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Abstract— In this paper, we consider a system that is under
the effect of multiple stealthy attackers, whose inputs we
design using perfectly and imperfectly rational game-theoretic
approaches. The goal of the attackers is to steer the state of
the system as far as possible from the origin, so as to disrupt
the nominal objective of system regulation. However, to remain
stealthy, the attackers must ensure that the total magnitude
of their inputs remains below a certain threshold, otherwise
they are at risk of being exposed to a detection mechanism
that monitors the system. To derive the optimal attack policies
for the attackers, we interpret the aforementioned setup as a
constrained game, and we solve it in two cases: in the first case,
we assume that the attackers are perfectly rational and operate
on the Nash equilibrium, which we derive in closed-form; and
in the second case, we assume that the attackers are imperfectly
rational, and we design two models of bounded rationality as
a means to capture their different levels of rationality. Under
certain conditions, it is proved that the corresponding bounded
rationality models converge to a Nash equilibrium as the levels
of rationality increase. Simulations demonstrate the efficiency
of the derived attack policies in both the perfectly and the
imperfectly rational case.

I. INTRODUCTION

Cyber-physical systems (CPS) are systems of high het-
erogeneity and complexity, comprising multiple digital and
physical components that interact with one another through
a variety of communication channels. Due to their ability
to incorporate complex structures, CPS can be traced in a
large number of real-world settings, such as in the automotive
industry [1] and in smart grids [2]. In that respect, they are
an enticing target for adversaries who may want to create
confusion, disruption, and performance deterioration.

An efficient way for an attacker to interfere with the
operation of a CPS is by launching an actuation attack [3],
[4], also often referred to as false data-injection or deception
attack. This attack introduces perturbations in the CPS’
control input through interference with its software, hardware
or communication channels, and can thus directly affect the
system’s performance. It is often designed using tools from
game and optimal control theory, so as to maximize damage
to the CPS while conforming to constraints that guarantee
that the attack remains undetected1 [5]–[9]. However, when
multiple attackers are simultaneously attacking the system,
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1Unnoticed by a detection mechanism [4] that monitors the system.

the problem of optimal stealthy attack design becomes more
challenging: on the one hand, mere (single-player) optimal
control design becomes inapplicable in such cases, owing
to the inherent multiplayer nature of the problem; on the
other hand, conventional multiplayer game-theoretic solu-
tions, which rely on the notion of the Nash equilibrium, will
yield unsatisfactory results if some attackers are imperfectly
rational2. This is because, if at least one imperfectly rational
attacker exists, all optimality guarantees provided by playing
the equilibrium no longer hold.

To alleviate the restrictive assumption of the Nash equi-
librium, namely that all players participating in the game
are perfectly rational, alternative solutions concepts can be
drawn from bounded rationality theory [10], [11]. The main
idea of bounded rationality is that, since some agents may
not operate on the Nash equilibrium of the game, it might
be beneficial to model these players using behavioral models
constructed from human engineering and real-world exper-
iments. Towards this direction, [12] employed a bounded
rationality model, known as cognitive hierarchy, to model
imperfectly rational attackers launching undetectable sensor
attacks on a CPS. Interestingly, it was shown that as the
levels of rationality increase, cognitive hierarchy converged
to the Nash equilibrium of the game, but all of the analysis
was restricted to a static game setup and did not consider
actuation attacks. The design of bounded-rational attack
strategies was also considered in [13], [14], where optimal
actuation attacks were designed against a CPS described by a
dynamical system. However, both of these works focused on
setups where only one adversary tries to disrupt the operation
of the CPS. Clearly, in multiplayer settings, the problem of
optimal attack design is still an open one.

Motivated by this gap in the literature, in this paper
we consider the problem of designing optimal undetectable
actuation attacks against a CPS, in a game-based setting
where more than one attacker exists. The goal of each
attacker is to maximize the squared norm of the CPS state –
so as to disrupt the nominal objective of regulating the state
to the origin – while also avoiding being revealed to an attack
detection mechanism that monitors the system. The problem
is solved using two distinct solution concepts: in the first
one, all attackers are assumed to be perfectly rational, hence
the solution is a Nash equilibrium that we derive in closed
form; and in the second one, the attackers are assumed to be
imperfectly rational, and two models of bounded rationality

2An imperfectly rational player is one whose policy is not dictated by
the Nash equilibrium.
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are employed to identify their behavior. It is proved that
these models of bounded rationality, under certain conditions,
converge to the game’s Nash equilibrium.

