
On Nash Equilibria for Decentralized Symbolic Control
of Interconnected Finite State Systems

Giordano Pola, Elena De Santis and Maria Domenica Di Benedetto

Abstract— In this paper we consider a pair of interconnected
nondeterministic and metric finite state systems and address a
decentralized symbolic control problem where controllers are
designed for enforcing local specifications expressed in terms
of regular languages, up to a desired accuracy. The considered
control architecture is decentralized, i.e. each controller can
only communicate with the corresponding plant. Since plant
systems are interconnected, the part of the specification that
can be enforced on one system depends on the one on the other
system. We show how this dependency can be nicely formalized
in terms of equilibria and in particular, of Nash equilibria.
When controlled plants are at a Nash equilibrium, deviation of
each plant from its control strategy may correspond to a loss
in terms of the part of specification enforced. Algorithms are
proposed which converge, when an equilibrium exists, to Nash
equilibria.

keywords: Interconnected finite state systems, supervi-
sory control, regular languages, games, Nash equilibria.

I. INTRODUCTION

Decentralized control offers a compositional approach to
controllers’ synthesis that is effective in taming complexity
of large–scale real–world systems. Several decentralized con-
trol techniques have been proposed in the literature which
include decentralized stabilization and regulation [1], [2],
decentralized robust stabilization optimization and reliability
design [3], [4], [5], decentralized adaptive control [6], con-
sensus and formation control problems in multi–agent sys-
tems [7], [8], [9], applications to mobile robotics [10], [11],
decentralized supervisory control of discrete–event systems
(DES) [12], [13]. More recently, [14], [15] proposed decen-
tralized control algorithms based on discrete abstractions, for
enforcing global regular language specifications on networks
of discrete-time nonlinear systems. Work [16] addresses the
case of discrete abstractions for nonlinear systems with
disturbances. In this paper we consider a system that is
given by the interconnection of a pair of nondeterministic
and metric finite state systems and address a decentralized
symbolic control problem where two controllers, each one
sharing information only with corresponding plant system,
are designed to enforce up to a desired accuracy, a de-
sired local regular language specification. As discussed in
e.g. [17], [18], regular languages are useful for modeling
specifications of interest in cyber–physical systems. Since
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plants are interconnected, the part of the specification that
can be enforced on one system depends on the one on
the other system and hence, control strategies designed are
conflicting, in general. In this paper we resolve this issue
with a game theoretic approach. We propose a notion of
equilibrium between specifications so that, at equilibrium, a
control strategy of each player exists for enforcing a part of
the local specification, given the control strategy of the other
player, and vice versa. We then propose a stronger notion
of equilibrium, called Nash equilibrium, where a strategy
for each player maximizes the part of the corresponding
local specification enforced, given the maximizing strategy
of the other player, and vice versa. As a consequence, at a
Nash equilibrium, unilateral deviation of each plant from its
control strategy may correspond to a loss in terms of the
part of specification enforced. We propose algorithms that
converge, when an equilibrium exists, to Nash equilibria. An
approach based on game theory, as in this paper, was also
proposed in [19], [20] for designing controllers for enforcing
doubly robustly invariant equilibria on discrete–time linear
systems. Since each plant of the interconnected system
we consider is nondeterministic and metric, and symbolic
control problems require specifications to be met up to a
desired accuracy, the results we propose are also applicable
to the interconnection of purely continuous or hybrid systems
that can be approximated by nondeterministic metric finite
state systems. Literature in this regard is rather rich, see e.g.
[21], [17], [22] and the references therein. For example, [14]
proposes discrete abstractions for approximating networks
of discrete-time nonlinear systems with arbitrary topological
interconnection. A comparison with our previous work [15]
follows. While here we consider nondeterministic systems
and local specifications, [15] considers deterministic systems
and global specifications. Enforcing global specifications is
in general harder than enforcing local specifications. In fact,
in [15], local controllers are needed to agree in advance on
which word of the global specification to enforce. In our
problem setting instead, there is no need for the controllers
to adhere to some specific word, each controller takes care of
enforcing a local specification of its plant. As a consequence,
the overall specification enforced on the interconnected sys-
tem may be composed of collection of words rather than a
single word as in the case of [15].
This paper is organized as follows. Section II introduces no-
tation and preliminary definitions, Section III interconnected
systems and Section IV the notions of equilibria. Section V
proposes algorithms converging to Nash equilibria. Section
VI offers some concluding remarks. Most of the proofs of
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the results presented is omitted for lack of space.

