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Abstract—This paper derives rates of convergence of ap-
proximations of the deterministic Koopman operator using a
framework based on estimating solutions of inverse problems.
By restricting the domain of the Koopman operator, simple
sufficient conditions are derived that ensure that the resulting
Koopman operator is compact when acting on a suitable
reproducing kernel Hilbert space (RKHS). Approximations of
the Koopman operator, or its inverse, are derived in terms of
Galerkin approximations of solutions to an associated inverse
problem which depends on noisy data. The resulting bounds
on accuracy of approximations to the Koopman operator then
take a classical form: we obtain explicit representations of the
contributions of the approximation error and the generalization
error in terms of the reduced dimension and noise level. As
the reduced dimension of the approximations increases, the
approximation error decreases, while the generalization error
increases. The generalization error increases with an increase in
the noise level. In the case of a discrete evolution over a smooth,
compact, connected, Riemannian manifold, we show that these
two contributions to the error can be bounded in terms of the
fill distance of centers of approximation and samples in the
manifold.

Index Terms—Koopman theory, inverse problems, nonlinear
estimation

I. INTRODUCTION

This paper studies Koopman operators that are associated
with the discrete, generally nonlinear system defined by the
recursion

ϕn+1 = f(ϕn), (1)
yn+1 = g(ϕn+1) := (Ug)(ϕn), (2)

where X is the state space, the state ϕn ∈ X , the state
propagation function f : X → S := f(X) ⊆ X , the
measurement yn ∈ R, and the function g : X → R. The
Koopman operator U := Uf : G → H associated with the
above discrete dynamics is defined to be the composition
operator

Ug := g ◦ f, (3)

where G and H are function spaces. Although the Koopman
operator U := Uf depends on the fixed function f that
appears in the evolution law, we omit the subscript in this
paper. In the literature on Koopman operators the function
g is referred to as the observable function, or simply the
observable. Throughout this paper we assume that (X, dX) is
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a complete metric space. Examples where X is the Euclidean
space X := Rd are considered, as are some instances when
X is a smooth, compact, connected, Riemannian manifold. In
cases where X is not compact, as in the case when X = Rd,
we eventually restrict the analysis to a compact invariant
subset of X .

There are many applications where the study of the Koop-
man operator U yields important insights into the qualitative
or quantitative properties of the original nonlinear dynamical
system in (1). See [7], [31], [33] for good overviews of
the general theory and several applications. To motivate this
paper we just consider an iconic problem from forecasting
or output prediction. Suppose we want to predict the output
yn+i at the future discrete time n+ i from the current state
ϕn at time n. Combining (1) and (2) above we find that

yn+i = (U ig)(ϕn) = (g ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
i times

)(ϕn) = g(ϕn+i).

This means that if we know or can build an approximation of
the Koopman operator U , it can be used to estimate or predict
the future output yn+i of the system from the current state
ϕn. The recursion above is said to determine a forward orbit
{gk}k∈N0

of observable functions in some selected function
space for the linear dynamic system gn+1 = Ugn with g0 :=
g.

Even if the original nonlinear system governed by (1)
evolves in a subset of a finite dimensional space X , the
linear system gn+1 = Ugn for the observable functions is
infinite dimensional. Any practical implementation or algo-
rithm derived in terms of the Koopman operator must address
how to construct approximations of the Koopman operator.
This topic has been the focus of numerous investigations
over the past few years. These include [2], [3], [6], [9],
[11], [15]–[17], [22], [24], [27], [30], [32], [34], [36], [41],
among others. The theoretical differences among these papers
can be subtle. This paper is the first among the above
that uses the theory of inverse problems for deterministic
Koopman operators to derive error bounds that (1) expressly
include noise contributions and (2) that are explicit in the
reduced dimension N and number of samples M used for
constructing approximations. Of all the above, the very recent
work in [2], [28] seems most similar in spirit in that they too
attack the problem as a type of inverse problem. But they
consider stochastic systems and employ stochastic definitions
of the Koopman operator. In addition, our analysis and
approach makes explicit the role of the direct (Jackson) and
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inverse (Bernstein) inequalities in producing error bounds for
Koopman approximations, while theirs does not.