Notation: The sets R and N denote the real and natural
numbers (including zero), respectively, while N` denotes
the set of non-zero natural numbers. For a vector x P Rn

and a symmetric matrix F P Rnˆn, we denote ∥x∥2F “
1
2x

TFx, while ∥x∥8 will denote the infinity norm of x. If
l P t1, . . . , nu, then rxsl will denote the l-th entry of x. For
a matrix Z P Rnˆn, diagvpZq P Rn will denote a vector
equivalent to the diagonal of Z. Using the Iverson bracket
notation, sgnpxq :“ ´rx ă 0s ` rx ą 0s is the signum
function. We denote as 1n P Rn a vector of ones.

II. PROBLEM FORMULATION

Consider the continuous-time system:

9xptq “ Axptq ` B
ÿ

iPN
aiptq, xp0q “ x0, t ě 0, (1)

where xptq P Rn denotes the state vector, aiptq P Rm

denotes an actuation attack originating from attacker i P

t1, . . . , Nu “: N , and A P Rnˆn, B P Rnˆm denote the
system’s state and input dynamics matrices. For the purposes
of this formulation, it is assumed without loss of generality
that no defending input uptq P Rm appears in (1). Such an
input can be considered part of the matrix A in cases where it
moves the poles of the system to the open left half plane, or it
can be absorbed in the state xptq using standard exponential
matrix formulas.

The attackers are malicious in nature, and their purpose
is to disrupt the system’s nominal operation as much as
possible within their capabilities. In many applications, such
a nominal operation is equivalent to regulating the system’s
state to the origin within some time interval T ą 0.
Accordingly, the purpose of the malicious attackers here is
to steer the system’s state as far from the origin as possible.
This objective can be captured by the maximization, by each
attacker j P N , of:

Jpaj ; a´jq “ ∥xpT q∥2F , (2)

where x : r0, T s Ñ Rn is subject to the dynamics (1),
F ą 0 is a weighting matrix that scales for possibly
different units of measurement between the states, and a´j “

ta1, . . . , aj´1, aj`1, . . . , aNu denotes the collective input of
all attackers in N ztju.
Remark 1. In this work, we will focus on deriving attack
policies that are optimal with respect to (2), and are thus
defined only over t P r0, T s. Nevertheless, similar to [5], [8],
any such attack policies can be implemented in a receding
horizon fashion to derive a feedback policy, defined over all
t ě 0. l

In an entirely defenseless system, the optimal choice for
the attackers with respect to the objective function (2) would
consist of collectively injecting arbitrarily large inputs to the
system, and driving the state substantially far from the origin.
In the present framework, however, this is not assumed to
be the case: the system is equipped with an attack detection

mechanism that monitors variations of the system’s state and
is able to detect any possible such attempts by the attackers.
The attackers must thus design their attacks properly and
remain below the detection threshold that would trigger the
attack detection mechanism. The following assumption is
considered in this regard.

Assumption 1. The attackers remain undetectable if
∥
ř

iPN aiptq∥8
ď ∆, @t P r0, T s, where ∆ ą 0 is a

threshold known by the attackers. l

Remark 2. Certain attack policies with magnitude larger than
∆ may still be undetectable in practice. In that respect,
Assumption 1 is a sufficient but not necessary condition,
stating that undetectability is at least guaranteed when the
threshold ∆ is not crossed. l

The rest of the paper is focused on deriving attack policies
independently for each attacker j P N , which maximize
the objective function (2) while satisfying the undetectability
condition of Assumption 1. Since each attacker has its own
objective function, this leads to a game-theoretic setup, in
which we will consider two cases: in the first case, the
attackers will be assumed to be perfectly rational, able to
compute and operate on the Nash equilibrium of the game;
and in the second case, the attackers will be considered to be
imperfectly rational, i.e., not operating on the equilibrium.

Before we proceed, for the purpose of exposition, we
define A :“ ta : r0, T s Ñ Rm | a is measurableu as the
space of functions in which the attack policies will belong.

III. THE PERFECTLY RATIONAL CASE

In this section, we will assume that the attackers are
perfectly rational, implying that each of the attackers can
reason perfectly about the policies that the other attackers
will choose, and that each attacker is able to compute and
operate on the Nash equilibrium of the game. Such an
equilibrium is a tuple of policies that maximizes (2) for
each attacker, while remaining within the undetectability
constraint of Assumption 1.

Definition 1. A collection of attack policies
ta‹

1, a‹
2, . . . , a

‹
Nu P AN is a Nash equilibrium if for

all j P N

Jpa‹
j ; a‹

´jq ě Jpaj ; a‹
´jq, @aj P A,

where ta‹
j ; a‹

´ju and taj ; a‹
´ju satisfy the undetectability

constraint of Assumption 1. l

More formally, such an equilibrium ta‹
1, a‹

2, . . . , a
‹
Nu P

AN is a solution of:

max
ajPA

Jpaj ; a´jq “ ∥xpT q∥2F ,

s.t. 9xptq “ Axptq ` B

ˆ

ajptq `
ÿ

iPN ztju

aiptq

˙

,

}ajptq `
ÿ

iPN ztju

aiptq}8 ď ∆, @t P r0, T s,

xp0q “ x0,

(3)
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where the maximization takes place for each j P N , thus
yielding a set of coupled optimization problems, i.e., a game.
Note that in (3), as is natural in almost all equilibrium-based
solution concepts, each player is assumed to know perfectly
the action of the other players, hence being perfectly rational.
To solve (3) for the equilibrium, we will resort to tools
from dynamic non-cooperative game theory. The following
theorem summarizes this approach.

