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Abstract— Unsupervised feature selection is a critical task in
data analysis, particularly when faced with high-dimensional
datasets and complex and nonlinear dependencies among
features. In this paper, we propose a family of Gram-Schmidt
feature selection approaches to unsupervised feature selection
that addresses the challenge of identifying non-redundant
features in the presence of nonlinear dependencies. Our method
leverages probabilistic Gram-Schmidt (GS) orthogonalization
to detect and map out redundant features within the data. By
applying the GS process to capture nonlinear dependencies
through a pre-defined, fixed family of functions, we construct
variance vectors that facilitate the identification of high-variance
features, or the removal of these dependencies from the feature
space. In the first case, we provide information-theoretic
guarantees in terms of entropy reduction. In the second case, we
demonstrate the efficacy of our approach by proving theoretical
guarantees under certain assumptions, showcasing its ability
to detect and remove nonlinear dependencies. To support our
theoretical findings, we experiment over various synthetic and
real-world datasets, showing superior performance in terms of
classification accuracy over state-of-the-art methods. Further,
our information-theoretic feature selection algorithm strictly
generalizes a recently proposed Fourier-based feature selection
mechanism at significantly reduced complexity.

I. INTRODUCTION

Feature selection, which is one of the main challenges
in machine learning and reduced-order modeling, is a set
of techniques used to reduce the number of features (or
dimensions) in a dataset, while retaining most of the important
information. The goal of feature selection is to simplify the
data and make it easier to analyze or visualize, while reducing
the computational complexity and memory requirements. The
main approaches to feature selection involves selecting a
subset of the original features based on some criteria, such
as correlation analysis or mutual information, so that the
selected features capture the most important information [1].

We focus on unsupervised feature selection, in which no
particular future use of the data is known at the time of
selecting the features (i.e., data with no labels). Feature
selection can be divided into three main approaches [2]:
(i) Filter methods, which select a subset of features as a pre-
processing step without involving a specific machine learning
model [3]; (ii) Wrapper methods, which involve the use of a
specific machine learning algorithm to evaluate the relevance
of feature subsets [4]; and (iii) Embedded methods, which
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integrate feature selection with the model training phase,
effectively selecting the most relevant features during model
optimization [5].

Information theory also plays a role in feature selection [6].
One common approach to feature selection using information
theory is to use mutual information, which measures the
amount of information that two variables share. To use mutual
information for feature selection, one would maximize the
mutual information between the data and the selected features,
or equivalently, seek selected features such that the conditional
entropy of the data given those features is minimized [7].

Many unsupervised feature selection algorithms exist.
For instance, Laplacian Score [8], [9], Fisher Score [10],
[11], and Trace Ratio [12] are similarity based techniques,
which assess the importance of features by their ability to
preserve data similarity; Multi-Cluster Feature Selection [13],
[14], Nonnegative Discriminative Feature Selection [15], and
Unsupervised Discriminative Feature Selection [16], [17] are
sparse-learning based methods, which assume sparsity and
employ lasso type minimization; and minimal-redundancy-
maximal-relevance [18], Mutual Information based Feature
Selection [19], and Fast Correlation Based Filter [20], are
information theoretic techniques, which maximize mutual
information between the original and selected features.

We aim at advancing the current feature selection literature
by finding new principled methods for feature selection which
capture nonlinear dependencies among the data. Specifically,
given a dataset drawn i.i.d from a random variable x =
(xi)

d
i=1 over Rd, we wish to reduce it to another dataset by

selecting few features (or columns), which capture as much
information about x as possible, while mapping out nonlinear
redundancies.

To this end, we propose a family of feature selection
algorithms which is based on orthogonalization process of
predefined family of redundancy functions. Specifically, our
algorithms begin by fixing a finite family of linearly indepen-
dent functions F in some unspecified (non-random) variables,
which presumably captures the anticipated dependencies in x.
Then, in an iterative process, the variables of F are specified
one-by-one as features of x (i.e, some xi’s), and the subset
of F which depends on already-specified variables undergoes
a Gram-Schmidt process over function spaces: specifying
the variables of F as some xi’s turns the functions in F
to random variables, on which inner-product between two
functions can be defined in natural way as the expectation
of their product, and then the Gram-Schmidt process can be
applied.

In turn, the Gram-Schmidt process over F enables to
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define new random variables dj—one at each iteration j
of the algorithm with d0 = x—by subtracting from x its
projections on functions in F whose variables were already
specified. These new random variables dj , in a sense, capture
whatever remains of x should one set to zero the part which
can be described by functions discovered so far. Additionally,
the dj’s give rise to variance vectors σj (a variance vector
of a random variable is the diagonal of its covariance matrix)
which provide insights into specifying the next variable of F ,
naturally, as the one which maximizes some form of variance.
This process is detailed in Section II.

This general framework is manifested in two complement-
ing ways. First, we present our Gram-Schmidt Functional
Selection (GFS, Section III) algorithm, which in the jth step
selects the most variant feature of the random variable dj ;
this can be done by analyzing the elements of σj . In this
part of the paper we borrow ideas from the recently proposed
Unsupervised Fourier Feature Selection (UFFS) due to [21]
and show that the selected features reduce the conditional
entropy of the data as a function of the dimension and a
threshold parameter. Moreover, in the special case where F
is chosen as the set of multilinear polynomials, our algorithm
reduces to that of [21], yet at significantly lower complexity.
Roughly speaking, the novelty which enables this complexity
reduction is that the orthogonalization of F is performed
variable-by-variable, rather than all at once as in [21], and
stops once sufficient informativeness has been reached.

