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Abstract— This paper studies the problem of developing
computationally efficient solutions for steering the distribution
of the state of a stochastic, linear dynamical system between
two boundary Gaussian distributions in the presence of chance-
constraints on the state and control input. It is assumed that
the state is only partially available through a measurement
model corrupted with noise. The filtered state is reconstructed
with a Kalman filter, the chance constraints are reformulated
as difference of convex (DC) constraints, and the resulting
covariance control problem is reformulated as a DC program,
which is solved using successive convexification. The efficiency
of the proposed method is illustrated on a double integrator
example with varying time horizons, and is compared to other
state-of-the-art chance-constrained covariance control methods.

I. INTRODUCTION

Covariance control deals with the problem of steering
the entire distribution of system states from a prescribed
initial distribution to a terminal distribution. In the case the
boundary conditions and noise entering the system are both
normally distributed, covariance steering (CS) is equivalent
to steering the first two moments of the state distribution, that
is, the mean and covariance. This fundamental problem has
been studied as early back as the 1980’s through the works of
[1], [2], dealing only with the infinite horizon case, where the
state covariance asymptotically approaches its target value.
Of more practical interest, the finite horizon case has only
been studied in recent years, starting with the works of [3]–
[5] for discrete-time dynamics and [6], [7] for continuous-
time dynamics.

In practical applications, the state and control are usually
subjected to certain constraints, such as the maximum thrust
an engine can produce, the maximum allowable glide slope
in a rocket landing, or limitations on the path of a spacecraft
rendezvous maneuver. Since the exogenous noise in the
system dynamics is unbounded due to its probabilistic nature,
it is difficult to enforce hard constraints, although the novel
solution in [8] uses saturation functions in the control to
accomplish this task. To this end, it is often more fruitful
to enforce probabilistic constraints on the state and control
input, whereby limiting the probability of violating a certain
set of constraints over the entire optimization horizon.

J. Pilipovsky is a PhD student at the School of Aerospace Engineering,
Georgia Institute of Technology, Atlanta, GA30332-0150, USA. Email:
jpilipovsky3@gatech.edu

P. Tsiotras is the David & Lewis Chair and Professor at the School
of Aerospace Engineering and the Institute for Robotics & Intelligent
Machines, Georgia Institute of Technology, Atlanta, GA30332-0150, USA.
Email: tsiotras@gatech.edu

The chance-constrained covariance steering (CC-CS)
problem has been extensively studied: References [9]–[11]
focus on Gaussian random variables, while subsequent works
have aimed in relaxing this Gaussianity assumption [12]–
[14]. Chance constraints naturally couple the mean and
covariance dynamics together, as the constraints are functions
of both the mean motion of the state and its deviation
from the mean. To handle chance constraints, [9] solves
the problem by employing a convex relaxation of the ter-
minal covariance constraint, and solves the resulting convex
program as a large batch problem. The resulting convex
program becomes a quadratic semi-definite program (SDP),
however, the constraints are superfluously large linear matrix
inequalities (LMIs), whose optimal values are quite sparse.
Instead, [15] solves the problem using a sequential approach,
optimizing over the mean and covariance at each time step,
instead of solving one large batch problem. Instead of one
large LMI for the terminal covariance constraint, the latter
method solves many smaller LMIs that encode the covariance
propagation, thus resulting in more computationally efficient
solutions, often an order of magnitude faster [16]. This
method is also more attractive from the context of data-
driven control methods, where there is no knowledge of the
system matrices. This topic has recently gained much atten-
tion due to the complexities of modeling complex systems
accurately, where the theory is based on the paradigm of
learning controllers directly from raw data collected from the
system. The works in [17], [18] directly compute optimal
control laws for the standard LQR problem without the
intermediate step of identifying a model of the system,
using similar techniques to that of [15]. Recently, [19] has
extended this data-driven framework to solve the model-free
CS problem.