There is another way that the approach in this paper differs
in structure from the above studies. In the definition in (3)
above, the Koopman operator acts between function spaces
G and H. The functions contained in G and H in general
will have different domains. Functions in G are defined over
S = f(X), while those in H are defined on all of X .
Hypotheses that define a common setting can be found in
the papers [2], [8], [12], [16], [17], [26]–[28], [42]. These
assume that f is nonsingular and measure preserving so
that observable functions evolve in the Hilbert space L2

µ(X),
with U : L2

µ(X) → L2
µ(X). Although these assumptions

simplify the configuration space of the orbit {gk}k∈N0 and
make U a linear isometry, they also imply the Koopman
operator U : L2

µ(X) → L2
µ(X) is not compact. This can

complicate approximations, as noted in [28] for stochastic
problems, if it is desired to use eigenfunctions as the basis
of approximations. The approach in this paper formulates the
approximation of the Koopman operator in terms of different
function spaces for its domain and range. The goal is to
develop rates of convergence of Koopman approximations
for single step predictions that are general, while minimizing
assumptions about the function f or the measure µ that
describe the discrete dynamics and Koopman operator.

II. SUMMARY OF NEW RESULTS

A. Theoretical Results

This paper examines approximations of the Koopman
operator as a solution to an inverse problem. We use the
symbol U to represent the Koopman operator U for a very
special choice of the domain and range function spaces G
and H. We specifically outline conditions that ensure the
Koopman operator U : R(S) → L2

µ(X) is compact. Here
R(S) is the restriction to S of functions in a reproducing
kernel Hilbert space (RKHS) H(X) defined over the whole
configuration space X . Two equations,

Ug = y and Ugδ = yδ, (4)

are introduced to study approximations of the Koopman
operator U from the viewpoint of inverse problems. Here
g solves the noise-free equation, and gδ solves the noisy
equation when using perturbed data yδ . Approximations
of the Koopman operator are defined in terms of Petrov-
Galerkin approximations gδN for both the noisy and noise
free case. The analysis in this paper derives the rates of
convergence of approximations of the Koopman operator
having the following form:

∥UgδN − Ug∥L2
µ(X) ≲ O

(
1

ρB(N)
δ + ρJ(N)

)
.

In this equation ρB(N) and ρJ(N) are rate functions that
converge to zero as N → ∞. The rate functions ρJ and ρB
are associated with the Bernstein and Jackson inequalities,
respectively, that hold for the subspaces of approximants.
This bound for approximation of Koopman operators from
noisy data has the general structure commonly found in

inverse problems [13], [23], [29]. The term δ/ρB(N) grows,
while the term ρJ(N) decreases, as N → ∞. As we carefully
explain later in the paper, the uncertainty δ can arise from
using M quadrature points to approximate integrals that arise
in the equations that form Petrov-Galerkin approximations. In
practice then, we obtain error bounds that are explicit in the
reduced spatial dimension N and in the number of samples
M . We also show that under the additional assumption that
the subset S is a Riemmannian manifold M of dimension
d, we can obtain more precise rates of convergence in terms
of the fill distance hΞN ,M of samples ΞN over the manifold
M,

∥UgδN − Ug∥L2
µ(X) ≲ O

(
1

hr
ΞN ,M

δ + hp
ΞN ,M∥g∥Hp(M)

)
,

for exponents r and p that relate to the smoothness of the
kernel and smoothness of the function g. Note again that the
first term 1

ρB(N)δ grows as N → ∞, and the second term
decreases, hr

ΞN ,M → 0 as N → ∞. The latter bound depends
crucially on Bernstein inequalities derived very recently for
types of smooth Riemannian manifolds and their subsets [20],
[21].

We demonstrate this qualitative behavior in Figure (1).
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Fig. 1. A depiction of the rates of convergence of approximation of
the Koopman operator. On the right of the plot, over relatively larger
fill distances, the error is dominated by the approximation error and thus
decreases at the expected rate associated with the Jackson inequality rate
function ρJ (N) ≈ O(h2.5

Ξ,M). As the fill distances decrease toward the left
region of the plot, the error bound is dominated by the Bernstein inequality
term 1

ρB(N)
δ. This generalization error grows with larger perturbations

characterized by larger quadrature errors. In this figure hQ is the fill distance
of the point quadrature centers, so that δ ∼ O(1/hQ).