Second, to better understand the theoretical underpinnings
of our first algorithm, we wish to characterize ideal settings
in which similar ideas result in perfect feature selection, i.e.,
in zero conditional entropy, and present our Gram-Schmidt
Feature Analysis (GFA, Section IV) algorithm. Specifically,
such ideal settings occur in cases where the dependencies lie
in the linear span of F , and they are variance reducing in
a way that will be defined formally later. In such settings,
we prove that our algorithm correctly identifies and removes
those dependencies. This algorithm also relies on analyzing
the variance vectors σj .

Finally, in section V, we apply the proposed algorithms
to synthetic and real-world datasets and show their superior
performance in comparison to state-of-the-art feature selection
algorithms. Section VI concludes the paper.

II. GRAM-SCHMIDT ORTHOGONALIZATION OVER
FUNCTION SPACES

Throughout this paper, we make use of the well known
Hadamard product, denoted by ⊕, where for two vectors x =
(xi)

n
i=1,y = (yi)

n
i=1 we have x ⊕ y = (xiyi)

n
i=1; simi-

larly x⊕2 = (x2
i )

n
i=1.

In this section, we develop the Gram-Schmidt (GS) orthog-
onalization process over function spaces and its schematic
description, upon which all our proposed algorithms are based.
All algorithms are presented with respect to a generic finite
family F of linearly independent functions chosen by the
user. This F needs to be chosen judiciously using domain
expertise; a discussion in this regard is given in the sequel,

and many examples of F’s which provide significant gains
in real-world datasets are given in Section V.

Throughout the orthogonalization process we denote x =
(x1, . . . , xd), where each xi ∈ R represents the unknown
random variable from which the data is sampled. That is, each
row of the data matrix D is sampled independently from x.
We begin by specifying a finite family of functions F in
(non-random) variables y1, . . . , yn, i.e., each f ∈ F is of
the form f(y1, . . . , yn) and n is the number of selected
features at the current iteration. We additionally assume
that f(y1, . . . , yn) = yi ∈ F for all i ∈ [n], i.e., F contains
the singleton functions.

Then, the orthogonalization process creates a new set of
random functions F̂ by

1) Taking linear combinations of the functions in F .
2) Substituting the non-random variables y1, . . . , yn with

random variables z1, . . . , zn, each of which is either one
of {xi}di=1. This makes each function in F̂ a random
variable.

3) The functions in F̂ are orthonormal, i.e., Ex[f̂ ĝ] is zero
if f̂ ̸= ĝ and one otherwise, for every f̂ , ĝ ∈ F̂ .

To clarify, every f̂ ∈ F̂ is of the form

f̂(z1, . . . , zn) =
∑
f∈F

αf,f̂f(z1, . . . , zn)

=
∑
f∈F

αf,f̂f(xs1 , . . . , xsn)

for some real coefficients {αf,f̂}f∈F , where s1, . . . , sn ∈
[d] (where [d] ≜ {1, 2, . . . , d}) are integers that denote the
selected features; the coefficients αf,f̂ may differ from one f̂

to another, and yet the si’s are identical for every f̂ ∈ F̂ .
The si’s are specified outside the orthogonalization process

(in the algorithms GFS and GFA in Section III and Section IV,
respectively), and in this section we focus on how the
orthogonalization is done for any choice of those integers.
Since the si’s are chosen one-by-one, we describe the
orthogonalization process in a similar fashion, i.e., variable-
by-variable.

To this end, we first partition F to subsets according to
the yi’s on which they depend, as follows. We say that a
function f ∈ F depends on yi if there exists α,β ∈ Rn,
different only in the ith entry, such that f(α) ̸= f(β). Further,
for J ⊆ [n] we let FJ ⊆ F be the set of functions which
depend only on variables contained in {yi}i∈J , and use the
abbreviated notation Fj ≜ F[j] (i.e., the functions in F which
only depend on y1, . . . , yj). Notice that f ∈ Fj can be written
more compactly as f(y1, . . . , yj) instead of f(y1, . . . , yn).
We partition F̂ similarly according to the dependence on
the zi’s.

Using these notations, in Algorithm 1 we present our
inductive orthogonalization algorithm. For some j ≥ 1 we
suppose that s1, . . . , sj were already chosen, and we show
how to create the function family F̂j (i.e., the orthogonalized
counterpart of Fj) from the already orthogonalized F̂j−1

and the non-random function family Fj \ Fj−1. Algorithm 1
follows a simple GS process over the function space; for

7701



F

x

d0

z1 = xs1

Subtract
F̂1

d1

z2 = xs2

Subtract
F̂2 \ F̂1

d2

σ1 = E[x⊕2]

dm−1

s1

s2
...
sm

σ2 = E[d⊕2
1 ] σ3 = E[d⊕2

2 ] σm = E[d⊕2
m−1]

Fig. 1: A schematic description of GFS and GFA. The variance vectors {σi}mi=1 are obtained iteratively by subtracting
orthogonalized functions in F whose variables zi were already specified as previously chosen features of x, computing the
new random variable dj’s, with σj’s representing their variance vectors. In GFS, these variance vectors are used to select the
most variant features in the new random variable dj in each iteration while in GFA, they are used to detect and remove
redundant features from the dataset.

each member of Fj \Fj−1, the algorithm substitutes the non-
random yi’s by the random variables zi (Line 6), subtracts
its projection on already-orthogonalized functions (Line 7),
normalizes (Line 8), and adds the result to F̂j (Line 8). After
the subtraction process we define a new random variable dj(x)
from x (Line 10, with d0(x) ≜ x), whose variance vector

σj+1 = diag(E[dj(x)dj(x)⊺]) = E[dj(x)⊕2]

is computed (Line 11) and returned to the calling algorithm (ei-
ther GFS or GFA) to compute the next selected feature sj+1.