The solutions to all of the above problems assume full
knowledge of the state at every time step, which is often
a limiting assumption on physical systems. Reference [20]
solves the CC-CS problem for the case when the state
is only indirectly accessible via noise measurements, by
adding a Kalman filter in the control loop. By filtering
the state and using output feedback, the control problem
may be reformulated in terms of the estimated state, and
subsequently solved as a convex program. This method, as
in [9], still suffers, however, from large problem sizes due
to its batch nature.

The contribution of this paper is two-fold. First, we
solve the output feedback CC-CS (OFCC-CS) problem in
a computationally efficient manner as a non-trivial extension
to [20], using the techniques employed in [15]. Second, we
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introduce a novel approach to make the state and control
chance constraints tractable by reformulating them as differ-
ence of convex (DC) constraints, as opposed to linearizing
the constraints about some reference values as in [15]. We
showcase the proposed method on a double integrator path
planning problem, and compare the run-time performance
with that of the batch solution.

II. PROBLEM STATEMENT

A. Notation

Real-valued vectors are denoted by lowercase letters, u ∈
Rm, matrices are denoted by uppercase letters V ∈ Rn×m,
and random vectors are denoted by boldface, w ∈ Rp. A ran-
dom vector w is defined on the probability space (Ω, σ,Pw)
[21]. We write σ(w) to denote the σ-algebra generated by
the random variable w. We write w ∼ ψw to denote the
fact that w is distributed according to the probability density
function ψw. An interval of natural numbers is denoted by
N[s,r] := {s, s + 1, . . . , r − 1, r}, with s, r ∈ N, r ≥ s. A
sequence π = {u0, . . . , uN−1} is written in the short-hand
notation {uk}N−1

k=0 . Lastly, for a symmetric matrix Σ, we
write Σ ≻ 0 (⪰ 0) if Σ is positive (semi-)definite.

B. Problem Formulation

We consider the following discrete-time stochastic linear
system

xk+1 = Akxk +Bkuk +Gkwk, k ∈ N[0,N−1], (1)

where xk ∈ Rnx is the state, uk ∈ Rnu is the control input,
Ak ∈ Rnx×nx , Bk ∈ Rnx×nu , Gk ∈ Rnx×nw are the system
matrices, and N represents the finite optimization horizon.
The process noise wk ∼ N (0, Inw) at each time step is
assumed to be i.i.d. normal random vectors. The state is
measured through the observation process

yk = Ckxk +Dkvk, k ∈ N[0,N−1], (2)

where yk ∈ Rny is the measurement and Ck ∈
Rny×nx , Dk ∈ Rny×ny are observation matrices. The obser-
vation noise vk ∼ N (0, Iny

) at each time step is assumed
to be i.i.d. normal random vectors.

Assumption 1: The observation noise matrix Dk is as-
sumed to be full-rank, hence invertible. The case where Dk

is rank-deficient can be treated using well-known techniques
[22].
Before the filter is initialized, we assume some knowledge
of the initial state, that is, we have an initial state estimate
x̂09 and estimation error x̃09 , with statistics

x̂09 ∼ N (µi,Σx̂i9
), x̃09 ∼ N (0,Σx̃i9

), (3)

respectively, where Σx̂i9
,Σx̃i9

⪰ 0 and µi ∈ Rnx is
known. Using the distribution of the initial state estimate and
estimation error allows us to formulate the control law in the
most general setting. If we are given exact knowledge of the
state at k = 0, then we set x̂09 = xi, and x̃09 = Σx̃i9

= 0.
Similarly, if we do not have any knowledge of the estimation
error, then we set x̂09 = µi and Σx̂i9

= 0, x̃i9 = 0.

Assumption 2: We assume that the quantities
x̂09 , x̃09 , {wk}N−1

k=0 , and {vk}N−1
k=0 are all independent.