II. NOTATION AND PRELIMINARY DEFINITIONS

Symbols N, R, R+ and R+
0 denote the set of non–negative

integer, real, positive real, and non–negative real numbers,
respectively. Given a, b ∈ N we set [a; b] = {x ∈ N | a ≤
x ≤ b}. Symbol ∧ denotes the logical conjunction and
∅ the empty set. Given a finite set X , 2X denotes the
power set of X , that is the collection of all subsets of X .
A set X is a partially ordered set (poset) if there exists
a relation on it satisfying the following properties for all
x1, x2, x3 ∈ X: (reflexivity) x1 � x1; (anti-symmetry) if
x1 � x2 and x2 � x1 then x1 = x2; and (transitivity)
if x1 � x2 and x2 � x3 then x1 � x3. We recall from
e.g. [13] some notions on formal language theory. Let Y
be a finite set representing the alphabet. A word over Y of
length l is a finite sequence y1 y2 ... yl of symbols in Y . The
concatenation of two words y1 y2 ... yl and yl+1 yl+2 ... yl′

is the word y1 y2 ... yl yl+1 yl+2, ..., yl′ . The empty word is
denoted by ε. The symbol Y ∗ denotes the Kleene closure
of Y , that is the collection of all words over Y including ε.
Similarly, given a word y over Y , the symbol {y}∗ denotes
the Kleene closure of word y, that is the collection of all
words, including the empty word, obtained by concatenating
y with itself, an arbitrary but finite number of times. A
language L over Y is a subset of Y ∗. We now recall the
notion of transition system:

Definition 1: A transition system is a tuple T =
(X,X0, U, - , Xm, Y,H), consisting of a set of states
X , a set of initial states X0 ⊆ X , a set of inputs U , a
transition relation - ⊆ X × U × X , a set of marked
states Xm ⊆ X , a set of outputs Y and an output function
H : X → Y .

A transition (x, u, x′) ∈ - of T is denoted by
x

u- x′. The evolution of transition systems is captured by
the notions of state, input and output runs. Given a sequence
of transitions of T

x(0)
u(0)- x(1)

u(1)- ... x(l − 1)
u(l−1)- x(l) (1)

with x(0) ∈ X0, the sequences

rX : x(0)x(1) ... x(l),

rU : u(0)u(1) ... u(l − 1), (2)
rY : H(x(0))H(x(1)) ... H(x(l)), (3)

are called a state run, an input run and an output run of
T , respectively. Length of rX and rY is l + 1 while length
of rU is l. Transition system T is said to be empty if the
set of initial states is empty, and symbolic/finite if X and U
are finite sets. The input language (resp. output language) of
T , denoted Lu(T ) (resp. Ly(T )), is the collection of all its
input runs (resp. output runs). The marked input language
(resp. marked output language) of T , denoted as Lum(T )
(resp. Lym(T )), is the collection of all input runs rU in (2)
(resp. output runs rY in (3)) such that the corresponding
transitions sequence in (1) is with ending state xl ∈ Xm.
A language L over a finite set U is said regular if there

exists a symbolic transition system T with input set U such
that L = Lum(T ). We also recall some unary operations
on transition systems naturally adapted from the ones given
for discrete event systems [13]. A transition system T ′ =
(X ′, X ′0, U

′, - ′, X ′m, Y
′, H ′) is said to be a sub-

transition system of T = (X,X0, U, - , Xm, Y,H),
denoted T ′ v T , if X ′ ⊆ X , X ′0 ⊆ X0, U ′ ⊆ U ,

- ′ ⊆ - , X ′m ⊆ Xm, Y ′ ⊆ Y and H ′(x) = H(x)
for all x ∈ X ′. The accessible part of T , denoted Ac(T ), is
the unique maximal1 sub-transition system T ′ of T such that
for any state x′ of T ′ there exists a state run of T ′ ending
in x′. By definition, if T is nonempty, Ac(T ) is accessible;
T is accessible if Ac(T ) = T . The co-accessible part of
T , denoted Coac(T ), is the unique maximal1 sub-transition
system T ′ of T such that for any state x′ ∈ X ′ there exists
a transition sequence of T ′ starting from x′ and ending in
a marked state of T ′. T is co-accessible if Coac(T ) = T .
The trim of T , denoted Trim(T ), is defined as Trim(T ) =
Coac(Ac(T )) = Ac(Coac(T )). By definition, Trim(T ), if
not empty, is accessible and co-accessible.