B. Practical Considerations

We also discuss how the theoretical rates discussed above
can be related to the popular extended dynamic mode de-
composition (EDMD) method [24], [26], [42] when kernel
bases are used to approximate the Koopman operator. When
quadrature rules are used to approximate the Petrov-Galerkin
approximations in this paper, the resulting Equations (17) are
exactly the form generated by the EDMD algorithm. As a
consequence, the theory above can be viewed as a means
of generating error bounds for the EDMD algorithm when
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kernel bases are used. The EDMD equations depend on the
reduced dimension N and on the number of quadrature points
M . We can interpret the effect of increasing the number of
quadrature points M as analogous to increasing the number
of snapshots M used in the EDMD algorithm. The qualitative
form of the error plot in Figure (1), which is so common in
inverse problems, suggests an important principle in using
the EDMD algorithm. The reduced dimension N and the
number of snapshots M when using the EDMD algorithm
should be selected in a way that balances or equilibrates
the two contributing sources of error. The qualitative error
behavior, and its implications, is well-known in the study of
inverse problems [13], [23].

III. SYMBOLS, NOTATION, BACKGROUND

The symbols R and R+ denote the real numbers and
nonnegative real numbers, respectively, and we denote the
positive integers by N. If U ⊆ V for two normed vector
spaces U and V , we say that the inclusion is continuous if
there is a constant c > 0 such that ∥g∥V ≤ c∥g∥U for all
g ∈ U . When U is continuously embedded in V , we denote
this relationship as U ↪→ V . We say that the U is densely
embedded in V if the inclusion U ⊆ V is continuous and in
addition the set U is dense in V in the norm on V . When
U is densely embedded in V we depict this relationship as
U ↪→→ V . If several such relationships hold for different
spaces and we want to be explicit, we write U

i
↪→ V or

U
i
↪→→ V where i : u ∈ U 7→ u = i(u) ∈ V is the canonical

injection of U into V .

A. Reproducing Kernel Hilbert Spaces

In this paper the mapping K : X×X → R is an admissible
kernel that induces the reproducing kernel Hilbert space
(RKHS) (H(X), (·, ·)H) of real-valued functions over the set
X . The theory and definitions for the RKHS H(X) holds for
a general set X , and further assumptions are made on X as
they are needed. The RKHS H(X) is also commonly known
as the native space generated by the kernel K. When we say
that the real-valued kernel K is admissible, we mean that it is
continuous, symmetric, and positive semidefinite. Since the
kernel K is continuous, it is also known as a Mercer kernel in
the theory of native spaces. It is positive semidefinite in the
sense that for any collection of N points {x1, · · · , xN} ⊂ X
the matrix [K(xi, xj)] is positive semidefinite. The kernel K
is positive definite if the matrix [K(xi, xj)] is positive definite
for any selection of N points. We denote by Kx(·) := K(x, ·)
the kernel section centered at x ∈ X . Since kernel sections
are often used to build approximations, we also refer to the
kernel section Kx : X → R as the kernel basis function cen-
tered at x ∈ X . The native space H(X) is the closed linear
span of the kernel sections, H(X) = span {Kx | x ∈ X}.
Intuitively, we can view H(X) as the space that is the
superposition of kernel basis functions Kx, which are defined
in terms of the fixed template Kx, as x is moved throughout
X . Often, the kernel section Kx is an example of a radial
basis function [40]. When H(X) is such a native space, any
closed subspace V ⊆ H(X) is also an RKHS for the kernel

KV : X×X → R defined by KV (x, y) := (ΠV Kx,ΠV Ky)H
where ΠV : H(X) → V is the H(X)-orthogonal projection
onto V [5].

B. Function Spaces

For any metric space Z the vector space of continuous,
real-valued functions on Z is represented by C(Z). We write
Cb(Z) for the Banach space of bounded continuous functions
over Z with the uniform norm ∥f∥Cb(Z) := supz∈Z |f(z)|.
In the usual way, when (Z,α) is a measure space, we define
the Lebesgue space Lp

α(Z) to be the Banach spaces of real-
valued functions over Z having norms

∥f∥Lp
α(Z) :=

{
supz α-a.e. ∈Z |f(z)| if p = ∞,(∫

Z
|f(z)|pα(dz)

)1/p
if 1 ≤ p < ∞.

When the measure α is Lebesgue measure, we just write
L2(Z) := L2

α(Z).
This paper also makes systematic use of certain types of

real Sobolev spaces. For a Lebesgue measurable subset S ⊂
Rd, the Sobolev space Wm(S) for an integer m > 0 is
defined to be the collection of all functions g ∈ L2(S) such
that the norm below is finite,

∥f∥2Wm(S) := (f, f)Wm(S) :=

m∑
|α|=0

(Dαf,Dαf)2L2(S) < ∞,

(5)

where the sum is over all nonnegative multiindices α :=
[α1, α2, . . . , αd] ∈ Nd with |α| =

∑d
i=1 |αi|, and

Dαf :=
∂|α|f

∂xα1
1 · · · ∂xαd

d

.