Define the filtration {F}Nk=−1 by F−1 = σ(x̂09) and
Fk = σ(x̂09 ,yi : i ∈ N[0,k]) for k ∈ N0,N , which
represents the information that can be used to estimate the
state and control law. For convenience, let µk := E[xk]
denote the mean state, and let x̂k := E[xk|Fk] denote the
estimated state, and the estimation error as x̃k := xk − x̂k.
Additionally, define the state, estimated state, and estimation
error covariances as

Σxk
= E[(xk − µk)(xk − µk)

⊺], (4a)
Σx̂k

= E[(x̂k − µk)(x̂k − µk)
⊺], (4b)

Σx̃k
= E[x̃kx̃

⊺
k] = E[(x̂k − xk)(x̂k − xk)

⊺], (4c)

from which it can be shown that Σxk
= Σx̂k

+Σx̃k
. Define

the apriori estimated state and apriori estimation error as
x̂k9 := E[xk|Fk−1] and x̃k9 := xk − x̂k9 , respectively,
with associated covariance matrices Σx̂k9 and Σx̃k9 as given
above. To this end, it follows that the initial state is dis-
tributed as

x0 ∼ N (µi,Σxi), Σx0 = Σx̂i9
+Σx̃i9

. (5)

Additionally, we require the terminal state xN to be dis-
tributed as

xN ∼ N (µf ,Σxf
), (6)

or, more explicitly, that µN = µf and ΣxN
= Σx̂N

+Σx̃N
=

Σxf
. We assume a quadratic objective function given by

J (u) = E

[
N−1∑
k=0

(
(xk − x

(r)
k )⊺Qk(xk − x

(r)
k ) + u⊺

kRkuk

)]
,

(7)
for a given sequence of state weight matrices {Qk}N−1

k=0 ⪰
0 and control weight matrices {Rk}N−1

k=0 ≻ 0, respectively,
where {x(r)k }Nk=0 denotes a reference state trajectory.

Lastly, we assume that the control input uk is an affine
function of the measurement data, and define a control se-
quence {uk}N−1

k=0 to be admissible if it satisfies this property
over the entire horizon. This requirement is made to ensure
that the distribution of the state, and as a result the estimated
state, will be Gaussian over the time horizon, since as the
initial state x0 is Gaussian and the system dynamics and
measurements are linear in the state and input, then the
state will remain normally distributed. The stochastic optimal
control problem is now stated below.

Problem 1: For a given initial state distribution (5),
find the admissible control sequence π := {uk}N−1

k=0 that
minimizes the cost functional (7) subject to the dynamics
(1) and measurement model (2), such that the terminal state
satisfies (6).

III. KALMAN FILTER

For a normally distributed state that follows linear dynam-
ics and has a linear measurement model, the optimal observer
{Lk}N−1

k=0 that minimizes the H2 norm of the estimation error
{x̃k}Nk=0 over the time horizon is given by the Kalman filter
[23]. In the discrete-time setting for given step k, the filter
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updates the estimated state as follows. First, a time update
is made by propagating the previous estimated state forward
in time using the mean dynamics as

x̂k9 = Ak−1x̂k−1 +Bk−1uk−1. (8)

Then, the a priori estimated state at the current time step is
corrected using the current measurement as

x̂k = x̂k9 + Lk(yk − Ckx̂k9), (9)

where Lk is the Kalman gain given by

Lk = Σx̃k9C
⊺
k (CkΣx̃k9C

⊺
k +DkD

⊺
k)

−1, (10)

and the state estimation error covariance are similarly up-
dated according to the time and measurement updates

Σx̃k9 = Ak−1Σx̃k−1
A⊺

k−1 +Gk−1G
⊺
k−1, (11)

Σx̃k
= (Inx

− LkCk)Σx̃k9 (Inx
− LkCk)

⊺ + LkDkD
⊺
kL

⊺
k.