III. INTERCONNECTED FINITE STATE SYSTEMS

In this paper we consider two interconnected finite state
systems described by the difference inclusions:

Pi :

 xi(t+ 1) ∈ Fi(xi(t), x3−i(t), ui(t)),
xi(0) ∈ Xi,0, x3−i(0) ∈ X3−i,0,
xi(t) ∈ Xi, x3−i(t) ∈ X3−i, ui(t) ∈ Ui, t ∈ N,

(4)
with i = 1, 2, where xi(t) is state, and x3−i(t) and ui(t)
are the inputs at time t ∈ N, respectively; Xi, Xi,0 ⊆ Xi

and Ui are the finite sets of states, initial states and inputs,
respectively. Input x3−i(t) of Pi is state of P3−i. We suppose
that Xi is metric with metric di : Xi × Xi → R+

0 . Map
Fi : Xi ×X3−i × Ui → 2Xi is the state transition (possibly
partial) map. A state trajectory of Pi is a finite sequence of
states xi(0)xi(1) ... satisfying (4) for some finite sequence
of inputs x3−i(0)x3−i(1) ... and ui(0)ui(1) ... . It is easy
to see that P1 and P2 are nondeterministic, in general. In
this paper we consider a decentralized control architecture
so that a controller Ci is associated with plant Pi, and Ci
has only information about the state of Pi. Controllers C1

and C2 are dynamic and described by:

Ci :


zi(t+ 1) ∈ Gi(zi(t), xi(t)),
ui(t) ∈ hi(zi(t)),
zi(0) ∈ Zi,0,
zi(t) ∈ Zi, ui(t) ∈ Ui, t ∈ N,

(5)

with i = 1, 2, where zi(t) and ui(t) are the state and the
output at time t ∈ N, respectively; Zi, Zi,0 ⊆ Zi and Ui are
the finite sets of states, initial states and outputs, respectively.
Map Gi : Zi × Xi → 2Zi is the state transition (possibly
partial) map and hi : Zi → 2Ui is the output map and is
total. Note that Ci is nondeterministic because of Gi and
hi that are maps and not functions. This modeling choice

1Here, maximality is with respect to (w.r.t.) the pre–order naturally
induced by the binary operator v.
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Fig. 1. Interconnected finite state system Σ.

is rather common in symbolic control problems [17], [21]
and corresponds to the so–called maximal controller used
when computing controlled–invariant sets [23]. For i = 1, 2,
we denote by PCi

i the difference inclusion describing the
interconnection of Pi and Ci, resulting in:

PCi
i :


(xi(t+ 1), zi(t+ 1)) ∈ φi(xi(t), zi(t), x3−i(t)),
(xi(0), zi(0)) ∈ Xi,0 × Zi,0,
(xi(t), zi(t)) ∈ Xi × Zi,
x3−i(0) ∈ X3−i,0,
x3−i(t) ∈ X3−i, t ∈ N,

(6)
where:

φi(xi, zi, x3−i) =⋃
ui∈hi(zi(t))

(Fi(xi, x3−i, ui), Gi(zi, xi)),
(7)

for all (xi, zi, x3−i) ∈ Xi × Zi × X3−i. A state
trajectory of PCi

i is a finite sequence of states
(xi(0), zi(0)) (xi(1), zi(1)) ... satisfying (6) for some
finite sequence of states x3−i(0)x3−i(1) ... of P3−i. The
interconnection among systems P1, P2, C1 and C2 is
denoted by Σ, depicted in Fig. 1 and obtained by coupling
(6) for i = 1, 2, thus obtaining

Σ :



