
Adaptive Low-Rank Gradient Descent

Ali Jadbabaie, Anuran Makur, Amirhossein Reisizadeh

Abstract— Low-rank structures have been observed in several
recent empirical studies in many machine and deep learning
problems, where the loss function demonstrates significant vari-
ation only in a lower dimensional subspace. While traditional
gradient-based optimization algorithms are computationally
costly for high-dimensional parameter spaces, such low-rank
structures provide an opportunity to mitigate this cost. In this
paper, we aim to leverage low-rank structures to alleviate the
computational cost of first-order methods and study Adaptive
Low-Rank Gradient Descent (AdaLRGD). The main idea of this
method is to begin the optimization procedure in a very small
subspace and gradually and adaptively augment it by including
more directions. We show that for smooth and strongly convex
objectives and any target accuracy ϵ, AdaLRGD’s complexity
is O(r ln(r/ϵ)) for some rank r no more than dimension d.
This significantly improves upon gradient descent’s complexity
of O(d ln(1/ϵ)) when r ≪ d. We also propose a practical
implementation of AdaLRGD and demonstrate its ability to
leverage existing low-rank structures in data.

I. INTRODUCTION

Several recent empirical studies have demonstrated low-
rank structures in common empirical risk minimization prob-
lems including deep learning tasks [1]–[7]. Considering im-
age classification tasks as an example, [1] studies such low-
rank structures in different neural network models trained
with gradient-based methods over MNIST dataset with ten
classes. As Figure 1 (left) demonstrates, after only a few
training iterations of a fully connected neural network, more
than 90% of the gradient norm is encapsulated in a low-
rank subspace of the input space well before the convergence
(right). In this plot, the y-axis measures ftop defined as
the relative norm of the gradient vector at each iteration
projected onto a low-rank subspace corresponding to the top
ten leading eigenvectors of the Hessian matrix. Therefore, the
gradient vectors of dimension d = 784 live (almost entirely)
in a low-rank subspace of dimension r = 10. This example
suggests an opportunity to leverage such low-rank structures
in order to speed up the training of different machine learning
and deep learning problems.

Following this new line, our aim in this work is to leverage
low-rank structures in the objective function and mitigate the
computational cost of gradient-based optimization methods.
Problem setup. We consider the problem of minimizing an
objective function f : Rd → R, that is, minθ∈Rd f(θ). Our
goal is to find an ϵ-optimal solution θ such that f(θ)−f∗ ≤ ϵ,

The author ordering is alphabetical.
A. Jadbabaie and A. Reisizadeh are with the Laboratory for Information

& Decision Systems, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA (emails: {jadbabai,amirr}@mit.edu).

A. Makur is with the Department of Computer Science and the School
of Electrical & Computer Engineering, Purdue University, West Lafayette,
IN 47907, USA (email: amakur@purdue.edu).

Fig. 1: Fraction of the gradient in the top subspace (left),
training loss and test accuracy (right) (Figures from [1].)

where f∗ = minθ∈Rd f(θ) is the global optimum function
value, and the target accuracy ϵ > 0 is given. Throughout
the paper, we assume that f is differentiable, L-smooth, and
µ-strongly convex with condition number κ := L/µ.

In this paper, we focus on first-order methods to solve the
minimization problem described above, and particularly aim
to reduce the directional oracle complexity, i.e., number of
oracle calls, of such methods. One call to the directional
oracle of f along the unit vector direction u returns the
following real-valued derivative

∂uf(θ) := lim
t→0

f(θ + tu)− f(θ)

t
= ⟨∇f(θ),u⟩.

This oracle complexity metric is different from canonical
notions which measure the number of gradient computations,
each consisting of d directional derivative computations [8],
[9]. Indeed, we study an optimization algorithm that takes
such finer complexity into account.

Most recently, the above mentioned notion of directional
oracle complexity was employed in [10], where the authors
proposed the Low-Rank Gradient Descent (LRGD) algorithm.
LRGD leverages the low-rank structure in certain functions to
reduce the oracle complexity of canonical gradient descent
(GD) type methods. More precisely, it is shown in [10] that
LRGD is able to reduce the oracle complexity of GD, provided
that the objective function f is “approximately low-rank”
(i.e., the gradient vectors ∇f live in a rank-r subspace with
a small deviation). Roughly speaking, the LRGD method
first determines such an r-dimensional subspace, and then
performs first-order updates solely along these r directions.