(12)

Remark 1: The state error process covariance is com-
pletely independent of the control law used, and only a
function of the observation model. Thus, it may be pre-
computed before the control optimization begins.
Following the discussion in [20], the estimated state process
may be rewritten as

x̂k+1 = Akx̂k +Bkuk + Lk+1ỹ(k+1)9 , (13)

where x̂0 = x̂09 + L0ỹ09 and {ỹk9}Nk=0 is defined as the
innovation process

ỹk9 := yk − E[yk|Fk−1], k ∈ N[0,N ], (14)

which is distributed as ỹk9 ∼ N (0,Σỹk9 ), where the
covariance of the innovation is

Σỹk9 := E[ỹk9 ỹ⊺
k9 ] = CkΣx̃k9C

⊺
k +DkD

⊺
k . (15)

Returning to (13), we have essentially converted the state and
observation process models, (1) and (2), respectively, with a
corresponding filtered state process with noise Lk+1ỹ(k+1)9 .
Lastly, minimizing the cost (7) is equivalent to minimizing
the following reformulated cost in terms of the estimated
state

J = E

[
N−1∑
k=0

(x̂⊺
kQkx̂k + u⊺

kRkuk)

]
− 2

N−1∑
k=0

µ⊺
kQkx

(r)
k .

(16)
See [20] for details on how to compute this equivalent
cost and the innovation process covariance. In terms of the
estimated state, the terminal constraints may be written as

x̂N ∼ N (µf ,Σxf
− Σx̃N

), (17)

from which we see that in order for Σxf
= ΣxN

, it follows
that Σxf

≻ Σx̃N
. The covariance steering problem is now

posed as follows.
Problem 2: Find the admissible control sequence π :=

{uk}N−1
k=0 that minimizes the cost functional (16) subject to

the filtered state dynamics (13) and terminal constraint (17)
for a given Σxf

≻ Σx̃N
.

IV. FILTERED STATE CONTROL DESIGN

We consider an affine filtered state feedback control
design of the form

uk = Kk(x̂k − µk) +mk, k ∈ N[0,N−1], (18)

where Kk ∈ Rm×n is the feedback gain matrix that controls
the covariance of the filtered state, and mk ∈ Rm is the feed-
forward term that controls the state mean. Using this control
structure, the objective function (16) may be rewritten as

J (Kk,mk) =

N−1∑
k=0

(
tr(QkΣx̂k

) + tr(RkKkΣx̂k
K⊺

k )

+ µ⊺
kQkµk +m⊺

kRkmk − 2µ⊺
kQkx

(r)
k

)
, (19)

which, equivalently, may be expressed as

J (mk,Kk) = Jµ(mk;µk) + JΣ(Kk; Σx̂k
),

Jµ(mk;µk) =
N−1∑
k=0

(
µ⊺
kQkµk +m⊺

kRkmk − 2µ⊺
kQkx

(r)
k

)
,

(20a)

JΣ(Kk; Σx̂k
) =

N−1∑
k=0

(tr(QkΣx̂k
) + tr(RkKkΣx̂k

K⊺
k )) ,

(20b)

that is, separable in terms of a mean cost Jµ and a covariance
cost JΣ. Plugging the control law (18) into the filtered state
dynamics (13) and computing the first two moments yields
the following mean and covariance dynamics of the filtered
state as follows

µk+1 = Akµk +Bkmk, (21a)
Σx̂k+1

= (Ak +BkKk)Σx̂k
(Ak +BkKk)

⊺

+ Lk+1Σỹ(k+1)9
L⊺
k+1. (21b)

Problem 2 is then equivalent to the following two sub-
problems, the first for the mean control, and the second for
the covariance control.

Problem 3: Find the sequence of mean controls
{mk}N−1

k=0 that solves the mean steering problem

min
mk,µk

(20a)

s.t. (21a), k ∈ N[0,N−1],

µ0 = µi, µN = µf .
Problem 4: Find the sequence of feedback gains

{Kk}N−1
k=0 that solves the covariance steering problem

min
Kk,Σx̂k

(20b)

s.t. (21b), k ∈ N[0,N−1],

Σx̂0
= Σx̂i

Σx̂N
= Σxf

− Σx̃N
.