(x1(t+ 1), z1(t+ 1)) ∈ φ1(x1(t), z1(t), x2(t)),
(x2(t+ 1), z2(t+ 1)) ∈ φ2(x2(t), z2(t), x1(t)),
(x1(0), x2(0), z1(0), z2(0)) ∈

X1,0 ×X2,0 × Z1,0 × Z2,0,
(x1(t), x2(t), z1(t), z2(t)) ∈

X1 ×X2 × Z1 × Z2, t ∈ N.
(8)

A state trajectory of Σ of length l + 1 is a finite se-
quence of states (x1(0), x2(0), z1(0), z2(0)) (x1(1), x2(1),
z1(1), z2(1)) ... (x1(l), x2(l), z1(l), z2(l)) satisfying (8).

IV. GAMES AND EQUILIBRIA

In this section we introduce the notions of games and
equilibria. We consider a game with two players Pi. Each
player Pi is given with a specification Qi defined as a regular
language over alphabet Xi, i.e. Qi ⊆ (Xi)

∗. A strategy for
player Pi is given by a pair Si = (Ci,Ri) where Ci is the
controller associated with Pi, as in (5), and Ri ⊆ Xi,0×Zi,0
is the relation of initial states between Pi and Ci. The symbol
Si denotes the collection of strategies for player Pi. The goal
of each player i is to enforce specification Qi on plant Pi by
selecting suitable strategy Si ∈ Si. Reward function of each
player is formalized by the notion of part of specification
enforced, as follows.

Definition 2: For i = 1, 2, the part of the specification
Qi enforced by strategy Si = (Ci,Ri) ∈ Si, given strategy
S3−i = (C3−i,R3−i) ∈ S3−i, denoted by Qi(Si, S3−i), is

Inputs X1

X2 U1 1 3 5 7
2 a 3 - - -
2 b - 5 5,7 -
2 c - - 7 -
4 a 3 - - -
4 b - 5 5,7 -
4 c - - 7 -
6 a 3 - - -
6 b - 1 5 -
6 c - - 7 -
8 a 3 - - -
8 b - 1 5 -
8 c - - 7 -

TABLE I
TRANSITION MAP F1 .

Inputs X2

X1 U2 2 4 6 8
1 d 4 - - -
1 e - 6 6,8 -
1 f - - 8 -
3 d 4 - - -
3 e - 6 6,8 -
3 f - - 8 -
5 d 4 - - -
5 e - 2 6 -
5 f - - 8 -
7 d 4 - - -
7 e - 2 6 -
7 f - - 8 -

TABLE II
TRANSITION MAP F2 .

the collection of words q0 q1 ... ql ∈ Qi for which there exists
a state trajectory (x1(.), x2(.), z1(.), z2(.)) of Σ with length
l + 1, and initial state (x1(0), x2(0), z1(0), z2(0)) such that
(xi(0), zi(0)) ∈ Ri and (x3−i(0), z3−i(0)) ∈ R3−i, such
that the following inequality holds:

di(xi(t), qt) ≤ θi,∀t ∈ [0; l]. (9)

Note that there may exist pairs (Si, S3−i) ∈ Si × S3−i for
which Qi(Si, S3−i) = ∅. The collection of all Qi(Si, S3−i)
with Si ranging in Si is a poset when equipped with ⊆ and
admits the maximum element Qi. Equilibria in our game are
then formalized in the following

Definition 3: The pair (S1, S2) ∈ S1 × S2 is an equilib-
rium if Q1(S1, S2) 6= ∅ and Q2(S2, S1) 6= ∅. We denote
by E the collection of all equilibria in Σ.

The set E may be empty, in general. If E 6= ∅, the pair
(E ,⊆) is a poset. We can now introduce a special class of
equilibria that we call Nash equilibria.

Definition 4: An equilibrium (S1, S2) ∈ E is Nash if
(i) Q1(S′1, S2) ⊆ Q1(S1, S2), ∀S′1 ∈ S1;

(ii) Q2(S′2, S1) ⊆ Q2(S2, S1), ∀S′2 ∈ S2.

The intuition behind this definition is that whenever player
i deviates from a Nash equilibrium by selecting a different
strategy, the corresponding part of the specification Qi en-
forced on Pi may reduce. It corresponds mutatis mutandis
to the classical notion of Nash equilibrium but applied to
symbolic decentralized control of interconnected finite state
systems as the following remark points out.