The Sobolev space W r(S) for r ∈ R+ is defined as the
interpolation space between Wm(S) and Wm+1(S) for m =
⌊r⌋ ∈ N, and we denote the by W−r(S) := (W r(S))∗ the
topological dual space of W r(S) [1], [10].

Sobolev spaces W r(M) over smooth, connected, compact
Riemannian manifolds M are defined in similar fashion,
but in a way that is intrinsic to the manifold M [4], [39].
Suppose that ∇ is the connection or covariant derivative
operator, ∆ is the associated Laplacian operator, and µ is
the volume measure on the manifold M. The Sobolev space
W r(M) consists of all the functions in L2

µ(M) such that
(I +∆)r/2f ∈ L2

µ(M). The norm is given by

∥f∥2W r(M) := (f, f)W r(M) = ∥(I +∆)r/2f∥2L2
µ(M).

As above, the negative index Sobolev space W−r(M) is
defined to be the dual space W−r(M) = (W r(M)∗ for
r ≥ 0. When r is a positive integer this definition can be
interpreted intuitively like the Sobolev spaces W r(S) above
for S ⊂ Rd. The space Wm(M) for a positive integer m > 0
consists of all functions in L2

µ(M) such that their covariant
derivatives through order m are contained in L2

µ(M). In this
case the norm above is equivalent to

∥f∥2Wm(M) :=
∑

0≤k≤m

(∇kf,∇kf)2L2
µ(M),
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and this expression reduces to the expression above in (5)
when X = Rd = M [19], [39].

IV. KOOPMAN OPERATOR THEORY

A. The Pullback Space and Space of Restrictions

Let the admissible kernel K : X × X → R define the
RKHS space H(X) of real-valued functions over the set X .
Let S be the range of f : X → S ⊂ X , that is, S = f(X).
We define the kernel R := K|S×S as the restriction of K to
S × S. The copies of the kernel section Rs := R(s, ·) as s
varies over S defines the RKHS R(S) of functions that are
defined over S,

R(S) := span {Rs | s ∈ S}.

The pullback space P (X) is the range of the Koopman
operator, with P (X) = U(R(S)). The pullback kernel
p : X × X → R that defines the RKHS P (X) is given
by

p(x, y) = R(f(x), f(y)) := K|S×S(f(x), f(y))

for all x, y ∈ X . The pullback kernel p defines an inner
product on P (X) that induces a norm that is equivalent to
the expression

∥g∥P ≈ inf {∥r∥R | g = r ◦ f = Ur, r ∈ R(S)} .

An immediate consequence of this fact is that U : R(S) →
P (X) is a nonexpansive bounded linear operator.

Some of the most basic, but important, properties of the
pullback space P (X), the space of restrictions R(S), and
the Koopman operator U are summarized in the following
theorem.

Theorem 1. With the definitions above, the adjoint U∗ :
P (X) → R(S) is an isometric isomorphism. Let f : X → S
be continuous, and suppose that (X,µ) and (S, ν) are finite
measure spaces. If the kernel K : X ×X → R is uniformly
bounded on the diagonal in the sense that there is a positive
constant k̄ such that

K(x, x) = (Kx,Kx)H = ∥Kx∥H ≤ k̄2, for all x ∈ X,

then we have the continuous inclusions

P (X) ↪→ C(X) ↪→→ L2
µ(X),

R(S) ↪→ C(S) ↪→→ L2
ν(S).

Proof. When µ, ν are finite measures, it is well known
that C(X) ↪→ L2

µ(X) and C(S) ↪→ L2
µ(S), and these

embeddings are compact. The fact that U∗ is an isometric
isomorphism between R(S) and P (X) can be deduced from
arguments in a few standard references such as in Section
5.4 of [35] or Section 2.2.2 of [38]. Using the fact that
k(., .) is bounded in the diagonal, it is immediate that that
P (X) ↪→ C(X) and R(S) ↪→ C(S).

V. A COMPACT KOOPMAN OPERATOR U
The analysis in this paper is made possible by restricting

the domain of the Koopman operator in a way that ensures
the operator is compact. Let i, j be the canonical injections
P (X)

i
↪→ C(X) and C(X)

j
↪→→ L2

µ(X). We define the
Koopman operator U as

Ug := j ◦ i ◦ Ug for all g ∈ R(S).