Remark 1. We emphasize that the data distribution need not
be known. The random variable x, as well as functions com-
puted from it such as dj(x) and the functions in F̂ , are merely
symbolic variables. The only use of these symbolic variable is
in computing expectations, which in reality, are approximated
by empirical means. For instance E[x] and E[x⊕2] can be
approximated by E[x] ≈ 1

N

[∑N
i=1 Di,1, . . . ,

∑N
i=1 Di,d

]⊺
and E[x⊕2] ≈ 1

N

[∑N
i=1 D

2
i,1, . . . ,

∑N
i=1 D

2
i,d

]⊺
.

III. GRAM-SCHMIDT FUNCTIONAL SELECTION (GFS)

In Algorithm 2 below we propose Gram-Schmidt Func-
tional Selection (GFS), which at every step j uses the variance
vector σj to select the most variant feature of dj−1. If the
variance of this feature is less than some threshold ϵ2, the
algorithm stops, and otherwise it continues by specifying the
next zj as the highest variance feature of dj−1, which enables
the next call to “Orthogonalize.” Formal guarantees are then
given in terms of entropy reduction; that is, the conditional
entropy H(x|z) is bounded by a function of ϵ and d. These
guarantees require the random variable x to be over a finite
alphabet, and yet, experiments in Section V show significant
gains in real-world setting in which the data is continuous.
The information-theoretic guarantee of GFS is as follows.

Theorem 1. Let x be a random variable over a discrete
domain X d, for some X ⊆ R, and let xSϵ be the output
of GFS over a dataset in which every datapoint is sampled
independently from x. Then H(x|xSϵ) ≤ dO(ϵ).

Algorithm 1: Orthogonalize(F̂j−1,Fj \
Fj−1, {si}ji=1,D)

1: Input: An orthogonalized function family F̂j−1 in
random variables z1 = xs1 , . . . , zj−1 = xsj−1 , distinct
integers {si}ji=1 ⊆ [d], a function family Fj \ Fj−1 in
non-random variables y1, . . . , yj , and a data matrix D
whose rows are sampled i.i.d from x, in order to
approximate expectations using empirical means.

2: Output: Orthogonalized functions F̂j , and a variance
vector σj+1.

3: Initialize: F̂j = F̂j−1.
4: Denote Fj \ Fj−1 ≜ {fa, fa+1, . . . , fa+ℓ−1}

(with fa = yj), and let zj = xsj .
5: for k ← 0 to ℓ− 1 do
6: Let g ≜ fa+k(z1, . . . , zj) (a random function).
7: Let f̃a+k =

g −
∑

f̂∈F̂j−1
E[gf̂ ]f̂ −

∑k−1
r=0 E[gf̂a+r]f̂a+r.

8: Add f̂a+k = f̃a+k√
E[f̃2

a+k]
to F̂j .

9: end for
10: Define dj(x) = dj−1(x)−

∑
f̂∈F̂j\F̂j−1

E[xf̂ ]f̂ .
11: Define σj+1 = E[d⊕2

j ].
12: Return σj+1, F̂j .

To prove the theorem, let Sϵ be the features selected by
GFS, and let {σj}dj=m+1 be the variance vectors which result
from completing the orthogonalization which GFS started,
when the remaining variables {zj}dj=m+1 are set to {xj}j /∈Sϵ

in any arbitrary order.

Lemma 1. The vectors {σi}di=m+1 that are defined dur-
ing the completion of the orthogonalization of F satisfy
that ∥σi∥∞ ≤ ϵ2 for all i ∈ {m+ 1, . . . , d}.

The following technical statement is required for the
subsequent proof of Lemma 1.

Lemma 2. In GFS, we have the following.
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Algorithm 2: Gram-Schmidt Functional Selection
(GFS)

Input: Random variables x = (x1, . . . , xd)
⊺, a

function family F in non-random
variables y1, . . . , yd, threshold ϵ > 0, and a
data matrix D whose rows are sampled i.i.d
from x in order to approximate expectations
using empirical means.

Output: m (varying number) selected features
xSϵ = (xj)j∈Sϵ

.
Initialize j = 1, σ1 = E[x⊕2], d0(x) = x, and
F̂ = ∅, Sϵ = ∅.

for j ← 1 to d do
Let sj ≜ argmaxi∈[d]{σj,i}di=1, where
σj = (σj,i)

d
i=1.

if
∥∥σj

∥∥
∞ ≤ ϵ2 then

break.
else

Set zj = xsj and add sj to Sϵ.
end
σj+1, F̂j =

Orthogonalize(F̂j−1,Fj \ Fj−1,Sϵ,D)
end

(a) For i < j in [d] we have
σj = σi −

∑
f̂∈F̂j−1\F̂i−1

E[f̂x]⊕2.
(b) The integers s1, . . . , sm are distinct.