Remark 1: In standard static two–players games, one is
given collection of strategies in sets V1 and V2 and a pair of
reward functions J1 : V1 × V2 → R and J2 : V2 × V1 → R,
and a Nash equilibrium for this game is given by a pair
(v1, v2) ∈ V1 × V2 for which J1(v′1, v2) ≤ J1(v1, v2) for all
v′1 ∈ V1 and J2(v′2, v1) ≤ J2(v2, v1) for all v′2 ∈ V2. In our
framework, reward functions Ji correspond to Qi ranging in
the poset 2Qi rather than in the totally ordered set R as in
the case of Ji.
We conclude this section with a simple example.

Example 1: Consider interconnected systems P1 and P2

given by X1 = X1,0 = {1, 3, 5, 7}, U1 = {a, b, c},

7833



X2 = X2,0 = {2, 4, 6, 8}, U2 = {d, e, f} and transition
partial maps F1 and F2 given in Tables I and II, respec-
tively. Tables read as follows: for example, F1(1, 2, a) =
{3} and F1(3, 2, a) is not defined. Consider a pair of
specifications Q1 = {1 1, 1 3, 3 5, 5 5, 5 7 } and Q2 =
{2 2, 2 4, 4 6, 6 6, 6 8 } and choose accuracies θ1 = θ2 = 0.
Since length of words involved in Q1 and Q2 is 2, it is
readily seen that in this case, controllers can be chosen as
static and of the form Ci : Xi → 2Ui , and Ri as subsets of
Xi,0, instead of relations. We get:
• Define relations R1 = {1} and R2 = {2}, and

controllers C1(1) = {a} and C2(2) = {d}. Define Si =
(Ci,Ri) ∈ Si, i = 1, 2. Since we get Q1(S1) = {1 3}
and Q2(S2) = {2 4}, then (S1, S2) ∈ E .

• Define relations R1 = {1, 5}, R2 = {2, 6}, and
controllers C1 and C2 such that C1(1) = {a}, C1(5) =
{b, c}, C2(2) = {d}, and C2(6) = {e, f}. Define
Si = (Ci,Ri) ∈ Si, i = 1, 2. Since we get
Q1(S1) = {1 3, 5 5, 5 7} and Q2(S2) = {2 4, 6 6, 6 8},
then (S1, S2) ∈ E . Moreover, this equilibrium is also
Nash. Indeed, other strategies available for Pi are given
by S′i = (C ′i,Ri) with C ′i specified by C ′1(1) = C1(1),
C ′1(5) ∈ {{c}, {b}}, C ′2(2) = C2(2), and C ′2(6) ∈
{{e}, {f}}. In all cases, conditions of Definition 4
are satisfied. In particular, for C ′1(5) = {c} we get
Q1(S′1) = {1 3, 5 7} and for C ′2(6) = {f} we get
Q2(S′2) = {2 4, 6 8}. As a by-product, it is readily seen
that pair (S′1, S

′
2) ∈ E and is not Nash.

V. RESULTS

In this section, we start by introducing the following local
problem, consisting in designing a strategy for Pi given a
strategy for P3−i. Then, the solution to this problem is used
to compute a Nash equilibrium for the interconnected system
(see Theorem 3).

Problem 1: (local symbolic control problem) Consider
plant Pi, accuracy θi ∈ R+

0 and specification Qi. Let strategy
S3−i = (C3−i,R3−i) ∈ S3−i for P3−i be given. Find a
strategy Si = (Ci,Ri) ∈ Si for Pi, such that specification
Qi is satisfied by Σ up to accuracy θi, i.e. for any state
trajectory (x1(.), x2(.), z1(.), z2(.)) of Σ with initial state
(x1(0), x2(0), z1(0), z2(0)) such that (xi(0), zi(0)) ∈ Ri
and (x3−i(0), z3−i(0)) ∈ R3−i and with length l + 1, there
exists a word q0 q1 ... ql ∈ Qi, such that inequality (9) holds.

