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Abstract— In this work, we leverage physics-informed neural
networks (PINNs) to approximately solve the infinite-horizon
optimal control problem for nonlinear systems. Specifically,
since PINNs are generally able to solve a class of partial
differential equations, they can be employed to approximate the
value function in the infinite-horizon optimal control problem,
via solving the associated steady-state Hamilton-Jacobi-Bellman
(HJB) equation. However, the issue with such a direct approach
is that the steady HJB equation generally yields more than
one solution, hence directly employing PINNs to solve it can
lead to divergence of the method. To tackle this problem, we
instead apply PINNs to a finite-horizon variant of the steady-
state HJB equation which has a unique solution, and which
uniformly approximates the infinite-horizon optimal value func-
tion as the horizon increases. A method to verify whether the
selected horizon is large enough is also provided, as well as
an algorithm to increase it with reduced computations if it is
not. Unlike conventional methods, the proposed approach does
not require knowledge of a stabilizing controller, the execution
of computationally expensive iterations, or polynomial basis
functions for approximation.

I. INTRODUCTION

A common objective in control theory is the regulation of a
dynamical system’s state around some nominal point of oper-
ation. This objective is usually solvable through various and
possibly infinitely many control designs, but in practice only
a few of those are able to offer overall good performance,
in terms of the control effort expended over an infinite
horizon as well as the time taken to achieve regulation. The
problem of finding the best-performing such control design
is known as the infinite-horizon optimal control problem [1],
or alternatively as the optimal stabilization problem [2].

From a mathematical point of view, solving the
continuous-time infinite-horizon optimal control problem is
equivalent to finding the so-called optimal value function of
the problem, which is a solution of the steady-state HJB
partial differential equation (PDE) [1]. However, solving the
steady-state HJB is not straightforward; it is a nonlinear
equation that admits many solutions [3], and hence is difficult
to solve analytically. For this reason, considerable effort has
been made to at least find its solutions approximately [4]–[9].

In the core of many methods that approximately solve the
HJB equation is a procedure known as successive approxi-
mations, or policy iteration (PI) [4], [10]. This is an iterative
algorithm that converges to the positive-definite solution
of the steady-state HJB, and can be implemented using
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approximation structures [5], [10]. However, the iterative
nature of PI can lead to increased computational complexity,
and requires knowledge of an “initial admissible policy” that
can stabilize the system. While the latter is a requirement that
could possibly be relaxed, another drawback of PI and its
variations is that they are almost always inapplicable unless
the basis functions of the underlying approximator structure
are polynomials [11]–[13]. This can be a problematic issue
in practice, owing to the inherent global nature of polynomial
basis functions.

A vastly different and emerging approach that could be
used to solve the infinite-horizon optimal control problem,
is that of physics-informed neural networks (PINNs). In
particular, PINNs have been shown to be efficient in solving
a certain class of PDEs [14], and could thus be employed
to solve the underlying HJB equation of the optimal stabi-
lization problem, while avoiding all of the aforementioned
technicalities of PI. Indeed, this is an approach followed, for
example, in [15], where PINNs were used to solve the steady-
state HJB and compute the infinite-horizon optimal control
law. However, since this HJB has many solutions, and as
observed in [15], convergence can only be attained locally,
i.e., the initial weights of the PINN need to be properly pre-
trained. Otherwise, one may end up approximating a solution
to the steady-state HJB that is totally unrelated to the optimal
value function. Notably, [14] also points out that PINNs may
not work well when applied to PDEs with multiple solutions.