Theorem 1. Let ta‹
1, a‹

2, . . . , a
‹
Nu P AN be a Nash equilib-

rium to the game (3). Let cj : r0, T s Ñ Rm, j P N , be such
that

ř

jPN rcjptqsl “ ∆ for all l “ 1, . . . ,m. If there exists
a root ρ P Rn to the equation:

ρ “ eATx0`∆

ż T

0

eApT´τqBsgnpBTeA
T

pT´τqFρqdτ, (4)

such that no entry of BTeA
T

pT´tqFρ vanishes identically
over a sub-interval of t P r0, T s, then for one such root ρ:

a‹
j ptq “ cjptq ¨ sgnpBTeA

T
pT´tqFρq. (5)

Proof. Define the Hamiltonian of each attacker j P N as:

Hjpx, λj , aj ; a´jq “ λT
j

ˆ

Ax ` B

ˆ

aj `
ÿ

iPN ztju

ai

˙˙

where λj : r0, T s Ñ Rn denotes the costate, and x :
r0, T s Ñ Rn the state trajectory satisfying the dynamics
in (3). To compute an equilibrium, it is necessary that the
costate satisfies the adjoint equation:

9λjptq “ ´
BHj

Bx
“ ´ATλjptq,

which, when integrated backwards over t P r0, T s, yields:

λjptq “ eA
T

pT´tqλjpT q. (6)

Additionally, it is necessary that the costate satisfies the
transversality condition:

λjpT q “
∥xpT q∥2F

BxpT q
ùñ λjpT q “ FxpT q. (7)

Combining (6)-(7), we obtain:

λjptq “ eA
T

pT´tqFxpT q. (8)

Next, consider the following attack strategies:

âjptq “ cjptq¨sgnpBTλjptqq “ cjptq¨sgnpBTeA
T

pT´tqFxpT qq,
(9)

where cj : r0, T s Ñ Rm are such that
ř

jPN rcjptqsl “ ∆ for
all l “ 1, . . . ,m, and the multiplication between cj and the
sgn term in (9) takes place entry-wise. It can be seen that
with these strategies, it will hold that:

ˆ

âj `
ÿ

iPN ztju

âi

˙

“ ∆ ¨ sgnpBTλjq

and λj “ λi for all i, j P N . Hence, these attack strategies
satisfy the undetectability constraint in (3). In addition, for
these strategies, it can be verified by inspection that

Hjpx, λj , âj ; â´jq “ max
taj ,a´juPAN

Hjpx, λj , aj ; a´jq,

and thus also:

Hjpx, λj , âj ; â´jq “ max
ajPA

Hjpx, λj , aj ; â´jq,

where it is implied that the maximums are taken over the
policies that satisfy the undetectability constraint in (3).
Therefore, the proposed strategies form a Nash equilibrium
over the Hamiltonians Hj , and thus satisfy all of the nec-
essary conditions to qualify for a Nash equilibrium of the
game (3).

Finally, we need to rewrite (9) in a causal manner. In this
direction, note that with aj “ âj :

9xptq “ Axptq ` ∆BsgnpBTeA
T

pT´tqFxpT qq,

hence:

xpT q “ eATx0`∆

ż T

0

eApT´τqBsgnpBTeA
T

pT´τqFxpT qqdτ.

(10)
Solving this equation for xpT q and plugging it to (9) yields
a causal expression for the attack policies âj . However,
the above analysis makes sense only if no component of
BTeA

T
pT´tqFxpT q vanishes identically over a sub-interval

of t P r0, T s, where xpT q is a root of (10).

While Theorem 1 does provide a closed-form expression
for the Nash equilibrium of the attackers’ game, it can be
seen that this equilibrium is valid only if no entry of the
vector BTeA

T
pT´tqFρ vanishes identically over a time sub-

interval of t P r0, T s. In the opposite case, the tuple of
policies (9) may not necessarily form an equilibrium. This
is because the vector λT

jB in the Hamiltonian, @j P N , will
have an entry identically equal to zero, hence the maximiza-
tion of the Hamiltonian with respect to aj will provide no
information on how to determine the Nash equilibrium. In
other words, the game will present a singularity.