When we unroll all these operators, the definition of U has
the same functional form as that of (Ug)(x) = g(f(x)), with

(Ug)(x) = g(f(x)) for all x µ-a.e. ∈ X,

but U : R(S) → L2
µ(X). In other words, U is the Koopman

operator that results when viewing U as a mapping from
R(S) into L2

µ(X). Based on the result of the theorem below,
we have the fact that the operator U is now a compact
operator whose adjoint is an integral operator.

Theorem 2. Suppose that the hypotheses of Theorem (1) hold
and that X is compact. The operator U : R(S) → L2

µ(X)
is linear, and compact. Its adjoint U∗ : L2

µ(X) → R(S) is
given by the integral equation

(U∗h) (s) :=

∫
X

K(s, f(ξ))h(ξ)µ(dξ) for all s ∈ S.

The adjoint U∗ is determined by an integral operator defined
in terms of the unsymmetric kernel u(s, x) := K(s, f(x)),
with u(·, ·) : S ×X → R.

Proof. The Koopman operator U is a bounded operator from
R(S) into P (X). But, as discussed in [37], the canonical
injection j ◦ i of P (X) into L2

µ(X) is compact since the
pullback kernel is bounded uniformly on the diagonal. Since
U is the product of bounded operators and a compact
operator, it is compact. Next we turn to deriving a formula
for the adjoint U∗. First note that for any h ∈ L2

µ(X), the
R(S)-valued function

ξ 7→ R(·, f(ξ))h(ξ) ∈ R(S) for all ξ ∈ X

satisfies the integral bound∫
∥R(·, f(ξ))h(ξ)∥2R(S)µ(dξ) ≤ k̄

∫
|h(ξ)|2µ(dξ).

This means that for any h ∈ L2
µ(ξ), the Bochner integral∫

R(·, f(ξ))h(ξ)µ(dξ) =
∫

Kf(ξ)h(ξ)µ(dξ)

is a well-defined element of R(S). By the definition of the
adjoint U∗ of U, we have

(Ug, h)L2
µ(X) =

∫
g(f(ξ))h(ξ)µ(dξ),

=

∫ (
g,Kf(ξ)

)
R(S)

h(ξ)µ(dξ),

=

(
g,

∫
Kf(ξ)h(ξ)µ(dξ)

)
R(S)

= (g,U∗h)R(S) .

The last two lines follow from the fact that the Bochner
integral commutes with a bounded linear operator.
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VI. KOOPMAN INVERSE PROBLEMS

In this section we build approximations gN of g, where g
is the solution of the operator equation

Ug = y, (6)

or of the related operator equation

Tg := U∗Ug = h, (7)

for h := U∗y. We can view such approximations gN as
approximations of the action of the pseudoinverse U†g.

A. Petrov-Galerkin Approximations

As noted in the introduction, a few references [24]–
[26], [42] have used the fact that the well-known extended
mode dynamic decomposition (EDMD) algorithm can be
understood as the equations resulting from a Petrov-Galerkin
approximation of the Koopman operator. Here we analyze
such approximations for specific choices of scattered bases
in a native space. We let ΞN ⊆ S be a set of centers
used to define bases. To introduce finite dimensional spaces,
we set UN := {uξ1 , . . . , uξN } and WN := U∗(UN ) :=
span{wξ1 , . . . , wξN } where

Rξn(·) := R(ξn, ·) = K(ξn, ·) ∈ R(S), (8)

uξn(·) := R(ξn, f(·)) = (URξn)(·) ∈ L2
µ(X), (9)

wξn(·) := (U∗uξn)(·) ∈ R(T) ⊆ W (S) ⊆ R(S). (10)

We then have the inclusions

RN ⊆ R(S),

UN ⊆ U ⊆ L2
µ(X),

WN ⊆ R(T) ⊆ W (S) := R(U∗).

Associated with these spaces we define families of uniformly
bounded projection operators that are used to build approx-
imations. We define the projections PN : R(S) → RN ,
and when we say that this family is uniformly bounded
we mean there is a constant C > 0 such that ∥PN∥ :=
∥P∥R(S)→R(S) ≤ C for all N ≥ 0.

We begin by defining the Galerkin [23], [29] approxima-
tion gδN ∈ RN of (7) that satisfies

gδN = (PNT|RN
))

−1 PNhδ,

which corresponds when PN is the R(S)-orthogonal projec-
tion onto RN to the variational equations(

TgδN ,Rξn

)
R(S)

=
(
hδ,Rξn

)
R(S)

for all 1 ≤ n ≤ N.