Contributions: Motivated by these limitations, in this paper
we develop a PINN-based procedure to approximate the
optimal value function of the infinite-horizon optimal control
problem, while avoiding convergence to other, unrelated
solutions of the underlying HJB equation. In particular,
since the steady-state HJB connected to the optimal control
problem has many solutions, we instead employ PINNs to
solve its finite-horizon variant that admits a unique solution.
We justify this choice by proving that the unique solution of
the finite-horizon HJB uniformly approximates the optimal
value function if the length of the horizon is sufficiently
large. A method to verify whether this horizon length is
indeed large enough is also provided, as well as a procedure
to extend it (in case it is not) with reduced computations.
The proposed method does not suffer from the drawbacks of
PI, which rarely works without polynomial basis functions,
requires knowledge of an initially admissible control policy,
and has to execute computationally expensive iterations.

Notation: The set R denotes the set of real numbers. The
operator ∇z is used to denote the gradient of a function, with
respect to the argument implied by z. For a Lebesgue mea-
surable set S, |S| will denote this set’s Lebesgue measure.
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II. PROBLEM FORMULATION

Consider the continuous-time system:

9xptq “ fpxptqq ` gpxptqquptq, xp0q “ x0, t ě 0, (1)

where xptq P Rn is the state vector, uptq P Rm is the control
input, and fp¨q : Rn Ñ Rn, gp¨q : Rn Ñ Rnˆm are the
system’s dynamics functions. To guarantee the existence and
uniqueness of solutions to (1), we assume that fp¨q, gp¨q are
locally Lipschitz on Rn. In addition, we assume fp0q “ 0,
so that the origin is an equilibrium point of (1) with u “ 0.

Given a feedback policy µ : Rn Ñ Rm, define its infinite
horizon performance cost as:

Jpx0, µq “

ż 8

0

´

Qpxpτqq ` r pµpxpτqqq

¯

dτ, (2)

where Q : Rn Ñ R is a positive definite function, rp‹q “

‹TR‹, R P Rmˆm is a positive definite matrix, and the
integration in (2) is over the trajectories of (1) under uptq “

µpxptqq. The integral (2) is well-defined for any x0 P Ω,
where Ω Ď Rn, if the policy µ is admissible on Ω. [5]

Definition 1. A control policy µ : Rn Ñ Rm is defined as
admissible on a set Ω Ď Rn, and denoted as µ P ΨpΩq, if
it is continuous on Ω with µp0q “ 0 and, given x0 P Ω,
u “ µ asymptotically stabilizes (1) to the origin and the cost
Jpx0, µq is finite. l

Given the cost (2), the infinite-horizon optimal control
problem is concerned with finding the admissible control
policy µ‹ that minimizes it, satisfying

µ‹pxq :“ arg min
µPΨpΩq

Jpx, µq, @x P Ω.

The corresponding minimum cost value is denoted as
V ‹pxq “ minµPΨpΩq Jpx, µq, and is known as the optimal
value function. In the case that this function is continuously
differentiable, an explicit expression can be derived for µ‹.
Specifically, by defining the Hamiltonian:

Hpx,∇xV pxq, µpxqq “ ∇xV
Tpxqpfpxq ` gpxqµpxqq

` Qpxq ` µTpxqRµpxq,

where V “ Jp¨, µq, and using the stationarity condition
BH
Bµ “ 0, one can derive

µ‹pxq “ ´
1

2
R´1gTpxq∇xV

‹pxq. (3)

An analogous expression for V ‹, though in a less explicit
form, can also be obtained. To this end, note that if a value
function V of a policy µ is continuously differentiable, then
it satisfies a Lyapunov-like equation [1] of the form

∇xV
Tpxqpfpxq ` gpxqµpxqq

` Qpxq ` µTpxqRµpxq “ 0, V p0q “ 0.