The cases where the singularity appears, are those where
each attacker may have multiple possible optimal policies to
choose from, irrespective of what the other attackers select
to do. For example, in the trivial case where B “ 0 (in
which BTeA

T
pT´tqFρ ” 0), all possible attack policies form

a Nash equilibrium. Hence, a controllability assumption will
naturally exclude such singular cases, similar to how it does
in the minimum-time problem [15]. In this direction, let us
decompose the matrix B as:

B “ rb1 b2 . . . bms,

where each column bl P Rn, l “ 1, . . . ,m, corresponds to an
actuator of system (1). The following proposition provides
conditions that exclude the presence of singularities in the
attackers’ game, hence guaranteeing that the equilibrium of
the game will be given by the tuple of policies (5).

Proposition 1. Let pA, blq be a controllable pair for all
l “ 1, . . . ,m, and x0 ‰ 0. Then, if ρ P Rn is a root of (4),
no entry of BTeA

T
pT´tqFρ vanishes identically over a time

sub-interval of t P r0, T s.

Proof. Picking up from the proof of Theorem 1, suppose that
some entry l P t1, . . . ,mu of λT

jB vanishes identically over
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some time sub-interval rt1, t2s Ă r0, T s. Then, rλT
jBsl “ 0,

or equivalently λT
j bl “ 0 for all t P rt1, t2s. Therefore, over

rt1, t2s it must also hold that:

d
dt

pλT
j blq “ 0 ùñ λT

jAbl “ 0,

...

dn´1

dtn´1
pλT

j blq “ 0 ùñ λT
jA

n´1bl “ 0,

hence λT
j rbl Abl A

n´1bls “ 0. Since pA, blq is controllable,
this may hold only if λjptq “ 0 for all t P rt1, t2s, and using
the fact that λjptq “ eA

T
pT´tqFxpT q from (8), we obtain

xpT q “ 0. Plugging this in (10) yields x0 “ 0, which is
contradicting. Hence, no entry of λT

jB vanishes identically
over some time sub-interval of r0, T s.

Remark 3. Apart from a controllability condition, Proposi-
tion 1 also requires that x0 ‰ 0 for (5) to form a Nash
equilibrium. This is again due to the fact that, at x0 “ 0,
multiple optimal attack policies exist. l

IV. THE IMPERFECTLY RATIONAL CASE

In this section, we will assume that the attackers are imper-
fectly rational, implying that they do not collectively operate
on the Nash equilibrium. This can happen in cases where not
every agent knows the decision-making mechanism of one
another, or if some agents are not aware of the existence of
one another, or generally in cases where some agents are
not able to find the Nash equilibrium [11]. In all of these
scenarios, it does not make sense for an intelligent attacker to
use the Nash equilibrium solution (5) of the perfectly rational
case, because this solution no longer guarantees optimality
with respect to (2).3 Rather, it would be more beneficial
for the attacker to identify every other attacker using a
model of bounded rationality, and consequently employ an
imperfectly rational policy [16], [17]. In what follows, we
will consider two models of bounded rationality for modeling
imperfectly rational attackers, namely level-k thinking and
cognitive hierarchy [10], [11], [14].

A. Level-k Thinking

In level-k thinking, different levels of rationality are
recursively defined, where each level k P N corresponds
to the number of steps of reasoning that an agent of that
level performs. In particular, a player of cognitive level k is
assumed to reason one step ahead of a player of cognitive
level-pk ´ 1q, in the sense that they best respond to that
player. A more concrete description of the level-k thinking
model follows next.

Level-0 policy: The level-0 policy, also known as an
anchor policy, is usually chosen by assuming that a level-0
agent is naive [11]. Accordingly, it is natural to impose here
that a level-0 attacker, being completely naive, assumes that
the rest of the attackers do not exist, i.e., that their control

3An agent has no incentive to deviate from the Nash equilibrium only if
all other agents operate on this equilibrium. If this is not the case, then an
incentive to deviate exists.

input is zero [14]. Under this assumption, a level-0 attacker
chooses their policy a0 P A by solving the optimal control
problem:

max
aPA

Jpa; 0q “ ∥xpT q∥2F ,

s.t. 9xptq “ Axptq ` Baptq,

}aptq}8 ď ∆, @t P r0, T s,

xp0q “ x0.

(11)

Level-k policies: Unlike the level-0 policies, the level-k
policies ak P A for k ‰ 0 are dependent on the structure
of the thinking model. That is, for k P N`, level-k attackers
suppose that the rest of the attackers are level-pk ´ 1q, and
employ level-pk´1q policies. Under this assumption, a level-
k attacker, k ‰ 0, chooses their policy ak by solving the
optimal control problem:

max
aPA

Jpa; tak´1, . . . , ak´1uq “ ∥xpT q∥2F ,

s.t. 9xptq “ Axptq ` B

ˆ

aptq ` pN ´ 1qak´1ptq

˙

,

}aptq ` pN ´ 1qak´1ptq}8 ď ∆, @t P r0, T s,

xp0q “ x0.