Proof of Lemma 2.(a). It is readily verified that dj−1(x) can
be written as

dj−1(x) = di−1(x)−
∑

f̂∈F̂j−1\F̂i−1

E[xf̂ ]f̂ , (1)

and that di−1(x) can be written as

di−1(x) = x−
∑

f̂∈F̂i−1
E[xf̂ ]f̂ . (2)

Hence, it follows from (1) that

σj = E[d⊕2
j−1]

= E
[(

di−1(x)−
∑

f̂∈F̂j−1\F̂i−1
E[xf̂ ]f̂

)⊕2
]

= σi −
∑

f̂∈F̂j−1\F̂i−1
E[f̂di−1(x)]⊕ E[xf̂ ]

−
∑

f̂∈F̂j−1\F̂i−1
E[f̂x]⊕ E[di−1(x)f̂ ]

+
∑

f̂∈F̂j−1\F̂i−1
E[xf̂ ]⊕2, (3)

where the last summand follows from the orthonormality of F̂ .
Further, it follows from (2) that every f̂ /∈ F̂i−1 satisfies

E[f̂di−1(x)] = E[f̂ · (x−
∑

ĝ∈F̂i−1
E[xĝ]ĝ)] = E[f̂x],

therefore (3) = σi−
∑

f̂∈F̂j−1\F̂i−1
E[xf̂ ]⊕2 as required.

Proof of Lemma 2.(b). Notice that for every i ∈ [d] and
every r ∈ [m] we have

σr,i = E[dr−1(x)
2
i ]. (4)

and since dr−1(x) = x−
∑

f̂∈F̂r−1
E[xf̂ ]f̂ , it follows that

(4) = E
[(

xi −
∑

f̂∈F̂r−1
E[xif̂ ]f̂

)2
]

(5)

That is, at the beginning of the rth iteration for any r, the
algorithm will find the maximizer sr over i of (5). Now,
observe that if i = sk for some k ∈ {1, . . . , r − 1}, i.e., if
the ith feature was already selected in an earlier iteration k,
then zk = xi. Since zk = z̃k +

∑
f̂∈F̂k−1

E[zkf̂ ]f̂ (Line 7 of
Algorithm 1), we have

(5) = E
[(

z̃k +
∑

ĝ∈F̂k−1
E[zkĝ]ĝ

−
∑

f̂∈F̂r−1
E[(z̃k +

∑
ĝ∈F̂k−1

E[zkĝ]ĝ)f̂ ]f̂
)2

]
= E

[(
z̃k +

∑
ĝ∈F̂k−1

E[zkĝ]ĝ

−
∑

f̂∈F̂r−1

(
E[z̃kf̂ ] +

∑
ĝ∈F̂k−1

E[zkĝ]E[ĝf̂ ]
)
f̂
)2

]
= E

[(
z̃k +

∑
ĝ∈F̂k−1

E[zkĝ]ĝ

−
∑

f̂∈F̂r−1
E[z̃kf̂ ]f̂ −

∑
ĝ∈F̂k−1

E[zkĝ]ĝ
)2

]
= E

[(
z̃k −

∑
f̂∈F̂r−1

E[z̃kf̂ ]f̂
)2

]
. (6)

Since z̃k is orthogonalized, it follows that

(6) = E[(z̃k − ẑk · ∥z̃k∥)2] = 0,

and hence the maximization problem will not select an index i
that was already selected at a previous iteration.

Proof of Lemma 1. According to the stopping criterion in
GFS, it follows that

∥σi∥∞ > ϵ2 for all i ∈ [m]; and

∥σm+1∥∞ ≤ ϵ2. (7)

Assume for contradiction that there exists i ∈ {m+1, . . . , d}
such that ∥σi∥∞ > ϵ2, and observe that i > m + 1, since
otherwise the existence of sm+1 contradicts (7). It follows
from Lemma 2.(a) that

σi = σm+1 −
∑

f̂∈F̂i−1\F̂m

E[f̂x]⊕2,

and therefore

∥σi∥∞ = σi,si = σm+1,si −
∑

f̂∈F̂i−1\F̂m

E[f̂xsi ]
2

(7)
≤ ϵ2 −

∑
f̂∈F̂i−1\F̂m

E[f̂xsi ]
2.

Therefore, since ∥σi∥∞ > ϵ2, it follows that

−
∑

f̂∈F̂i−1\F̂m

E[f̂xsi ]
2 > 0,

which is a contradiction since E[f̂xsi ]
2 ≥ 0 for every f̂ .
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Proof of Theorem 1. Let s1, . . . , sm be the features selected
by GFS, and let {sm+1, . . . , sd} = [d]\{s1, . . . , sm}. Further,
as in Lemma 1, let F̂ be the result of completing the orthogo-
nalization of Fm, done throughout GFS, to orthogonalization
of F in its entirety, where the variables z⊥ ≜ (zm+1, . . . , zd)
are specified as zi = xsi for all i ∈ {m + 1, . . . , d}. We
have,

H(x|z) = H({zi}di=1|{zi}mi=1)

=

d∑
i=m+1

H(zi|(zj)i−1
j=1), (8)

where the last equality follows from the chain rule for
information entropy. Since

z̃i = zi −
∑

f̂∈F̂i−1

E[zif̂ ]f̂ , (9)

it follows that

H(zi|(zj)i−1
j=1) = H(z̃i +

∑
f̂∈F̂i−1

E[zif̂ ]f̂ |(zj)i−1
j=1)

(a)
= H(z̃i|(zj)ij=1)

(b)

≤ H(z̃i), (10)

where (a) follows since the expression
∑

f̂∈F̂i−1
E[zif̂ ]f̂ is

uniquely determined by the variables z1, . . . , zi−1 (every f̂ ∈
F̂i−1 is a deterministic function of z1, . . . , zi−1, and the
coefficients E[zif̂ ] are constants), and (b) follows since
conditioning reduces entropy. Combining (8) with (10) we
have that H(x|z) ≤