Substituting µ “ µ‹ in this equation leads to the so-called
Hamilton-Jacobi-Bellman (HJB) equation:

0 “ ∇xV
‹Tpxqfpxq ` Qpxq

´
1

4
∇xV

‹TpxqgpxqR´1gTpxq∇xV
‹pxq, V ‹p0q “ 0, (4)

a solution of which corresponds to the optimal value function
V ‹. It is evident that if (4) is solved with respect to V ‹,
then the optimal control µ‹ can be directly computed by
simply evaluating (3). Nevertheless, the task of obtaining
V ‹ from (4) is not a straightforward one. One of the main
difficulties in this direction is the fact that (4) is a nonlinear
partial differential equation that only implicitly describes V ‹.
Therefore, it is practically impossible to derive an analytical
expression of V ‹ from it, and most works of the literature
focus on solving it approximately [5], [6], [16]. However,
these works usually require either knowledge of an admissi-
ble control policy for (1), the execution of computationally
expensive iterations, or the use of polynomial basis functions
for the underlying approximation structure, all of which can
be restrictive requirements in practice.

Motivated by the aforementioned, the purpose of this
work is to propose an alternative method to approximate the
optimal value function V ‹, which imposes neither of the
aforementioned three requirements. The proposed method is
directly influenced by the method of physics-informed neural
networks (PINNs), which can approximate solutions to a
certain class of nonlinear PDEs.

III. A PINNS-BASED SOLUTION TO THE
INFINITE-HORIZON OPTIMAL CONTROL PROBLEM

In this section, we propose a scheme to approximate the
infinite-horizon optimal control µ‹ via the use of PINNs.
In this direction, one of the main difficulties is the fact
that the HJB equation (4) has multiple solutions, and only
one of them corresponds to the optimal value function
V ‹. Therefore, directly employing the method of PINNs to
solve this equation can be problematic [14], owing to the
possibility of the method converging to an unwanted solution.

A remedy to the above issue is possible if we take
into account that (4) is the steady state version of another
HJB equation, which admits only one solution. Specifically,
consider the following, time-dependent HJB equation:

0 “ ∇tVT px, tq ` ∇xV
T
T px, tqfpxq ` Qpxq (5)

´
1

4
∇xV

T
T px, tqgpxqR´1gTpxq∇xVT px, tq, VT px, T q “ 0,

where T ą 0. The unique solution VT to this PDE corre-
sponds to the optimal value function of the finite-horizon
version (2), namely of:

JT px0, µq “

ż T

0

´

Qpxpτqq ` r pµpxpτq, τqq

¯

dτ, (6)

where we note that the policy µ here is allowed to be time-
varying. Therefore, as T increases, it is expected (see next
section) that VT px, 0q will converge pointwise to V ‹pxq, for
all x P Rn. Accordingly, as T increases, it is expected that
the control policy µT : Rn ˆ r0, T s Ñ Rm that minimizes
(6), and is given by:

µT px, tq “ ´
1

2
R´1gTpxq∇xVT px, tq (7)

will approach µ‹ as T increases, i.e. that µT px, 0q will
converge pointwise to µ‹pxq for all x P Rn. One can thus
proceed to approximate µ‹ and V ‹, by solving (5) via the
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method of PINNs for a sufficiently large horizon T ą 0. Of
course, certain important questions arise when adopting this
approach; see the end of this section for more details.

In the direction of approximating the solution VT of (5)
with the method of PINNs, and following [14], define the
residual function for any vT : Ω ˆ r0, T s Ñ R:

Fepx, t; vT q “ ∇tvT px, tq ` ∇xv
T
T px, tqfpxq ` Qpxq

´
1

4
∇xv

T
T px, tqgpxqR´1gTpxq∇xvT px, tq, x P Ω, t P r0, T s,

where Ω is a compact set. This function is essentially a
residual of the PDE (5), and is equal to zero if and only
if vT is a solution to (5) for any boundary condition. In a
similar manner, another residual function is defined as

Fbpx; vT q “ vT px, T q, x P Ω,

which is equal to zero if and only if vT satisfies the boundary
condition of (5). Hence, it follows that vT is a solution to (5)
if and only if Fep¨, ¨; vT q and Fbp¨; vT q are identically zero.