When we write gδN (·) :=
∑N

n=1 Rξn(·)θn, this expression
generates the matrix equations

N∑
j=1

∫
K(ξn, f(x))K(f(x), ξj)µ(dx)θj =∫
K(ξn, f(x))y(x)µ(dx)

for 1 ≤ n ≤ N. (11)

Still another interpretation of these equations is possible.
Define z = Ug and seek a solution z ∈ L2

µ(X) of

U∗z = h. (12)

The Petrov-Galerkin approximation zδN ∈ UN ⊂ L2
µ(X) of

the solution z of (12) then satisfies the equation

zN := (PNU∗|UN
)
−1 PNhδ. (13)

In variational form, when PN is the R(S)-orthogonal pro-
jection onto RN , the solution zδN ∈ UN ⊆ L2

µ(X) satisfies(
U∗zδN ,Rξn

)
R(S)

=
(
hδ,Rξn

)
R(S)

1 ≤ n ≤ N, (14)

or equivalently,(
zδN , uξn

)
L2

µ(X)
= hδ(ξn) 1 ≤ n ≤ N. (15)

These operator equations yield the same matrix equations as
in (11). It should also be noted that once the above (15) are
solved for {θj}Nj=1, expressions for gδN immediately follow
since

UgδN = zδN =

N∑
j=1

K(ξj , f(·))θj ⇒ gδN =

N∑
j=1

K(ξj , ·)θj ,

(16)

where gδN is an approximation of the solution g of (7).

B. Quadrature Rules and the EDMD Algorithm

The Petrov-Galerkin equations in (11) are determined by
the choice of centers ΞN and basis that makes up RN . The
integral (11) cannot be implemented directly in many data-
driven applications since it depends on the unknown function
f . We can address this problem by using quadrature rules to
approximate the unknown integral, and thereby obtain matrix
equations that are realizable from observations alone. The
quadrature points are denoted {xm}Mm=1, and each xm is
assumed to be contained in a set Ωm where the family of
sets satisfies X =

⋃M
m=1 Ωm. In data-driven applications we

assume that these quadrature points {xm}Mm=1 are gathered
along the trajectory of the original system, and that these
points fill up a domain of interest over time. Applying the
one point quadrature rules to (11) yields the equations

N∑
j=1

M∑
m=1

K(ξn, f(xm))K(f(xm), ξj)µ(Ωm)θj

=

M∑
m=1

K(ξn, f(xm))y(xm)µ(Ωm)

for 1 ≤ n ≤ N. (17)

It is easy to see that these equations are precisely the same
as those generated by the EDMD algorithm for a reduced
basis of dimension N and using M snapshots, where in our
case the snapshots are the quadrature points.
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C. A General Theorem on Rates of Convergence

As in many discussions of convergence of approximations
of solutions to inverse problems, the direct and inverse
inequalities of approximation theory [10] play a critical role.
These direct and inverse inequalities are also known as the
Jackson and Bernstein inequalities, respectively. These in-
equalities are defined in terms of a rate function ρ : N → R+

that converges to zero as N → 0, limN→∞ ρ(N) = 0. In
the problem at hand we say that the pair W (S), R(S), the
family of finite dimensional spaces {WN}N∈N ⊂ W (S), and
uniformly bounded projection operators PN : R(S) → WN

satisfies the inverse or Bernstein inequality with the rate
function ρB(N) → 0 if for any wN ∈ MN we have

∥wN∥W (S) ≤
1

ρB(N)
∥wN∥R(S). (18)

Let ΠN denote the L2
µ(X)-orthogonal projection onto UN .

We say that the family {UN}N∈N ⊆ U and the pair of Banach
spaces U , L2

µ(X) with U ↪→ L2
µ(X) satisfies a direct or

Jackson inequality with rate function ρJ(N) → 0 if we have

∥(I −ΠN )f∥L2
µ(X) ≤ ρJ(N)∥f∥U . (19)

The study of approximation spaces that satisfy these two
inequalities is a classical topic of approximation theory. Well-
known examples include spline spaces, finite element spaces,
piecewise polynomial spaces, and native spaces [10]. The
primary results in this paper rely on recent derivations of
these inequalities for certain types of native spaces in [18],
[19].

The primary convergence results in this paper are derived
from the theorem below.