The mean steering problem is a standard convex program,
and it is straightforward to compute the solution analytically,
thus we omit the discussion for this. The covariance steering
problem, however, is non-convex, due to both the covariance
dynamics (21b) and the nonlinear cost (20b), since the
filtered state covariance is part of the decision variables.
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To this end, by defining the new decision variables Uk :=
KkΣx̂k

, Problem 4 is equivalently written as

min
Uk,Σx̂k

JΣ =

N−1∑
k=0

(
tr(QkΣx̂k

) + tr(RkUkΣ
−1
x̂k
U⊺
k )
)

(22a)
s.t. AkΣx̂k

A⊺
k +BkUkA

⊺
k +AkU

⊺
kB

⊺
k

+ Lk+1Σỹ(k+1)9
L⊺
k+1 +BkUkΣ

−1
x̂k
U⊺
kB

⊺
k − Σk+1 = 0,

(22b)
Σx̂N

= Σxf
− Σx̃N

. (22c)

The optimization problem (22) is still non-convex due to the
presence of the UkΣ

−1
x̂k
U⊺
k terms in the cost and dynamics.

To this end, define Yk := UkΣ
−1
x̂k
U⊺
k and relax the problem

to

min
Yk,Uk,Σx̂k

JΣ =

N−1∑
k=0

(tr(QkΣx̂k
) + tr(RkYk)) (23a)

s.t. ∀k ∈ N[0,N−1],

C
(1)
k := UkΣ

−1
x̂k
U⊺
k − Yk ⪯ 0, (23b)

G
(1)
k := AkΣx̂k

A⊺
k +BkUkA

⊺
k +AkU

⊺
kB

⊺
k

+ Lk+1Σỹ(k+1)9
L⊺
k+1 +BkYkB

⊺
k − Σx̂k+1

= 0, (23c)

G
(2)
k := −Σx̂N

+Σxf
− Σx̃N

= 0. (23d)

The optimization problem (23) is now convex, since the
constraint (23b) can be written using the Schur complement
as the linear matrix inequality (LMI)[

Σx̂k
U⊺
k

Uk Yk

]
⪰ 0. (24)

Thus, the resulting problem becomes a semi-definite program
(SDP), which is convex and thus has a global minimum. The
optimal feedback gains may be recovered from the decision
variables as Kk = UkΣ

−1
x̂k

. It turns out the relaxation
imposed to get (23) is a lossless relaxation, which implies
that the solution to the relaxed problem (22) is equivalent to
the solution to the original problem (23), or more explicitly
that C(1)

k ≡ 0, ∀k ∈ N[0,N−1]. See [16] for the proof in
the full-state feedback case, which naturally extends to the
present case.

V. CHANCE CONSTRAINTS

In real-world applications, there is usually some kind of
domain X ⊂ Rnx ,U ⊂ Rnu that the state and control must
reside in, respectively. These domains represent the physical
limitations of the system, for example maximum propulsive
thrust of a rocket motor or pinpoint soft landing in a conical
state space. Due to the nature of the dynamics model (1),
the exogenous noise entering the system is unbounded, so
it is difficult to impose exact constraints on the state and
control input. To remedy this, we impose probabilistic, or
chance constraints, on the state and control, limiting the joint
probability of violating the constraints over the entire time
horizon.

For simplicity, we assume that the constraint spaces for
the state and input are modeled as polytopes, that is,

Xk := ∩Nx
c

i=1{x : α⊺
k,ix ≤ βk,i}, k ∈ N[1,N ] ⊂ Rn, (25a)

Uk := ∩Nu
c

i=1{u : a⊺k,iu ≤ bk,i}, k ∈ N[0,N−1] ⊂ Rm,

(25b)

where αk,i, ak,i ∈ Rn and βk,i, bk,i ∈ R. The following
discussion may also be applied to convex cone constraint
sets using the techniques outlined in [24]. We require that
the joint chance constraint over the time horizon is less than
a pre-specified threshold, i.e.,