∑d
i=m+1 H(z̃i), and hence it remains

to bound H(z̃i) for all i ∈ {m+ 1, . . . , d}.
To this end let i ∈ {m + 1, . . . , d}, define ai ≜

min{|z̃i(a)| : a ∈ X d, z̃i(a) ̸= 0} and amin =
min{ai}di=m+1, and observe that by Markov’s inequality we
have

Pr(z̃i(x) ̸= 0) = Pr(|z̃i(x)| ≥ ai) = Pr(z̃i(x)
2 ≥ a2i )

≤ E[z̃2i ]
a2i
≤ E[z̃2i ]

a2min

. (11)

Moreover, recall that

di−1(x) = x−
∑

f̂∈F̂i−1
E[xf̂ ]f̂ , and

σi = E[di−1(x)
⊕2],

and therefore

∥σi∥∞ = σi,si = E[di−1(x)
2
si ]

= E[(xsi −
∑

f̂∈F̂i−1
E[xsi f̂ ]f̂)

2]

= E[(zi −
∑

f̂∈F̂i−1
E[zif̂ ]f̂)2]

(9)
= E[z̃2i ].

Consequently, it follows that

(11) =
∥σi∥∞
a2min

Lemma 1
≤ ϵ2

a2min

.

Now, by using the grouping rule [6, Ex. 2.27] we have

H(z̃i) ≤ hb(ϵ
2/a2min) +

ϵ2

a2min

log |X |,

where hb is the binary entropy function. Finally, using the
bound hb(p) ≤ 2

√
p(1− p) ≤ 2

√
p, it follows that

H(x|z) ≤
∑d

i=m+1 H(z̃i)

≤ (d−m)(hb(ϵ
2/a2min) + (ϵ2/a2min) log |X |)

≤ (d−m)(2ϵ/amin + (ϵ/amin) log |X |) = dO(ϵ).

IV. GRAM-SCHMIDT FEATURE ANALYSIS (GFA)

To provide a more comprehensive picture regarding the
capabilities of our GS approach, in this section we analyze an
ideal setting in which our approach can reduce the conditional
entropy to zero, i.e., select the non-redundant features exactly.
To this end, in Algorithm 3 below we describe Gram-Schmidt
Feature Analysis (GFA) for detecting and removing redundant
features under certain idealized conditions. In each iteration j,
the algorithm begins by identifying the features of x in which
the random variable dj (see Algorithm 1) has no variance.
These features are then subtracted from the data to produce x̄,
and the most variant feature sj is identified via the variance
vector of x̄. The next call to “Orthogonalize” can then be
made.

Algorithm 3: Gram-Schmidt Feature Analysis (GFA)

Data: x = (x1, . . . , xd)
⊺ ∈ Rd, a function family F ,

an integer n ≤ d, and a data matrix D whose
rows are sampled i.i.d from x in order to
approximate expectations using empirical
means.

Result: Selected features S ⊆ [d].
Initialize σ1 = E[x⊕2], d0(x) = x, S = ∅,

and F̂ = ∅.
for j ← 1 to n do

Let E = {i|σj,i = 0} (or σj,i < δ for some
small δ in the empirical variant).

Define x̄ = x−
∑

i∈E xiei (where {ei}i∈[d] is the
standard basis).

Add sj ≜ argmaxi∈[d]\E(E[x̄⊕2])i to S.
σj+1, F̂j = Orthogonalize(F̂j−1,Fj \Fj−1,S,D)

end

We now prove that under certain probabilistic assumptions,
GFA correctly identifies and removes the redundant features
in the data exactly (i.e., H(x|z) = 0, where z is the set of se-
lected features). Generally speaking, suppose that x’s features
have some redundancy that can be described by spanF ; that
is, some latent variables determine some of the features, and
the remaining features are functions, from spanF , of those
latent variables. In such cases, it is clear that identifying the
latent variables correctly yields H(x|z) = 0. The required
probabilistic assumptions are that the redundancy functions
are variance reducing, in the following sense.
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Theorem 2. For positive integers d ≥ n, where n is
the number of non-redundant features, let F be a set
of functions in (non-random) variables y = (y1, . . . , yn),
let h1, . . . , hd ∈ spanF with hi(y) = yi for i ∈ [n], and let
w = (w1, . . . , wn) be random variables such that for every
j ∈ {n+ 1, . . . , d},

Var
(
hj(w)

)
< min

{i|hj depends on yi}
Var (wi) . (12)

Let x in Rd be a random variable of the form

x =
[
hπ(1)(w), . . . , hπ(d)(w)

]⊺
(13)

for some permutation π over [d], i.e., some n entries of x
are the latent random variables {wi}ni=1, and the remaining
ones are functions of those latent variables. Then, GFA with
input F and a data matrix drawn i.i.d from x outputs S =
{si}ni=1 such that {xsj}nj=1 = {hi(w)}ni=1 = {wi}ni=1,
i.e., it identifies the latent variables {wi}ni=1 correctly, and
therefore H(x|z) = 0, where z is the set of selected features.