To find a solution to (5), a neural network v̂T p¨, ¨;wq :
Ω ˆ r0, T s Ñ R is constructed, where w P RN denote the
network’s parameters, and Ω Ď Rn is a compact set where
approximation will take place. The parameters w are trained
by attempting to force the residuals Fepx, t; v̂T q, Fbpx; v̂T q

to be zero across a grid pxi
e, t

i
eq P Ωˆ r0, T s, i “ 1, . . . , Ne,

and xi
b P Ω, i “ 1, . . . , Nb. This is done by defining the

following mean square error (MSE)

MSE “ MSEe ` MSEb, (8)

where

MSEe “
1

Ne

Ne
ÿ

i“1

Fepxi
e, t

i
e; v̂T q2,

MSEb “
1

Nb

Nb
ÿ

i“1

Fbpxi
b; v̂T q2,

and training w so that the MSE given by (8) is minimized.
The name physics informed neural network is usually used
for the function Fep¨, ¨, v̂T q, because it is essentially a neural
network with the same parameters w as v̂T , but whose acti-
vation functions have been “informed” about the physics of
the system through the underlying HJB equation. Although
strict theoretical guarantees of convergence do not exist for
the method of PINNs, they have been empirically shown
to perform well when the solution to the underlying PDE
is unique and the neural network architecture is expressive
enough [14].

Apparently, in the context of PINNs, dealing with the
HJB equation (5) is much more convenient than handling
the HJB (4). Unlike (4), the HJB equation (5) is exactly
of the form for which PINNs have been developed [14]. In
addition, given that VT is continuously differentiable, then
it is certain that (5) admits only one solution, equal to VT ;
hence, the possibility of the PINN approximating a function
entirely different than VT is excluded. Nevertheless, simply
substituting the infinite-horizon HJB with a finite-horizon
one with a large horizon, and anticipating that the solution
VT p¨, 0q of the latter will be close to the solution V ‹ of the

former, could possibly prove to be a careless action. In that
respect, a couple of important questions must be answered
to validate such an approach:

1) As the horizon T increases, do the functions VT p¨, 0q

and µT p¨, 0q provide uniform approximations of the
optimal value function V ‹p¨q and control µ‹p¨q?

2) How can one evaluate, for a fixed T , whether the derived
control policy µT p¨, 0q is close enough to the infinite-
horizon optimal control policy µ‹p¨q? In addition, if it
is concluded that µT p¨, 0q and VT p¨, 0q are not close
enough to µ‹p¨q and V ‹p¨q, how can these functions be
used to obtain better ones without completely restarting
the training process of the PINN?

IV. UNIFORM APPROXIMATION OF V ‹ AND µ‹ USING
THE FINITE-HORIZON HJB

This section shows that as T increases, VT p¨, 0q indeed
provides a uniform approximation of V ‹p¨q. The following
theorem is the most important step towards this direction,
showing that VT p¨, 0q and µT p¨, 0q pointwise approximate
V ‹p¨q and µ‹p¨q.

Theorem 1. For all x P Rn, the sequence VT px, 0q is
increasing with respect to T and upper bounded by V ‹pxq,
i.e., for every real T2 ě T1 ą 0, it holds that:

VT1
px, 0q ď VT2

px, 0q ď V ‹pxq, @x P Rn.

In addition,

lim
TÑ8

VT px, 0q “ V ‹pxq,

lim
TÑ8

µT px, 0q “ µ‹pxq.

Proof. The proof is omitted due to space limitations.

Given the monotonicity and pointwise convergence prop-
erties stated in Theorem 1, it then follows using analysis
results that, in fact, VT p¨, 0q and µT p¨, 0q provide uniform and
almost uniform approximations of the optimal value function
V ‹p¨q and control µ‹p¨q, over any compact subset Ω Ă Rn.