Note that in the problem above, accuracy θi may be set
to 0, which corresponds to require specifications to be
enforced exactly; this is of interest when considering non-
metric finite state systems. As stressed in the introduction,
introducing metric of X and requiring specification to be met
approximately allows problem above to be also applicable
to purely continuous or hybrid systems admitting discrete
abstractions of the form of plants Pi, see e.g. [17], [21].
By using the results established in [15], it is possible to
associate a transition system TQi to specification Qi, called
dual transition system, specified by

TQi = (Xq,i, Xq,0,i, Uq,i,
q,i
- , Xq,m,i, Yq,i, Hq,i) (10)

with Yq,i = Xi, and satifying the following properties:

• TQi
is symbolic, trim and metric with metric di;

• the marked output language Lym(TQi) of TQi coincides
with Qi.

In the sequel, we denote a state of Xq,i by xq,i and a
transition of TQi

by xq,i
q,i
- x+q,i. Solution to Problem

1 is based on Algorithm 1. It takes as input, plant Pi,
specification Qi, strategy S3−i = (C3−i,R3−i). It gives as
output, strategy Si = (Ci,Ri). In lines 7, transition system
T c is introduced which is initialized in line 6. At the end,
pair (Ci,Ri) will be derived from T c. In line 8, relation Ri
is initialized to the empty set. In lines 11-15 for each state
(xi, xq,i, (x3−i, z3−i)) ∈ Xc we look for a control input
ui that can enforce specification Qi. More precisely, input
ui ∈ Ui is required to enjoy the following property: for
any next state x+i ∈ Fi(xi, x3−i, ui) there exists a transition
xq,i

q,i
- x+q,i such that di(x+i , Hq(x

+
q,i)) ≤ θi (line 10). If

such an input ui exists, set of states Xc and state transition

c
- are updated in lines 12-13. In line 16 trim of T c is

computed so that not accessible and not co-accessible states
are eliminated. In line 17 output of the algorithm is given,
the entities of which are detailed in lines 18 and 19. The
following results hold:

Proposition 1: Algorithm 1 terminates in a finite number
of steps.

Theorem 1: Output of Algorithm 1 solves Problem 1 w.r.t.
strategy S3−i = (C3−i,R3−i).

The following result is concerned with maximality of
strategies.

Theorem 2: Let Si = (Ci,Ri) be the output of Algorithm
1 with input Pi, specification Qi, and strategy S3−i =
(C3−i,R3−i). Then, Qi(S′i) ⊆ Qi(Si), for any S′i =
(C ′i,R′i) ∈ Si.

We now use Algorithm 1 to compute Nash equilibria. To
this purpose, we will make use of a function, denoted A,
associated to Algorithm 1, so that

Si = A(Pi, Qi, S3−i), (11)

if inputs and outputs of Algorithm 1 are (Pi, Qi, S3−i) and
Si, respectively. The following result provides a sufficient
condition for the existence of equilibria in terms of fixed
points associated with operator A.

Proposition 2: If (11) holds jointly with i = 1 and i = 2,
then

(Q1(S1, S2),Q2(S2, S1)) ∈ E . (12)

The converse implication of the result above is not true
because by Theorem 2, Qi(Si, S3−i) in (12) is the maximal
part of the specification Qi which can be enforced on Pi,
condition that is not needed in Definition 3 for equilibria. We
now provide algorithms for the computation of equilibria. In
general, equilibria for Σ do not exist. However, it is easy to
enforce trivial equilibria by appropriately modifying plants
Pi and specifications Qi, as follows. For i = 1, 2, given Pi
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input;1

Plant Pi;2

Specification Qi;3

Strategy S3−i = (C3−i,R3−i);4

init;5

Xc = Xc
0 := {(xi, xq,i, (x3−i, z3−i)) ∈ Xi,0 ×Xq,i,0 ×R3−i |di(xi, Hq(xq,i)) ≤ θi}; U c := Ui;

c
- := ∅;6

Xc
m := {(xi, xq,i, (x3−i, z3−i)) ∈ Xc |xq,i ∈ Xq,i,m}; Y c := Yq; Hc(xi, xq,i, (x3−i, z3−i)) := Hq(xq,i),
∀(xi, xq,i, (x3−i, z3−i)) ∈ Xc;
T c := (Xc, Xc