Theorem 3. Suppose that U and U∗ are injective, h = U∗b,
∥h − hδ∥R(S) ≤ δ, and denote by g and gδ the solutions
of (12) for the right hand sides h and hδ , respectively. Let
zδN = UgδN in (13) solve the Petrov-Galerkin Equations (15)
for the noisy right hand side hδ when PN : R(S) → WN ⊆
W (S) := R(U∗) ⊆ R(S) with ∥PN∥L(R(S)) ≤ C for some
constant C > 0. Finally, suppose that that the Bernstein and
Jackson inequalities in (18) and (19), respectively hold. If
the Galerkin approximations are convergent, there are two
positive constants CB , CJ > 0 such that the following error
bounds hold on estimates of the action of the Koopman
operator

∥UgδN − Ug∥L2
µ(X) ≤ CB

1

ρB(N)
δ + CJρJ(N)∥g∥R(S).

Proof. The proof of this theorem is modeled on the proof
of Theorem 3.11 of [23], or from the combination of The-
orems 17.1 and 17.2 of [29]. Here we have introduced the
language of the Jackson and Bernstein inequalities, which are
well-known in approximation theory [10]. The full proof is
lengthy, and exceeds the limits of this very brief paper.

VII. NUMERICAL EXAMPLES

In this section, we illustrate the rates of convergence for
an evolution law on a manifold M. It is a one-dimensional

submanifold of the torus in R3 with major radius R1 = 1
and minor radius R2 = 1/3. The submanifold M ⊆ R3 is
parameterized by the following expression

M :=

{
(u, v, w) ∈ R3 | u = (R1 +R2cos(6θ)) cos(θ),

v = (R1 +R2cos(6θ)) sin(θ),

w = R2sin(6θ)
}

(20)

for θ ∈ [0, 2π), and it is trivial to define a second compatible
coordinate chart that covers the submanifold. If we define the
time varying parameter θ(t) := t for t ∈ R+, a semigroup
S(t) : M → M on M can be generated using the coordinate
chart in (20), along with the second coordinate chart. A
corresponding discrete evolution law over M for time step h
can be written in terms of the function f : M → M defined
from

ϕn+1 = f(ϕn) := S(h)ϕn. (21)

For this example h = 0.01 seconds. We define the RKHS
using Wendland’s compactly supported kernel

K(r) = (1− r

ℓ
)6+

(
3 + 18

r

ℓ
+ 35

(r
ℓ

)2)
(22)

where the radial basis function (RBF) K(r) = K(∥ξ −
x∥RD ) = K(ξ, x) = Kξ(x) can be defined in terms of its
center ξ. In the problem at hand, the hyperparameter ℓ is
sometimes referred to as the support radius and corresponds
to the “spread” of the kernel. For this example, we selected
ℓ = 1.7. The kernel centers ΞN are selected quasi-uniformly
along the manifold with a spacing roughly equivalent to a
desired fill distance hΞN ,M. Generating the desired rates
of convergence requires a nested sequence of approximation
spaces HN1(M) ⊆ HN2(M). The nested sequential spaces
were generated for an increasing number of centers, N , by
halving the fill distance of the previous approximation space
in the sequence.

As mentioned in [40], when defined over RD, the native
RKHS generated by the Wendland kernel above is equiv-
alent to a Sobolev space, with H(RD) ≈ W 4(RD). By

Fig. 2. The submanifold M defined parametrically by (20) along with the
27 interpolation points used to interpolate the nonlinear function p(u, v, w)
with the function fs of a known smoothness.
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restricting it to a d-dimensional manifold M, the restricted
native space loses smoothness by an amount (D−d)

2 , so the
restricted native space R(M) ≈ W 4−(D−d)/2(M). In this
example, D = 3 and d = 1 so that the native space is
H(M) ≈ W 3(M).