Corollary 1. Let Ω Ă Rn be compact. Then, VT p¨, 0q Ñ

V ‹ uniformly and µT p¨, 0q Ñ µ‹ almost uniformly on Ω as
T Ñ 8, i.e., for every ϵ ą 0 there exists T ‹ ą 0 and a
measurable set Ωϵ Ă Ω with Lebesgue measure |Ωϵ| ă ϵ,
such that if T ě T ‹ then:

sup
xPΩ

|VT px, 0q ´ V ‹pxq| ă ϵ,

sup
xPΩzΩϵ

|µT px, 0q ´ µ‹pxq| ă ϵ.

Proof. From Theorem 1, the sequence of continuous func-
tions VT p¨, 0q is increasing and converges pointwise every-
where on Ω to the continuous function V ‹. Since Ω is
compact, it follows from Dini’s theorem that the mode of
convergence is uniform [17]. Next, since µT p¨, 0q converges
pointwise everywhere to µ‹ and the set Ω is Lebesgue
measurable with finite measure, it follows from Egorov’s
theorem [18] that for every ϵ ą 0 there exists a measurable
set Ωϵ Ă Ω with Lebesgue measure |Ωϵ| ă ϵ, such that
µT p¨, 0q converges uniformly to µ‹ on ΩzΩϵ.
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Combining Corollary 1 with the universal approximation
property of neural networks, we conclude that approximating
the finite-horizon value function VT with PINNs for a large
horizon T is a valid procedure towards estimating the infinite
horizon value function V ‹ over a compact set.

V. EVALUATING A GOOD HORIZON LENGTH T

In the previous section, the finite horizon value function
VT p¨, 0q was shown to uniformly approximate the infinite-
horizon one, namely V ‹. Therefore, employing the method of
PINNs to obtain an estimate of VT p¨, 0q is a valid procedure
towards obtaining an estimate of V ‹, as long as the horizon
length T is large. This brings forward another question: how
can we evaluate whether the horizon T is large enough, so
that µT p¨, 0q, VT p¨, 0q are close enough to µ‹, V ‹?

A natural way to check whether VT p¨, 0q is close enough
to V ‹ is by verifying whether it satisfies the infinite-horizon
HJB (4), since V ‹ is in fact a solution to that equation.
Towards this end, one can define the following flow residual:

Eepx;VT p¨, 0qq “ ∇xV
T
T px, 0qfpxq ` Qpxq

´
1

4
∇xV

T
T px, 0qgpxqR´1gTpxq∇xVT px, 0q. (9)

This is essentially an error indicating how far VT p¨, 0q is
from satisfying the infinite-horizon HJB (4) at the point x;
it is zero if and only if VT p¨, 0q solves (4) at this specific
point. Accordingly, one can define the boundary residual:

EbpVT p¨, 0qq “ VT p0, 0q,

which is zero if and only if VT p0, 0q “ 0, i.e. if and only
if VT p¨, 0q satisfies the boundary condition of the infinite-
horizon HJB (4). Therefore, by aggregating the residuals into
a single error term:

E “
1

Nc

Nc
ÿ

i“1

Eepxi
c;VT p¨, 0qq2 ` EbpVT p¨, 0qq2, (10)

where xi
c P Ω, i “ 1, . . . , Nc, a procedure to check whether

VT p¨, 0q provides a good approximation to V ‹ would be to
check how close E is to zero.
Remark 1. Since PINNs are used to approximate VT , only
an approximation V̂T of VT is available. Therefore, in
practice, one would only be able to compute the residuals
Ê “ 1

Nc

řNc

i“1 Eepxi
e; V̂T p¨, 0qq2 ` EbpV̂T p¨, 0qq2, and check

whether those are close to zero or not. Since V̂T would
only approximate VT , a nonzero residual may not necessarily
imply that T is not large enough, but it could mean that
the underlying neural network architecture is not expressive
enough to sufficiently approximate VT . l

In case that the horizon T is deemed to be small, by
means of the residual error E being large, then one can
increase this horizon to get a better approximation of V ‹.
In that respect, one could recompute VT 1 from scratch for
some larger horizon T 1 ą T by reemploying the PINNs
method of Section III over the larger domain Ω ˆ r0, T 1s Ą

