some inhibitory effect in addition to self-excitation which
cannot be found using the EM-LHL fit. Table II shows the
parameter estimates at convergence. The HIR is shown in
Fig. 2(e) and drops rapidly due to the negative coefficient of
α2. The conditional intensity constructed from the GA-NHL
parameter estimates is shown in Fig. 2(f).

We tested the EM algorithm on the neural data, by fitting
a linear Hawkes model, resulting in the EM-LHL fit. BIC
values were assembled for 1 ≤ q ≤ 6. Fig. 3(a) shows the
relative BIC values for 2 ≤ q ≤ 4. The minimum BIC value
using the EM-LHL was also attained for q = 3. However, the
minimum (relative) BIC = −93.9 obtained using GA-NHL is
lower than the minimum BIC = −87.47 obtained using EM-
LHL demonstrating the superiority of the proposed nonlinear
model. This then provides evidence that the inhibitory effect
found by the GA-NHL is real. Note that the BIC value for
q = 0 obtained using both algorithms is the same which
justifies comparison of the relative BIC values.

The EM-LHL iterates are shown in Fig. 3(b). α2 takes
about 500 iterations to converge to zero. Table II shows
the parameter estimates at convergence satisfying Hawkes
stability condition, αT 1 = 0.918 < 1. The HIR is shown in
Fig. 3(c) where the first-order (exponential decay) behaviour
dominates with some higher-order effect. The conditional
intensity constructed from the EM-LHL parameter estimates
is shown in Fig. 3(d) which is roughly similar to GA-NHL
Fig. 2(f) but has a lower marginal rate λe = E(λt). So the
GA-NHL modelling of inhibition reveals a higher overall
level of activity.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper, we have presented a point process nonlinear
Hawkes conditional intensity model (where the Hawkes
impulse response is modelled compactly with Laguerre poly-
nomials) that accommodates inhibitory behavior in addition
to self-excitation.

We developed a gradient ascent approach to maximum
likelihood estimation. Step size selection was done using
the Barzilai-Borwein line search to improve computational
efficiency. This provided a reliable algorithm.

0 50 100 150

0
5

1
0

1
5

Counting Increments

Time (s)

(a)

1.0 1.5 2.0 2.5 3.0

−
9

4
−

9
2

−
9

0
−

8
8

Model Order q

Relative BIC (GA−NHL)

(b)

5 10 15 20

−
5

0
0

0
−

3
0

0
0

−
1

0
0

0

Iteration #

log−Likelihood Ratio

(c)

0 200 600 1000

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Iteration #

GA−NHL Estimates

c

α1

α2

α3

(d)

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

HIR (GA−NHL)

Time (s)

(e)

0 50 100 150

0
2

4
6

8

Time (s)

Intensity (GA−NHL)

(f)

Fig. 2: Neuronal Activity: (a) Incremental counts in 100 bins,
(b) Relative BIC values using GA-NHL, (c) log-likelihood
ratio iterates, (d) GA-NHL iterates, (e) HIR using GA-NHL,
(f) Conditional intensity estimate using GA-NHL.

In simulations, the algorithm (which we called gradient
ascent-nonlinear Hawkes-Laguerre (GA-NHL)) was com-
pared to a linear Hawkes-Laguerre model fitted with the
EM algorithm (which we called EM-LHL) in order to
assess its reliability and competitiveness. Note that when all
parameters are positive the NHL reduces to the LHL. The
GA-NHL was found to give near identical results.

Finally the GA-NHL algorithm was tested on some neural
data recordings in the cat primary visual cortex . It found
both self-excitatory as well as inhibitory effects which the
EM-LH algorithm cannot uncover. It also exhibited a supe-
rior fit according to a BIC criterion.

B. Future Work

Future work will consider estimation of the β parameter
by jointly selecting β and the impulse response model order
q. Estimation of β in the maximum likelihood procedure will
also be investigated. For more general optimization problems
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Fig. 3: Neuronal Activity: (a) Relative BIC values using EM-
LHL algorithm, (b) EM-LHL algorithm iterates, (c) HIR
using EM-LHL, and (d) Conditional intensity using EM-
LHL.

than the quadratic problem, the Barzilai-Borwein line search
is paired with non-monotone line search to improve con-
vergence rate. This will be investigated in future work. We
will also extend the method to multivariate nonlinear Hawkes
modelling.
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