Proof. The claim is proved by induction on the iteration
index j in GFA. For the base case j = 1, observe
that1 E = ∅ and x̄ = x, and hence s1 is the in-
dex of the largest entry of E[x⊕2]. Since E[x⊕2]

(13)
=

(Var(hπ(1)(w)), . . . ,Var(hπ(d)(w))), and since each redun-
dancy function in {hn+1, . . . , hd} has less variance than
the latent variables on which it depends (12), it follows
that s1 ∈ [d] satisfies

z1 = xs1
(13)
= hπ(s1)(w) = wπ(s1), (14)

i.e., one latent variable is identified correctly.
Now, the induction hypothesis is that the

selected s1, . . . , sj−1 ∈ [d] are distinct integers such
that zi = xsi = hπ(si)(w) = wπ(si) for i ∈ [j − 1] (similar
to (14)), i.e., that j−1 distinct latent variables were selected so
far. We wish to show that zj = xsj ∈ {wk}nk=1\{wπ(si)}

j−1
i=1 ,

i.e., that the next selected feature is a latent variable that was
not selected so far. We rewrite (13) as x =

∑d
i=1 eihπ(i)(w),

and then dj−1(x) can be written as

dj−1(x) = x−
∑

f̂∈F̂j−1

E[xf̂(z1, . . . , zj−1)]f̂(z1, . . . , zj−1)

= x−
∑

f̂∈F̂j−1

E[(
d∑

i=1

eihπ(i)(w))f̂(wπ(s1), . . . , wπ(sj−1))]·

f̂(wπ(s1), . . . , wπ(sj−1)). (15)

For i ∈ [d] let ℓi be the smallest integer such
that2 hπ(i) ∈ span{f1, . . . , fℓi}, which implies that hπ(i) =∑ℓi

a=1 E[hπ(i)f̂a]f̂a for every i since the f̂a’s are orthonormal.
Therefore,

dj−1(x)=x−
∑

f̂∈F̂j−1
E[(

∑d
i=1ei(

∑ℓi
a=1E[hπ(i)f̂a]f̂a))f̂ ]f̂ .

1We assume without loss of generality that the features of x have positive
variance.

2We order F so that F1 appears first, then F2 \ F1, then F3 \ F2, and
so on, with yj the appearing first among Fj \Fj−1 for every j, see Line 4
of Algorithm 1.

By denoting F̂j−1 = {f̂k}pk=1 we have

dj−1(x) =

= x−
∑p

k=1 E[(
∑d

i=1 ei(
∑ℓi

a=1 E[hπ(i)(w)f̂a]f̂a))f̂k]f̂k

= x−
∑p

k=1

∑d
i=1

∑ℓi
a=1 eiE[hπ(i)(w)f̂a]E[f̂kf̂a]f̂k

= x−
∑d

i=1

∑min{p,ℓi}
a=1 eiE[hπ(i)(w)f̂a]f̂a

=
∑d

i=1 ei

(
hπ(i)(w)−

∑min{p,ℓi}
a=1 E[hπ(i)f̂a]f̂a

)
. (16)

Clearly, whenever p > ℓi, the expression in the parentheses
in (16) equals zero, i.e., the ith entry of dj−1, as well
as its variance, are zero. By the definition of x̄, and by
the induction hypothesis, this implies that x̄ is equal to x
minus all eihπ(i) such that hπ(i) depends on a subset of
the variables wπ(s1), . . . , wπ(sj−1). By the definition of x,
the remaining entries of x̄ are either of the form wi

for i ∈ [n] \ {π(s1), . . . , π(sj−1)}, or of the form hi(w)
for i ∈ {n+ 1, . . . , d}, where hi(w) does not depends only
a subset of {wπ(s1), . . . , wπ(sj−1)}. Therefore, since each
such hi(w) depends on at least one additional variable wa

for a ∈ [n] \ {π(s1), . . . , π(sj−1)}, Eq. (12) implies that in
iteration j, the largest entry of E[x̄⊕2] must be a latent
variable, i.e., xsj = hπ(sj)(w) = wπ(sj), as required.
Completing n steps of this induction implies that {zi}ni=1 =
{wπ(si)}ni=1 = {wi}ni=1, which concludes the proof.

V. EXPERIMENTAL RESULTS

In this section, the theoretical results and performance of
the proposed algorithms are evaluated through simulation stud-
ies over synthetic and real-world datasets, where expectations
are approximated using empirical means. All experiments
were performed on a laptop with Intel(R) Core(TM) i9-9880H
CPU @ 2.30GHz and 64GB RAM.

A. Numerical Simulations for the Number of Selected Features
using GFS

We begin by demonstrating that selecting higher degree
multilinear polynomials as the redundant functions F leads
to a significant reduction in maximum variance of the random
variable dj(x) in each iteration. Consequently, this approach
effectively detects and removes more redundant features from
the datasets as the complexity of F increases. To support this
claim, we apply GFS with F being multilinear polynomials of
degrees 1, 2, 3, and 4, to the benchmark datasets taken from
UCI repository [22]. The properties of the tested benchmark
datasets are provided in Table I.

Dataset USPS COIL-20 Credit Approval (CA)
Features 256 1024 15
Samples 7291 1440 690

TABLE I: Properties of the tested benchmark datasets.

The number of selected features for different values of
the threshold ϵ2 and degree of the polynomials are shown in
Tables II-IV. As demonstrated in the experimental results, by
increasing the degree of multilinear polynomials, GFS selects
fewer features given the same threshold ϵ2.
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Degree of ϵ2

Polynomial 0.03 0.04 0.05 0.06 0.07 0.08
1 85 60 48 41 36 29
2 39 31 25 21 18 16
3 25 20 18 16 15 12
4 24 17 14 13 12 11

TABLE II: Number of selected features of GFS in USPS.

Degree of ϵ2

Polynomial 0.01 0.0125 0.015 0.0175 0.02
1 98 76 60 50 40
2 36 21 17 15 14
3 36 20 13 11 9
4 31 19 13 10 9

TABLE III: Number of selected features of GFS in COIL-20.