(12)

Apparently, to compute a level k policy, one needs to
compute the level k ´ 1 policy first, which in turn requires
computing the level k ´ 2 policy first, and this reasoning
goes all the way down to the level 0 “anchor” policy. For
this reason, this model of bounded rationality is also often
referred to as recursive reasoning [18].

Remark 4. Notably, the optimization problems (11)-(12) are
no longer games, because the policies of the rest of the
attackers are considered fixed. l

While level-k thinking is a well-known and straightfor-
ward procedure in modeling imperfectly rational agents, it
can be a poor choice within the present game setup. This is
indicated in the following theorem.

Theorem 2. If there exists a root ρ P Rn to the equation (4)
such that no entry of the vector BTeA

T
pT´tqFρ vanishes

identically over a time sub-interval of t P r0, T s, then the
optimal level-k policies, for each k P N, are given by

akptq “ ∆k ¨ sgnpBTeA
T

pT´tqFρq (13)

for one such root ρ, where ∆k P R satisfies the difference
equation:

∆k “ ´pN ´ 1q∆k´1 ` ∆, ∆0 “ ∆. (14)

Proof. The level-0 policy a0 is the solution of the optimal
control problem (11). Following a similar line of analysis
to that of Theorem 1, it is straightforward to derive that
a0ptq “ ∆ ¨ sgnpBTeA

T
pT´tqFρq.

The level-k policy ak, with k P N`, is the solution
of the optimal control problem (12). Performing the input
transformation zptq “ aptq ` pN ´ 1qak´1ptq, this problem
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turns into:

max
zPA

Jpz; 0q “ ∥xpT q∥2F ,

s.t. 9xptq “ Axptq ` Bzptq,

}zptq}8 ď ∆, @t P r0, T s,

xp0q “ x0,

which is exactly the same as (11), and hence its optimal so-
lution is given by z‹ptq “ a0ptq “ ∆ ¨ sgnpBTeA

T
pT´tqFρq,

where ρ is a root of (4). Reverting back to the original
problem, the level-k policy can be derived as akptq “

a0ptq ´ pN ´ 1qak´1ptq. Since ak is a linear combination of
a0 and ak´1, and since a0ptq “ ∆ ¨ sgnpBTeA

T
pT´tqFρq,

it follows that akptq “ ∆k ¨ sgnpBTeA
T

pT´tqFρq, where
∆k “ ´pN ´ 1q∆k´1 ` ∆ and ∆0 “ ∆.

Notice that (14) can be viewed as a discrete-time dynam-
ical system in the variable k, which will be strictly stable if
N “ 1, marginally stable if N “ 2, and unstable if N ě 3.
This means that if there are N ě 3 attackers, the control
input of a level-k attacker increases geometrically as the
level k increases. Apparently, level-k thinking can behave
irregularly in the present framework.

B. Cognitive Hierarchy

One way to alleviate the irregularity of level-k thinking
is to consider what is known as cognitive hierarchy [10]. In
cognitive hierarchy, each agent of level k does not assume
that all of the rest of the agents are level k´ 1, as in level-k
thinking; rather, it assigns a proportion of them to each level,
ranging from level 0 up to k ´ 1. Specifically, if f denotes
a probability mass function over N, then these proportions
can be defined as:

pkpκq “
fpκq

řk´1
i“0 fpiq

, κ P t0, 1, . . . , k ´ 1u. (15)

It is a common choice to select fp¨q to represent a Poisson
distribution, as it has been shown through experiments that
the proportion of agents that are level k´1 usually decreases
as k becomes larger [10], [19], [20]. Accordingly, with this
model, fp¨q will be given by:

fpκq “
λκe´λ

κ!
, (16)

where λ ą 0 denotes the variance and the mean of the
Poisson distribution. Having defined these proportions, the
level-k policies in the cognitive hierarchy framework are
derived as follows.

Level-0 policy: The level-0 policy ā0 P A in cognitive
hierarchy is exactly the same as in level-k thinking. That
is, a level 0 attacker ignores the existence of the rest of
the attackers, and chooses its policy by solving the optimal
control problem (11).

Level-k policies: Different from level k thinking, a level
k attacker in cognitive hierarchy, with k P N`, does not
assume that the rest of the attackers are all level k ´ 1.
Rather, it assumes that their level ranges from 0 to k ´ 1,
and specifically, for each κ P t0, . . . , k ´ 1u, a proportion

pkpκq of the attackers is level κ. Accordingly, a level-k policy
āk P A in cognitive hierarchy corresponds to the solution of
the optimal control problem:

max
aPA

∥xpT q∥2F ,

s.t. 9xptq “ Axptq ` B

ˆ

aptq`

k´1
ÿ

κ“0

pkpκqpN ´ 1qāκptq

˙

,

}aptq `

k´1
ÿ

κ“0

pkpκqpN ´ 1qāκptq}8 ď ∆, @t P r0, T s,

xp0q “ x0.