0 , U
c,

c
- , Xc

m, Y
c, Hc);7

Ri := ∅;8

foreach (xi, xq,i, (x3−i, z3−i)) ∈ Xc do9

if ∃ui ∈ Ui s.t. [ ∀x+i ∈ Fi(xi, x3−i, ui), ∃ xq,i q,i
- x+q,i s.t. di(x+i , Hq(x

+
q,i)) ≤ θi ]10

then11

Xc := Xc ∪
(⋃

(x+
3−i,z

+
3−i)∈φ3−i(x3−i,z3−i,xi)

{(x+i , x
+
q,i, (x

+
3−i, z

+
3−i))}

)
;12

c
- :=

c
- ∪ {((xi, xq,i, (x3−i, z3−i)), ui, (x+i , x

+
q,i, (x

+
3−i, z

+
3−i)))};13

end14

end15

T c := Trim(T c);16

output Strategy Si = (Ci,Ri) specified by17

controller Ci defined by Zi := Xc; Zi,0 := Xc
0 ;18

Gi((xi, xq,i, (x3−i, z3−i)), xi) :=

{
(x+i , x

+
q,i, (x

+
3−i, z

+
3−i)) ∈ Xc |

(xi, xq,i, (x3−i, z3−i))
ui

c
- (x+i , x

+
q,i, (x

+
3−i, z

+
3−i))

}
;

hi((xi, xq,i, (x3−i, z3−i))) :=
{
ui ∈ Ui | (xi, xq,i, (x3−i, z3−i))

ui

c
- (x+i , x

+
q,i, (x

+
3−i, z

+
3−i))

}
;

relation of initial states defined by Ri := {(x′i, (xi, xq,i, (x3−i, z3−i))) ∈ Xi ×Xc
0 |x′i = xi}.19

Algorithm 1. Design of strategy Si.

as in (4), define

Pi :


xi(t+ 1) ∈ Fi(xi(t), x3−i(t), ui(t)),
xi(0) ∈ Xi,0, x3−i(0) ∈ X3−i,0
xi(t) ∈ Xi, x3−i(t) ∈ X3−i,
ui(t) ∈ Ui, t ∈ N,

(13)

where Xi = Xi∪{xdi }, with xdi /∈ Xi a dummy state; Xi,0 =
Xi,0 ∪ {xdi }; X3−i = X3−i ∪ {xd3−i} with xd3−i /∈ X3−i
a dummy state; Fi(xi, x3−i, ui) = Fi(xi, x3−i, ui) for all
(xi, x3−i, ui) ∈ Xi×X3−i×Ui and Fi(xdi , x3−i, ui) = {xdi }
for all (x3−i, ui) ∈ X3−i × Ui. We equip Xi with a metric
dexti such that dexti (xi, x

′
i) = di(xi, x

′
i) for all xi, x′i ∈ Xi.

Given Qi, define

Qi = Qi ∪ {xdi }∗{xdi }, (14)

where we recall ∗ denotes the Kleene closure.
Definition 5: For i = 1, 2, let

Smin
i = (Cmin

i ,Rmin
i ) (15)

with Cmin
i in the form of Ci in (5) and specified by Zmin

i =
Zmin
i,0 = {xdi }, Gmin

i (xdi , x
d
i ) = {xdi }, hmin

i (xdi ) = Ui, and
let

Rmin
i = {(xdi , xd3−i)}. (16)

Proposition 3: Pair (Q1(Smin
1 ),Q2(Smin

2 )) is an equilib-
rium for plants P1 and P2.

Proof: Consider any state trajectory x(.) =
(x1(.), x2(.), z1(.), z2(.)) of Σ with initial state x(0) =
(x1(0), x2(0), z1(0), z2(0)) such that (x1(0), z1(0)) ∈ Rmin

1

and (x2(0), z2(0)) ∈ Rmin
2 , and controllers Cmin

1 and Cmin
2 .

By definition of Pi in (13) and of Cmin
i , we get xi(t) = xdi

for i = 1, 2 and all t ∈ N. As a consequence, by picking word
q0 q1 ... ql ∈ {xdi }∗{xdi } ⊆ Qi, inequality (9) is satisfied (for
θi = 0). Hence, Smin

i ∈ Si, which concludes the proof.