In order to demonstrate the rates of convergence empiri-
cally, the target function to be approximated must be of a
particular smoothness. Matérn kernels defined as

κν(r) = σ2 2
1−(ν−D/2)

Γ(ν −D/2)
r(ν−D/2)K(ν−D/2) (r) . (23)

are a set of functions that belong to W s0(RD) when
ν = (s0 + D/2)/2. The Matérn-kernel is parameterized by
normalization constant σ and ν, which defines the order of
the modified Bessel function of the second kind Kν and
the exponent of the Euclidean norm ∥xi − x∥RD . Following
the numerical example given in [14], we define the target
function

fs0(x) =

Np∑
i=1

ciκ 1
2 (s0+D/2)(∥x− xi∥RD ) (24)

as a linear combination of Matérn kernels with a finite set
of points ΞNp = {x1, x2, ..., xNp}. As described in [14] this
function has smoothness that satisfies the strict equality s0 =
2ν − D−d

2 . In this case, we choose s0 = 4. The generated
target functions over M belong to W s,2(M), s < 2ν −
D
2 − d

2 . Note again that when we restrict functions to the
manifold M the functions lose additional smoothness, d/2.
The coefficients {ci}

Np

i=1 of the target function are calculated
by interpolating the following smooth, nonlinear function

p(u, v, w) =
1

8
(u5−10u3v2+5uv4)(u2+v2−60w2) (25)

at the points ΞNp
. Here, we chose a set of points that

corresponded to a quasi-uniform distribution of Np = 27
points along M as seen in Figure (2). The target function is
plotted over M in Figure (3).

The analysis of this example now follows from Theorem
(3) using the Bernstein and Jackson inequalities for smooth,

Fig. 3. An illustration of the target function fs used in the numerical
experiment. Here the target function is given by the dashed red line as
points, (u, v, w + fs) over the manifold M given by the solid blue curve.

connected, compact, Riemannian manifolds in [18]–[21] that
have appeared relatively recently.

The Galerkin approximation is defined in terms of integrals
which cannot be calculated because f and the measure µ
are generally unknown. We address this issue by using a
one-point quadrature rule with quadrature points xm ∈ Ωm.
With this approach, estimates are susceptible to error of
order of the fill distance of the quadrature points, which we
denote hQ. Here we examined the rates of convergence for
a nested sequence of spaces defined by the kernel centers
ΞN using different quadrature fills. Following the results
of Theorem (3), the quadrature error acts as a perturbation
δ ≈ O(hQ). The rates of convergence for different quadrature
errors are given in Figure (1). The relative error is estimated
by calculating the maximum error over the orbit evaluated at
a resolution equal to the finest selected fill distance. From the
figure, we can see that over the larger fill distances to the right
half of the plot, the error is dominated by the approximation
error

∥∥g − gδN
∥∥. It decreases at the expected rate associated

with the Jackson inequality term ρJ(N) ≈ O(h2.5
Ξ,M). Note

that the measured error is an approximation that is lower than
the predicted error because the supremum error over the orbit
would require the evaluation of an infinite number of points.

For smaller fill distances with a larger number N of
kernel centers, the error bound is dominated by the Bernstein
inequality term 1

ρB(N)δ. This qualitative behavior can be
observed on the left half of the plot in Figure (1) with
the increase in error as the fill distances get smaller. Note
that larger quadrature fills hQ result in larger perturbations
δ ≈ O(hQ) of the data set. This results in more rapid
growth of the dominant error bound 1

ρB(N)δ for smaller fill
distances as seen on the left side of the plot in Figure (1).
Here we also note that the quadrature fill hQ can be reduced
by collecting more quadrature points. This is qualitatively
similar to collecting more samples to reducing the variance
associated with error from standard approximations from
statistical learning theory.

VIII. CONCLUSION

In this paper, the problem of approximating a deterministic
Koopman operator in a data-driven scenario is investigated.
A theoretical framework based on estimating solutions of
inverse problems is used to derive rates of convergence
of approximations of the Koopman operator. The analysis
begins by restricting the domain of the Koopman operator to
ensure that the Koopman operator is compact. The Koopman
operator U is approximated using the linear system Ug = y
for y(·) ∈ L2

µ(X), where the function y(x) is the system
output at the next time step when the state is located at
x ∈ X . The method of approximation entails the use
of Petrov-Galerkin projection, coupled with the use of a
quadrature methods to approximate integrals appearing in the
approximations.

The primary result of this analysis is the derivation of
bounds on rates of convergence of the approximations of the
Koopman operator in terms of two contributions as described
in Theorem (3). These two error terms are derived from
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suitable forms of the Bernstein and Jackson inequalities,
respectively. For a fixed uncertainty level δ, as is typical in
inverse problems, the term that includes ρB(N) increases as
N → ∞, while the term that includes ρJ(N) decreases.
Under some common assumptions regarding the discrete
evolution law, strong rates of convergence are derived in the
paper that are based on the recent development of Bernstein
and Jackson inequalities for scattered bases in Sobolev spaces
W r(M) over a compact, smooth Riemannian manifolds M
of dimension d.
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