B. Experimental Results for Classification Accuracy of GFS

We turn to validate the performance of GFS for clas-
sification tasks on the benchmark datasets in Table I. In
Tables V-VII, we apply GFS with multilinear polynomials
up to degree 4, against several well-known feature selection
algorithms, i.e., Multi-Cluster Feature Selection (MCFS) [13],
Nonnegative Discriminative Feature Selection (NDFS) [15],
Unsupervised Discriminative Feature Selection (UDFS) [16],
Laplacian Score (LS) [8], Trace Ratio (TR) [12], and Fisher
Score (FS) [10]. The classification accuracy in the benchmark
datasets shows superior performance of GFS in comparison
to other algorithms.

We used a support vector machine classifier with radial
basis function as kernel. 5-fold cross-validation on the entire
datasets is used to validate the performance of the algorithms.
To implement MCFS, NDFS, UDFS, LS, TR, and FS, we used
skfeature-chappers package. The experimental results
show that GFS outperforms other state-of-the-art feature
selection algorithms in terms of classification accuracy.

C. Comparison of GFS and UFFS [21]

As mentioned earlier, for the special case of choosing F as
multilinear polynomials, GFS specifies to the Unsupervised
Fourier Feature Selection (UFFS) of [21], yet at significantly
reduced complexity. The reduction in complexity is due to
our step-by-step orthogonalization process (Algorithm 1), in
contrast to [21] which orthogonalizes all multilinear polyno-
mials. We corroborate GFS’s superiority over [21] in terms
of running time, the ability to capture redundant features,
and classification accuracy, over synthetic datasets. The
synthetic datasets we used include 10 independent normally
distributed random variables, i.e. w1, . . . , w10, and 20 redun-
dant features which are randomly taken from {wiwj}i,j∈[10]∪
{wiwjwk}distinct i,j,k∈[10]. We also considered three different
dataset sizes, 5000, 10000, and 50000. In all the following
comparisons between GFS and UFFS, we chose F =
{yi}i∈[10] ∪ {yiyj}i,j∈[10] ∪ {yiyjyk}distinct i,j,k∈[10] as the
function family in GFS.

a) Running Time: In Table VIII, the running time ratio
of the UFFS and GFS is compared for three different dataset
sizes. The results show that in average GFS is almost 27
times faster than UFFS.

Degree of ϵ2

Polynomial 0.1 0.4
1 14 13
2 13 12
3 13 12
4 13 12

TABLE IV: Number of Selected Features of GFS in CA.

Number of selected features
Method 24 17 14 13 12 11

GFS 92.62 89.27 85.10 83.73 82.25 79.60
MCFS 90.99 87.37 84.39 82.81 79.76 75.13
NDFS 89.48 82.84 78.38 73.98 72.92 69.98
UDFS 86.37 78.81 76.56 75.71 73.06 69.03

LS 85.21 80.94 76.59 75.59 74.12 73.36
TR 83.87 78.48 74.52 72.10 71.81 68.71
FS 83.87 78.93 74.39 74.02 71.81 68.71

TABLE V: Classification accuracy (%) over USPS.

Number of Selected Features
Method 31 19 13 10 9

GFS 90.76 87.08 84.72 81.18 78.19
MCFS 79.03 77.57 67.57 61.18 59.93
NDFS 87.78 83.89 81.94 77.64 75.76
UDFS 69.44 63.47 58.75 53.82 52.36

LS 68.47 65.28 57.08 49.86 48.40
TR 66.52 57.85 43.75 41.25 39.10
FS 59.23 56.32 43.02 41.20 38.90

TABLE VI: Classification accuracy (%) over COIL-20.

b) Capturing Redundant Features: To show that our
proposed GFS algorithm can capture nonlinear redundancies
better than UFFS, we performed the experiment reported in
Table IX, which shows that GFS tends to select a redundant
feature far less frequently than UFFS. UFFS selects at least
one redundant feature in all the experiments because datasets
contain quadratic functions, and UFFS fails to capture them.

c) Classification Accuracy: Finally, we added the labels

f(w1, . . . , w10) = sign

[∏
1≤j≤3

(
b0,j +

∑10
i=1 bi,jwi

)]
to the synthetic data, where bi,j ∼ Unif(0, 1) and mutually
independent. We selected the same number of features using
GFS and UFFS, and applied SVM (Table X).

D. Experimental Results for GFA

GFA’s correctness is proved formally in Theorem 2 for the
case that variances can be computed exactly. In this section it
is shown that the impact of approximating variances from data
is small. We tested GFA with F = {yi}i∈[10]∪{yiyj}i,j∈[10]∪
{yiyjyk}distinct i,j,k∈[10] on synthetic datasets with (n, d) =
(10, 20), where w1, . . . , w10 are mutually independent zero
mean normals with variance less than 1. The redundancies
are either taken from {wiwjwk}distinct i,j,k∈[10] (Table XI)
or appropriately scaled forms of {wiwj}i,j∈[10] (Table XII),
and as a result, it is easy to prove that the variance reduction
assumption in GFA holds.

VI. DISCUSSION

This paper presents a family of Gram-Schmidt methods
for unsupervised feature selection. The presented methods,
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Number of Selected Features
Method 13 12

GFS 84.20 (2nd best) 83.91 (2nd best)
MCFS 84.34 83.62
NDFS 83.62 83.47
UDFS 75.79 75.22

LS 84.05 84.20
TR 75.79 75.51
FS 75.80 75.51

TABLE VII: Classification accuracy (%) over CA.