P

(
N∧

k=1

xk /∈ Xk

)
≤ ∆x, (26a)

P

(
N−1∧
k=0

uk /∈ Uk

)
≤ ∆u, (26b)

where P(·) denotes the probability of an event, and ∆x,∆u ∈
(0, 0.5]. Given the polytope constraint spaces (25), the
chance constraints (26) can be written equivalently as

P

 N∧
k=1

Nx
c∧

i=1

α⊺
k,ixk > βi,k

 ≤ ∆x, (27a)

P

N−1∧
k=0

Nu
c∧

i=1

a⊺k,iuk > bi,k

 ≤ ∆u, (27b)

Using Boole’s inequality [25], one can conservatively de-
compose a joint chance constraint to the individual chance
constraints

P(α⊺
i,kxk ≤ βk,i) ≥ 1− δxi,k, k ∈ N[1,N ], i ∈ N[1,Nx

c ],

(28a)
P(a⊺i,kuk ≤ bk,i) ≥ 1− δui,k, k ∈ N[0,N−1], i ∈ N[1,Nu

c ],

(28b)

with
N∑

k=1

Nx
c∑

i=1

δxi,k ≤ ∆x,
N−1∑
k=0

Nu
c∑

i=1

δui,k ≤ ∆u, (29)

where δi,k ∈ [0,∆] represents the probability of violating
the ith constraint at time step k. For simplicity, in this
work we will assume that the risk allocations {δi,k} are
uniformly allocated and constant, i.e., δi,k = δ, ∀i, k, where
δ = ∆/(NNc).

Remark 2: By fixing the risk allocations, the resulting op-
timization problem is sub-optimal since the risks themselves
are decision variables. However, bi-level methods [24] have
been developed that jointly optimize the risk as well as the
control law while guaranteeing local optimality.
It can be shown that in the case the state and input are normal
random variables, the chance constraints (28) may be re-
written in terms of the first two moments

Φ−1(1− δxi,k)
√
α⊺
i,kΣxk

αi,k + α⊺
i,kµk ≤ βi,k, (30a)

Φ−1(1− δui,k)
√
a⊺i,kYkai,k + a⊺i,kmk ≤ bi,k, (30b)
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where Φ−1(·) is the inverse standard normal cumulative
distribution function. If the state and input are not Gaus-
sian, one may use various concentration inequalities [14] to
conservatively approximate the chance constraints. Note that
neither the state constraint (30a) nor the control constraint
(30b) are convex due to the square root of the decision
variables Σk and Yk, respectively.

In [15], the authors approximate the chance constraints
by linearizing around some reference values Σr and Yr,
respectively. This leads to a tractable convex program al-
beit a conservative one. Here, instead, we notice that the
chance constraints may be written as a difference of convex
(DC) functions. To this end, we can equivalently write the
constraints (30) by squaring both sides as

(Φ−1(1− δxi,k))
2α⊺

i,k(Σx̂k
+Σx̃k

)α⊺
i,k ≤ (βi,k − α⊺

i,kµk)
2,

(31a)
βi,k − α⊺

i,kµk ≥ 0, (31b)

(Φ−1(1− δui,k))
2a⊺i,kYkai,k ≤ (bi,k − a⊺i,kmk)

2, (31c)

bi,k − a⊺i,kmk ≥ 0, (31d)

where the constraints (31b) and (31d) are needed to enforce
the equivalence with (30). Further, (31a) and (31c) may be
written as

fx(Σx̂k
;αi,k, δ

x
i,k,Σx̃k

)− gx(µk;αi,k, βi,k) ≤ 0, (32a)

fu(Yk; ai,k, δ
u
i,k)− gu(mk; ai,k, bi,k) ≤ 0, (32b)

where f and g are both convex in the decision variables.
DC constraints may be handled by using the convex-concave
procedure (CCP) [26], which is guaranteed to converge to
a feasible point. Note that with the inclusion of chance
constraints, Problems 3 and 4 become coupled together,
since the constraints are a function of both the mean and
covariance decision variables.