Evidently, like level-k thinking, cognitive hierarchy is also
a recursive reasoning model, where the computation of each
level k policy requires computing the level k´1 policy first.
In what follows, we provide the closed-form solution for the
level-k policies in cognitive hierarchy.

Theorem 3. If there exists a root ρ P Rn to the equation (4)
such that no entry of the vector BTeA

T
pT´tqFρ vanishes

identically over a time sub-interval of t P r0, T s, then the
optimal level-k policies in cognitive hierarchy, for each k P

N, are given by:

ākptq “ ∆̄k ¨ sgnpBTeA
T

pT´tqFρq (17)

for one such root ρ, where ∆̄k P R satisfies the recursion:

∆̄k “ ´

k´1
ÿ

κ“0

pkpκqpN ´ 1q∆̄κ ` ∆, ∆̄0 “ ∆. (18)

Proof. The proof is similar to that of Theorem 2 and it is,
thus, omitted.

Next, we prove the initial claim that motivated the use
of cognitive hierarchy in lieu of level-k thinking, namely
that cognitive hierarchy does not lead to unreasonably large
attack input values as k Ñ 8.

Proposition 2. The level-k policies āk P A in cognitive
hierarchy have a well-defined point-wise limit ā8 P A.

Proof. Denote Sk “
řk´1

i“0 fpiq. From (18), for each k P N`

we have:

∆̄k “ ´

k´1
ÿ

κ“0

pkpκqpN ´ 1q∆̄κ ` ∆

“ ´
Sk´1

Sk

k´2
ÿ

κ“0

pk´1pκqpN ´ 1q∆̄κ

´ pN ´ 1qpkpk ´ 1q∆̄k´1 ` ∆

“
Sk´1

Sk
p∆̄k´1 ´ ∆q ´ pN ´ 1qpkpk ´ 1q∆̄k´1 ` ∆.

Hence, denoting ek “ ∆̄k ´ ∆, we obtain:

ek“

ˆ

Sk´1

Sk
´pN ´ 1qpkpk ´ 1q

˙

ek´1´pN´1q∆pkpk´1q,

which simplifies to:

ek “ p1 ´ Npkpk ´ 1qq ek´1 ´ pN ´ 1q∆pkpk ´ 1q.

7960



From the definition of pk in (15)-(16), there exists k‹ P N,
such that if k ě k‹ then |1 ´ Npkpk ´ 1q| ď 1. Hence, for
k ě k‹:

|ek| ´ |ek´1| ď pN ´ 1q∆pkpk ´ 1q.

Summing over k ě k‹, we obtain for any n ě k‹:

|en| ´ |ek‹´1| ď

n
ÿ

k“k‹

pN ´ 1q∆pkpk ´ 1q

ď

n
ÿ

k“k‹

pN ´ 1q∆
fpk ´ 1q

fp0q

“

n
ÿ

k“k‹

pN ´ 1q∆
λk´1

pk ´ 1q!
.

The summation at the right-hand side converges as n Ñ 8,
hence ek, and thus ∆̄k, is a bounded sequence. Next, letting
n,m P N` be such that m ď n, we have:

∆̄n “ ´

n´1
ÿ

κ“0

pnpκqpN ´ 1q∆̄κ ` ∆

“ ´
Sm

Sn

m´1
ÿ

κ“0

pmpκqpN ´ 1q∆̄κ

´

n´1
ÿ

κ“m

pnpκqpN ´ 1q∆̄κ ` ∆.

Hence

∆̄n “
Sm

Sn
p∆̄m ´ ∆q ´

n´1
ÿ

κ“m

pnpκqpN ´ 1q∆̄κ ` ∆,

which yields the error equation:

en “
Sm

Sn
em ´

n´1
ÿ

κ“m

pnpκqpN ´ 1q∆̄κ.

From this equation, one can obtain the inequality

|en ´ em| ď

ˆ

1 ´
Sm

Sn

˙

|em| `

n´1
ÿ

κ“m

pnpκqpN ´ 1q|∆̄κ|.

Note that Sm

Sn
Ñ 1 and

řn´1
κ“m pnpκq Ñ 0 as n,m Ñ 8.

Hence, since ek and ∆̄k are bounded sequences as previously
proved, the right-hand side tends to 0 as n,m Ñ 8, implying
that ek is a Cauchy sequence on R. Therefore, by the
completeness of R, ek converges as k Ñ 8 to some well-
defined real limit, hence ∆̄k also converges to some well-
defined real limit ∆̄8 P R. Finally, it follows that for all t P

r0, T s, limkÑ8 ākptq “ ā8ptq “ ∆̄8sgnpBTeA
T

pT´tqFρq,
with ā8 P A, where ρ solves (4).