Ω ˆ r0, T s. However, this can be a tenuous procedure, and
in fact unnecessary; instead, the value function VT that has
already been computed for a smaller horizon can be used as

an aid to find VT 1 , T 1 ą T , without resolving the whole
problem from scratch over r0, T 1s, but rather by solving
another smaller problem only over r0, T 1 ´ T s. To see this,
consider the finite-horizon cost functional, which is similar
to (6) but augmented with a terminal cost dependent on VT :

J 1px0, µq “

ż T 1
´T

0

´

Qpxpτqq ` r pµpxpτq, τqq

¯

dτ

` VT pxpT 1 ´ T q, 0q.

The optimal value function V 1 : Rn ˆ r0, T 1 ´ T s Ñ R and
control µ1 : Rn ˆ r0, T 1 ´T s Ñ Rm of this problem satisfy:

0 “ ∇tV
1

px, tq ` ∇xV
1Tpx, tqfpxq ` Qpxq

´
1

4
∇xV

1Tpx, tqgpxqR´1gTpxq∇xV
1px, tq, (11)

V 1px, T 1 ´ T q “ VT px, 0q,

and

µ1px, tq “ ´
1

2
R´1gTpxq∇xV

1px, tq. (12)

Notice that these two functions are defined only over t P

r0, T 1 ´ T s and not over t P r0, T 1s, and the same holds for
the corresponding PDE (11). In what follows, we show that,
in fact, V 1p¨, 0q “ VT 1 p¨, 0q and µ1p¨, 0q “ µT 1 p¨, 0q.

Theorem 2. It holds that V 1p¨, 0q “ VT 1 p¨, 0q, and µ1p¨, 0q “

µT 1 p¨, 0q.

Proof. The proof is omitted due to space limitations.

Based on Theorem 2, if one knows the value function
VT p¨, 0q for some horizon length T ą 0, then they can
compute the value function VT 1 p¨, 0q over a larger horizon
T 1 ą T by solving the PDE (11). This PDE is defined only
over a time length of T 1´T , so it is significantly less tenuous
to deal with than resolving the PDE (5) from scratch. In that
respect, if one needs to increase the horizon length T so that
VT p¨, 0q better approximates V ‹, it would be less tenuous to
apply the PINN method to (11), instead of applying it from
scratch to (5) for a larger horizon.

Remark 2. The PDE (11) can be approximately solved
similarly to (5), by sampling training points on the flow and
the boundary condition and defining a loss function of the
form (8). l

VI. SIMULATIONS

Consider a Van der Pol oscillator [19], with fpxq “
“

x1 ´x1 ´ 1
2x2p1 ´ x2

1q
‰T

and gpxq “
“

0 x1

‰T
, where

x “ rx1 x2sT is the state. If the infinite horizon performance
cost is chosen so that Qpxq “ x2

2 and R “ 1, then it is known
by the converse optimal control problem that the optimal
value function is given by V ‹pxq “ x2

1 `x2
2, and the optimal

control by µ‹pxq “ ´x1x2 [19]. Note that while Q is only a
positive semi-definite function, this is no issue as it is zero-
state observable.

A. Scheme Validation

To approximate V ‹ over the compact set Ω “ r´1, 1s ˆ

r´1, 1s, a 3-layer neural network is employed, where each
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Fig. 1. The learnt value function V̂2p¨, 0q (left) and the error from
optimality V̂2p¨, 0q ´ V ‹

p¨q (right), for T “ 2.
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Fig. 2. The learnt control policy µ̂2p¨, 0q (left) and the error from
optimality µ̂2p¨, 0q ´ µ‹

p¨q (right), for T “ 2.

layer consists of 150 neurons, with the corresponding ac-
tivation function chosen to be the hyperbolic tangent. This
network is trained by defining the loss function to be the
residual (8) of the finite-horizon HJB with horizon length
T “ 2, with Ne “ 10000 flow training points and Nb “

1600 boundary training points. This loss function is then
minimized using Adam’s algorithm [20], with an initial
learning rate equal to 0.01, decaying at a rate of 0.002 each
time a mini-batch of 100 flow training points is used. The
procedure terminates once the loss function becomes less
than 10´3 for each mini-batch.