Dataset Size 5000 10000 50000
tUFFS/tGFS 27.19 27.94 26.0

TABLE VIII: Running time ratio of GFS vs. UFFS.

Number of Experiments 10000
Dataset Size 5000 10000 50000

UFFS 100 100 100
GFS 24.59 24.22 23.94

TABLE IX: Comparison of GFS vs. UFFS in capturing nonlinear
redundancies. The numbers indicate the percentage of experiments
(%) in which the algorithms selected at least one redundant feature.

Dataset Size 5000 10000 50000
UFFS 72.43 72.94 73.07
GFS 75.06 75.46 76.19

TABLE X: Classification accuracy (%) of GFS vs. UFFS.

Number of Experiments 10000
Dataset Size 1000 5000 10000

Correct features (%) 94.59 98.15 98.99

TABLE XI: GFA with (n, d) = (10, 20) , where the redundancies
are arbitrary multilinear polynomials of the wi’s.

Number of Experiments 10000
Dataset Size 1000 5000 10000

Correct features (%) 100 100 100

TABLE XII: GFA with (n, d) = (10, 20) , where the redundancies
are scaled quadratic polynomials of the wi’s.

based on a Gram-Schmidt orthogonalization process, can
identify and remove nonlinear redundancies from the data
and select a subset of informative features. The algorithms
are coupled with theoretical guarantees, and experimental
results show significant improvements over state-of-the-art
feature selection algorithms.

We presented GFS, which requires very mild probabilis-
tic assumptions (existence of expectations), and provides
bounded entropy guarantees for discrete distributions (Theo-
rem 1). We also presented GFA, which shows that under
stricter probabilistic assumptions one can guarantee zero
conditional entropy using similar ideas. In a sense, GFA
can be viewed as “GFS in an idealized setting.” For future
research, it is interesting to see if one can weaken the variance
reduction assumption in order to get entropy bounds between
those of GFA and GFS.

The above experiments demonstrate clear competitive
edge against state-of-the-art feature selection mechanisms,
including [21]. The importance of choosing the right F ,

however, is conspicuous. For future research we propose
studying this connection further, and identifying other sets F
which provide good performance in various data domains.

REFERENCES

[1] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection
and feature extraction techniques in machine learning,” in 2014 science
and information conference. IEEE, 2014, pp. 372–378.

[2] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine
learning: A new perspective,” Neurocomputing, vol. 300, pp. 70–79,
2018.

[3] A. Bommert, X. Sun, B. Bischl, J. Rahnenführer, and M. Lang,
“Benchmark for filter methods for feature selection in high-dimensional
classification data,” Computational Statistics & Data Analysis, vol. 143,
p. 106839, 2020.

[4] M. M. Kabir, M. M. Islam, and K. Murase, “A new wrapper feature
selection approach using neural network,” Neurocomputing, vol. 73,
no. 16-18, pp. 3273–3283, 2010.

[5] S. Wang, J. Tang, and H. Liu, “Embedded unsupervised feature
selection,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, no. 1, 2015.

[6] T. M. Cover, Elements of information theory. John Wiley & Sons,
1999.

[7] M. Bennasar, Y. Hicks, and R. Setchi, “Feature selection using joint
mutual information maximisation,” Expert Systems with Applications,
vol. 42, no. 22, pp. 8520–8532, 2015.

[8] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,”
Advances in neural information processing systems, vol. 18, 2005.

[9] R. Huang, W. Jiang, and G. Sun, “Manifold-based constraint laplacian
score for multi-label feature selection,” Pattern Recognition Letters,
vol. 112, pp. 346–352, 2018.

[10] R. O. Duda, P. E. Hart et al., Pattern classification. John Wiley &
Sons, 2006.

[11] R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore,
“Relief-based feature selection: Introduction and review,” Journal of
biomedical informatics, vol. 85, pp. 189–203, 2018.

[12] F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan, “Trace ratio criterion
for feature selection.” in AAAI, vol. 2, 2008, pp. 671–676.

[13] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-
cluster data,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2010, pp. 333–
342.

[14] Y. Wang, Z. Zhang, and Y. Lin, “Multi-cluster feature selection based
on isometric mapping,” IEEE/CAA Journal of Automatica Sinica, vol. 9,
no. 3, pp. 570–572, 2021.

[15] Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, “Unsupervised feature
selection using nonnegative spectral analysis,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 26, no. 1, 2012, pp.
1026–1032.

[16] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, “L2, 1-norm
regularized discriminative feature selection for unsupervised,” in Twenty-
second international joint conference on artificial intelligence, 2011.

[17] F. Nie, Z. Wang, L. Tian, R. Wang, and X. Li, “Subspace sparse
discriminative feature selection,” IEEE transactions on cybernetics,
vol. 52, no. 6, pp. 4221–4233, 2020.

[18] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[19] R. Battiti, “Using mutual information for selecting features in super-
vised neural net learning,” IEEE Transactions on neural networks,
vol. 5, no. 4, pp. 537–550, 1994.

[20] L. Yu and H. Liu, “Feature selection for high-dimensional data: A
fast correlation-based filter solution,” in Proceedings of the 20th
international conference on machine learning (ICML-03), 2003, pp.
856–863.

[21] M. Heidari, J. K. Sreedharan, G. Shamir, and W. Szpankowski,
“Sufficiently informative and relevant features: An information-theoretic
and fourier-based characterization,” IEEE Transactions on Information
Theory, 2022.

[22] D. Dua and C. Graff, “Uci machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

7707