It should be noted that the limit of the cognitive hierarchy
policies ā8 does not necessarily correspond to a Nash
equilibrium. This is rather expected: the purpose of cognitive
hierarchy is not to approximate the Nash equilibrium, but to
generate a set of policies that model bounded rational agents.
Still, if the parameter λ of the Poisson distribution is chosen
appropriately, it can be proved that the limiting policy ā8 is
such that tā8, . . . , ā8u form a Nash equilibrium.

Proposition 3. If λ “ 1
N´1 , then tā8, . . . , ā8u form a Nash

equilibrium for the game (3).

Proof. It follows from (18) that ∆̄0 “ ∆ and ∆̄1 “ ´pN ´

2q∆. In addition p2p0q “ 1
1`λ and p2p1q “ λ

1`λ , hence

∆̄2 “

ˆ

´
1

1 ` λ
pN ´ 1q `

λ

1 ` λ
pN ´ 1qpN ´ 2q ` 1

˙

∆.

If λ “ 1
N´1 , it can be verified that ∆̄2 “ ∆

N . Next, for any
k P N`, following the same line of analysis as in the proof
of Proposition 2, we can obtain the difference equation:

∆̄k “
Sk´1

Sk
p∆̄k´1 ´ ∆q ´ pN ´ 1qpkpk ´ 1q∆̄k´1 ` ∆,

which, using the fact that Sk´1

Sk
`pkpk´1q “ 1, is equivalent

to

∆̄k “ ∆̄k´1 ´
Sk´1

Sk
∆ ´ Npkpk ´ 1q∆̄k´1 ` ∆.

If ∆̄k´1 “ ∆
N then it follows from this equation that also

∆̄k “ ∆
N . Therefore, if λ “ 1

N´1 , then ∆̄k “ ∆
N for all k ě

2, and thus ā8 “ ∆
N ¨ sgnpBTeA

T
pT´tqFρq, where ρ solves

(4). Finally, since
ř

jPN
∆
N “ ∆, it follows from Theorem

1 that tā8, . . . , ā8u form a Nash equilibrium for the game
(3).

C. Level of Intelligence Estimation

The bounded rationality models of level-k thinking and
cognitive hierarchy provide a database of level-k policies, in
the sense that they define a distinct policy for each attacker
at each level of rationality k P N. This database of policies
can then be used by an intelligent attacker to estimate the
level of rationality of the rest of the attackers, and thus model
their behavior. If this estimation is completed successfully,
then the attacker can solve its optimization (3) with perfect
knowledge of the other attackers’ strategies.

To this end, let us define the database of the policies
for an attacker, whose level of rationality is k P N`,
as ϕ :“ ra1 a2 . . . ak´1sT. Let pl0, p

l
1, . . . , p

l
k´1 be the

belief of this level-k attacker that the l-th attacker, l P

N , is level 0, 1, . . . , k ´ 1 respectively. Defining pl :“
rpl0 p

l
1 . . . plk´1sT, this attacker’s belief about the level of the

l-th attacker can be updated through the constrained least-
squares optimization

min
plPRk

Eκ,l

˜

ż t1

t

∥aκpτq ´ alpτq∥2Im dτ

¸

`
∥∥pl ´ plb

∥∥2
Q
,

(19)
over the probability simplex

1T
k p

l “ 1, pl ľ 0. (20)

In the optimization (19), based on the belief of
the intelligent attacker about the level of the at-
tacker l, we have Eκ,l

´

şt1

t
∥aκpτq ´ alpτq∥2Im

¯

dτ “

řk´1
κ“0 p

l
κ

´

şt1

t
∥aκpτq ´ alpτq∥2Im

¯

dτ . In addition, plb is the
initial belief of the intelligent attacker about attacker l, Q ą 0
forces a bias towards the initial belief, and T ě t1 ą t ě 0
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Fig. 1. The evolution of the state norm ∥xptq∥2F when the system is
affected by attackers operating on the Nash equilibrium, compared
to when the system is under no attack.

Fig. 2. The evolution of each entry of the attack inputs, when the
attackers operate on the Nash equilibrium. Green color indicates
the corresponding attack entry takes the positive value ∆

3
, while

black color indicates it takes the negative value ´∆
3

.