In the sequel we will work with plants Pi in (13),
specifications Qi as in (14) and metric dexti . Some remarks
in this regard are reported at the end of this section.
For the next developments we need to specialize to this
framework, the notion of maximal permissive controller,
often used in e.g. symbolic control.

Definition 6: For i = 1, 2, the maximal permissive con-
troller for plant Pi, denoted Cmax

i , is the controller of the
form (5) with Zi = Zi,0 = {zdi }, zdi is a dummy state,
Gi(z

d
i , xi) = {zdi } and hi(zdi ) = Ui.

We now have all the ingredients to define a sequence of
controllers and relations which is used later on to compute
Nash equilibria. For i = 1, 2 and k ∈ N, define the following
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recursive equations:

C3−i(0) := Cmax
3−i ;

R3−i(0) := X3−i × {zd3−i};
S3−i(0) := (C3−i(0),R3−i(0));
Si(k + 1) := A(Pi,Qi, S3−i(k));
S3−i(k + 1) := A(P3−i,Q3−i, Si(k)).

(17)

Sequence above alternates updating of strategies Si(k) with
those of strategies S3−i(k). Convergence of the sequences
Si(k), k ∈ N, i = 1, 2, is proven in the following

Proposition 4: There exists K ∈ N such that Si(k) =
Si(k + 1) for i = 1, 2 and for all k ≥ K.
Let K ∈ N be such that Si(k) = Si(k + 1) for i = 1, 2
and for all k ≥ K. We can now give the main result of this
paper.

Theorem 3: (Q1(S1(K), S2(K)),Q2(S2(K), S1(K)) ∈
E and is Nash.

Proof: By Proposition 4 and (17), we get

Si(K) = A(Pi,Qi, S3−i(K));
S3−i(K) = A(P3−i,Q3−i, Si(K)),

which, by Proposition 2, implies the statement.
Note that convergent strategies of recursive equations in

(17) depend on index i = 1, 2 by which (17) is initialized
and hence, corresponding Nash equilibria may be different.
We derived results for plants Pi in (13) and specifications Qi
in (14). This guarantees convergence of proposed algorithms.
Let Si(k) = (Ci(k),Ri(k)), k ∈ N. Note that state trajec-
tories of controlled systems P

Ci(K)
i and PCi(K)

i coincide
when initialized to Ri(K)\Rmin

i with Rmin
i as in (16). As

a consequence, if one is interested in deriving strategies for
enforcing Qi on Pi, and not Qi on Pi, it suffices to initialize
Pi with Ri(K)\Rmin

i and apply the controller Ci(K). We
conclude this section by coming back to

Example 1: (continued.) Since we know that equilibria
exist, we can work directly with Pi and Qi, instead of Pi
and Qi. We now apply recursive equations in (17) to Pi and
Qi starting from i = 1. For static controllers Ci(k) evaluated
in state xi we use here notation Ci(k;xi). For k = 0 we
obtain R2(0) = {2, 4, 6, 8}. For k = 1: C1(k) is specified by
C1(k; 1) = {a} and C1(k; 5) = {b, c}, and R1(k) = {1, 5};
C2(k) is specified by C2(k; 2) = {d} and C2(k; 6) = {e, f},
and R2(k) = {2, 6}. For k = 2 we get C1(2) = C1(1) and
R1(2) = R1(1); hence, fixed point is found and K = 2.
For i = 1, 2, we get Si(K) ∈ Si, Q1(S1(K), S2(K)) =
{1 3, 5 5, 5 7} and Q2(S2(K), S1(K)) = {2 4, 6 6, 6 8}. By
Theorem 4, pair (Q1(S1(K), S2(K)),Q2(S2(K), S1(K)) is
a Nash equilibrium. By reversing order of i = 1 and i = 2 in
the recursive equations (17) we get the same result. However,
this is a consequence of the symmetry in dynamics of the
plants P1 and P2. Note that these findings are consistent with
what discussed for this example on page 4.

VI. CONCLUSIONS

In this paper we proposed notions of equilibria and Nash
equilibria to study decentralized symbolic control problems
of interconnected nondeterministic and metric finite state

systems with regular language specifications. Algorithms
were designed which converge, when an equilibrium exists,
to Nash equilibria.
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