The results can be seen in Figures 1-2. Figure 1 shows the
approximation of the finite-horizon value function V2p¨, 0q

as well as the distance of this approximation from the
optimal value function V ‹p¨q, while Figure 2 depicts the
same information regarding the control policy. In general, it
can be seen that while a modest approximation of V ‹p¨q and
µ‹p¨q is attained, the optimality gap is still large, because the
value of the horizon T was not chosen to be large enough.
This can also be verified by calculating the residual (10)
over Nc “ 400 testing points; its value is 0.0352, which is
35 times larger than the desirable threshold.

To derive a better approximation of V ‹p¨q and µ‹p¨q,
the estimates of V2p¨, 0q and µ2p¨, 0q are used to obtain
an estimate of V4p¨, 0q and µ4p¨, 0q using the method of
Section V, and this process is repeated 3 additional times
in order to derive an estimate of V10p¨, 0q and µ10p¨, 0q.
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Fig. 3. The learnt value function V̂10p¨, 0q (left) and the error from
optimality V̂10p¨, 0q ´ V ‹

p¨q (right).
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Fig. 4. The learnt control policy µ̂10p¨, 0q (left) and the error from
optimality µ̂10p¨, 0q ´ µ‹

p¨q (right).

The results can be seen in Figures 3-4. Figure 3 shows the
approximation of the finite horizon value function V10p¨, 0q

as well as the distance of this approximation from the
optimal value function V ‹p¨q, while Figure 4 depicts the
same information regarding the control policy. Evidently, the
computed functions approximate V ‹p¨q and µ‹p¨q much more
closely than the estimates of V2p¨, 0q and µ2p¨, 0q. This also
becomes clear after re-calculating the residual (10), the value
of which now is 0.00026 – more than 100 times smaller than
the value 0.0352 previously calculated.

B. Comparison with the Direct Approach

Next, we show that if we do not use the proposed approach
to approximate the optimal value function and control, but
instead employ the method of PINNs directly on the steady-
state HJB, then issues of convergence can arise. To this
end, we consider again the Van der Pol system of the
previous subsection, with the difference that the PINN is
now employed to directly approximate a solution of (4). All
parameters are chosen as in the preceding simulation, and the
approximated optimal value function V̂ and optimal control
µ̂ are shown in Figures 5-6.

Clearly, while convergence has been attained – at least
for the value function – in some areas of the state space, in
other areas the estimation is far from being accurate. Intuition
regarding this result can be obtained from Figure 7, which
shows the squared form Eepx; V̂ q2 of the flow residual (9).
We particularly observe that the PINN essentially approxi-
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2 of the flow residual (9), with

the direct approach.

mated a combination of solutions of the steady-state HJB:
the loss function is close to zero almost everywhere, apart
from what looks like an “1-dimensional” manifold where the
two solutions intersect. Because the area of this manifold
is quite small relative to the area of r´1, 1s ˆ r´1, 1s, the
mean squared error still managed to become less than 10´3,
leading to the termination of the learning procedure.

VII. CONCLUSION

This work utilized PINNs to solve the infinite-horizon op-
timal control problem. Because the underlying HJB equation

associated with this problem has many solutions, the method
of PINNs was employed on its finite-horizon variant instead,
which has a unique solution that uniformly approximates the
infinite-horizon value function. A method to verify whether
the length of the horizon is large enough was also provided,
as well as an algorithm to extend this horizon with reduced
computations. Future work includes extending the proposed
approach to solve differential games.
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