VI. NUMERICAL EXAMPLE

We illustrate the output feedback covariance steering
(OFCS) algorithm on a double integrator system with horizon
N = 20 and ∆t = 0.2. The system dynamics are given by

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


∆t2/2 0

0 ∆t2/2
∆t 0
0 ∆t

 , (33)

with process noise matrix Gk = 0.01×I3. The measurement
model is given by Ck = [03×1, I3], meaning we are measur-
ing the last three states, and measurement noise matrix Dk =
diag(0.1, 0.003, 0.003). The initial state estimation and error
are given by Σx̂09

= diag(8, 9, 0.6, 0.6)× 10−2 and Σx̃09
=

diag(2, 1, 1.4, 1.4)× 10−2, respectively, and the initial state
mean is µ0 = [1.5, 3.5, 1.5, 8.5]⊺. The desired terminal state
distribution has mean µf = [10.5, 8.5, 0, 0]⊺ and covariance
Σxf

= diag(3, 3, 0.3, 0.3) × 10−2. Lastly, we enforce state
chance constraints where the polytope X is defined for
Nx

c = 2 half spaces given by α1 = [−0.25, 1, 0, 0]⊺, α2 =
[0.5,−1, 0, 0]⊺, and β1 = 6, β = −2.1, with a joint risk level

∆x = 0.02. We solve the resulting optimization problem
with the CCP using YALMIP [27] with MOSEK [28].

Figure 1 shows the evolution of the optimal 3-σ covariance
ellipses, where the grey area denotes the no-go region and
the white area denotes the safe region. We see that indeed the
chance constraints are satisfied, and the terminal covariance
constraint is met with equality. Also, note that near the con-
straint boundary, the feedback control successfully squeezes
the covariance of the estimated state in order to allow enough
margin for the full state to satisfy the chance constraints. We
also adjust the time horizon N and compare the run times
to that of the approach in [20].

(a) Optimal 3σ covariance ellipses for OFCS with no constraints.

(b) Optimal 3σ covariance ellipses for OFCS with chance con-
straints.

Fig. 1: Evolution of 3σ covariance ellipses for the true state,
estimated state, and state estimation error.

The proposed approach performs about an order of mag-
nitude faster than the batch approach, and scales better with
larger problem sizes. We also see that this method has more
consistent performance, as the standard deviations of the
solution run times are smaller. Further, we see that the batch
solution scales quadratically with the problem size, however
our method scales linearly. Specifically, for a large horizon
length N = 100 (20 seconds), the proposed solution is
almost a hundred times faster than the batch solution. As
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TABLE I: Statistics of solution times for varying horizon
lengths.

N 10 20 50 100

Block CS [20]

µ (ms) 25.17 71.14 535.44 3827.02

σ (ms) 1.84 1.50 8.28 38.67

Sequential CS

µ (ms) 6.43 10.43 27.52 47.83

σ (ms) 0.52 0.68 0.72 1.57

noted in [15], the terminal covariance constraints for the
SDP in (23) require only N − 1 LMIs of dimension m×m,
whereas the approach in [20] requires an LMI of dimension
(N + 2)n × (N + 2)n. In general, many smaller LMIs are
more efficiently solved compared to that of a single large
one.

VII. CONCLUSION

We have extended the recently developed computationally
efficient approach to solve the CC-CS problem to problems
with partial state information. The OFCC-CS problem is
posed as a convex program by first filtering the state using
a Kalman filter, and subsequently solving a CC-CS problem
for the estimated state evolution. We also introduce a new
approach to handle chance constraints by formulating them
as DC constraints and successively convexifying them using
the convex-concave procedure, leading to less conservative
optimal trajectories. Future work will aim to extend the
approach described in this work to a data-driven context,
where the system dynamics are assumed to be unknown, and
only data collected through experiment is used to perform
control design and synthesis.
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