are sampling instances. In a moving horizon formulation, one
may set plb equal to the probability pl computed in a previous
iteration of the receding horizon framework. The constrained
optimization (19)-(20) is equivalent to

min
plPRk

1

2
plTQpl `

ˆ

´Qplb ´ ΦAl `
1

2
ΦΦ

˙T

pl

s.t. 1T
k p

l “ 1, pl ľ 0,

(21)

where ΦΦ :“
şt1

t
diagv

`

ϕpτqϕTpτq
˘

dτ and ΦAl :“
şt1

t
ϕpτqalpτqdτ . Note that (21) is a convex quadratic pro-

gram, hence it can be solved in polynomial time by using
interior point methods [21]. Projected gradient methods may
also be used to increase efficiency, with the projection
operator onto the probability simplex defined as in [22].
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Fig. 3. The evolution of the state norm ∥xptq∥2F when the system
is affected by bounded rational attackers of cognitive level 1, 2
and 4. The red line indicates the case where the intelligent level 4
attacker uses its beliefs about the other attackers’ levels and issues
a corrective input to the system, whereas the blue line indicates the
case where the attacker commits to its level 4 policy.
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Fig. 4. The evolution of the beliefs of the intelligent attacker about
the cognitive level of the other two attackers.

V. SIMULATIONS

We perform simulations on the Aero-Data Model in
Research Environment (ADMIRE) benchmark aircraft [23],
with system matrices given by:

A “

»

—

—

–

´1.0649 0.0034 ´0.0000 0.9728 0.0000
0.0000 ´0.2492 0.0656 ´0.0000 ´0.9879
0.0000 ´22.5462 ´2.0457 ´0.0000 0.5432
8.1633 ´0.0057 ´0.0000 ´1.0478 0.0000
0.0000 1.7970 ´0.1096 0.0000 ´0.4357

fi

ffi

ffi

fl

,

B “

»

—

—

—

—

—

–

´0.0062 ´0.0072 1.2456 2.7172 ´0.7497
´0.0062 0.0072 ´1.2456 2.7172 0.7497
´0.0709 0.0039 ´10.6058 ´2.4724 ´0.4923
´0.1172 0.0188 ´9.2345 ´4.0101 ´1.1415
´0.1172 ´0.0188 9.2345 ´4.0101 1.1415
´0.0709 ´0.0039 10.6058 ´2.4724 0.4923
0.0003 0.0003 5.3223 0.0108 ´3.7367

fi

ffi

ffi

ffi

ffi

ffi

fl

T

,
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and with initial condition x0 “ 0.001 ¨
“

1 ´1 1 ´1 1
‰T

.
The system is assumed to be under the effect of a stabilizing
gain K P R7ˆ5 by a defender, which redefines the system’s
plant matrix A into the Hurwitz matrix A´BK. In addition,
it is under the effect of N “ 3 attackers’ inputs, whose
purpose is to disrupt the system’s stabilization by maximizing
the cost (2). Note that this system satisfies the conditions of
Proposition 1.

We initially simulate the system in the case where all of
the attackers are perfectly rational, employing the control law
(5), with cjptq “ ∆

3 for all j “ 1, 2, 3. The weighting matrix
of the cost (2) is chosen as F “ I5, the detection threshold
is ∆ “ 0.005, and the optimization horizon is T “ 4 sec.
With these parameters, the root of (4) is found as:

ρ “
“

9.9 ¨ 10´6 ´0.0081 0.1360 2.62 ¨ 10´5 ´0.0087
‰T

.

The results are then shown in Figures 1-2. It can be particu-
larly seen from Figure 1 that, when the attackers operate on
the Nash equilibrium, the state norm is indeed maximized
at the end of the optimization horizon, and is much larger
than when the system is under no attack. In addition, Figure
2, which illustrates the value of the attack inputs, verifies
Proposition 1 since no entry of the attack inputs becomes
identically zero on any time sub-interval of t P r0, 4s.

Next, we simulate the system in the case where the
attackers are imperfectly rational. Specifically, attacker 1
is level 1, attacker 2 is level 2, and attacker 3 is level 4
according to the cognitive hierarchy model, while λ “ 0.8
is the Poisson parameter of cognitive hierarchy. To model
the lower level attackers, the intelligent attacker 3 solves the
optimization (21) with Q “ 10´5I in a receding horizon to
updates its beliefs p1κ and p2κ, κ “ 0, . . . , 3. Based on these
beliefs, the attacker then issues a corrective attack input to
the system, so that the total attack input imitates the (optimal)
total input of the equilibrium case. It can be seen from Figure
4 that the intelligent attacker has successfully identified the
levels of the other two attackers. In addition, Figure 3 shows
that the corrective feedback is beneficial when compared to
the case where this feedback was not issued.

VI. CONCLUSION

We considered a system under the effect of multiple
attackers, whose objective was to drive the system’s state far
from the origin while remaining stealthy. To obtain optimal
policies for them, two cases were considered: in the first, the
attackers were assumed to be perfectly rational, operating
on the Nash equilibrium of the game; and in the second,
they were assumed to be imperfectly rational, and they were
modeled using a bounded rationality framework. Simulations
verified the efficacy of the derived attack strategies in both
cases.

Future work includes extending the present setup to cases
where the attack inputs can affect the system’s sensor mea-
surements.
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