However, LRGD is prone to certain drawbacks. Firstly,
since all iteration updates of LRGD take place in a smaller
and fixed r-dimensional subspace, there are always residual
errors (from the orthogonal subspace) which LRGD is unable
to handle. Secondly, the approximately low-rank condition
required for convergence of LRGD is fairly restrictive.

To mitigate these challenges, we study Adaptive Low-
Rank Gradient Descent (AdaLRGD) introduced in [10] in this
paper. The main idea of AdaLRGD is to begin with only a few

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 3315

significant directions of the parameter space and gradually
expand the size of this “active subspace”. More precisely,
AdaLRGD is an iterative method and consists of several
stages. During each stage, iterates are updated only along
directions of the active subspace. After a certain termination
condition is met, the dimension of the active subspace is
doubled in the next stage, and iterates continue to be updated
in the new and larger subspace. This procedure continues
until all d directions of the parameter space are activated or
the target accuracy is reached.

The AdaLRGD method does not require the objective
function to satisfy the restrictive low-rank conditions re-
quired by LRGD. However, AdaLRGD still demonstrates
significant benefit compared to GD for certain functions.
In particular, the total oracle complexity of AdaLRGD for
smooth and strongly convex functions with condition number
κ scales as O(κr ln(r/ϵ)), where the dimension r ≤ d is
determined by the function’s particular characteristics. This
significantly improves the oracle complexity of GD, which is
O(κd ln(1/ϵ)) [9], when r ≪ d.
Related work. As alluded in Figure 1 and its corresponding
discussion above, the Hessian matrix and its spectrum are
central to low-rank structures in certain applications such
as deep learning [1]. Indeed, several works have extensively
studied the spectrum of the Hessian matrix in deep learn-
ing applications and devised optimization algorithms that
incorporate “low-rankness” of the Hessian [11]–[18]. Other
applications of such low-rank structures in statistics and
machine learning include projection pursuit methods with
ridge functions [19], [20], principal component regression
[21], low-rank matrix completion [22].

Recently, a new line of research has attempted to utilize
such low-rank (and related smoothness) structure to improve
the computational complexity of gradient-based optimization
methods [1], [10], [23], [24]. This direction of exploiting
low-rank structure for optimization has been complementary
to the broader effort of improving the running times of
gradient-based methods [25]–[28].

II. ADALRGD ALGORITHM

In this section, we describe the AdaLRGD algorithm [10].
Consider the minimization problem minθ∈Rd f(θ) and fix an
orthonormal matrix U = [u1 · · ·ud] ∈ Rd×d. The AdaLRGD
algorithm consists of a number of stages indexed by s =
0, · · · , S, each including Ts iterations. We denote by θs,t
the tth iteration in stage s. Starting with stage s = 0, θ0 is
initialized and a small d0 ≪ d is picked as the dimension of
the active subspace for this stage. For simplicity, we assume
that d0 = 1 and d is a power of 2. Iterates of AdaLRGD
are updated as θ0,t+1 = θ0,t − η

∑d0

i=1 ∂ui
f(θ0,t)ui, in this

stage with stepsize η, initialization θ0,0 := θ0 and 0 ≤ t ≤
T0 − 1. In other words, the iterates are updated only along
the directions u1, · · · ,ud0

costing d0 directional gradient
computation as opposed to d ≫ d0 computations required
by each iteration of GD. After T0 iterations of stage s = 0,
the next one s = 1 is initialized with the last iterate of the
previous stage, i.e. θ1,0 := θ0,T0

. Moreover, the dimension

of the active subspace is doubled, that is, d1 = 2d0 = 2, and
the iterates are updated along directions u1, · · · ,ud1

for T1

iterations. This procedure continues till all total d directions
are included, or a target accuracy is reached. The procedure
is described in Algorithm 1. To fully characterize AdaLRGD,
we next elaborate on the choice of its parameters U, S, Ts.

Algorithm 1 Adaptive Low-Rank Gradient Descent (AdaLRGD)

Require: initialization θ0 ∼ ρ and rank d0, stepsize η, # of
stages S, # of itr./stage Ts, orthonormal U = [u1 · · ·ud]
for s = 0, · · · , S do

Initialize θs,0 = θs−1,Ts−1
▷ θ0,0 = θ0 for stage s = 0

Double the rank of the active subspace ds = 2ds−1

Pick active subspace u1, · · · ,uds

for t = 0, · · · , Ts − 1 do
Update θs,t+1 = θs,t − η

∑ds

i=1 ∂ui
f(θs,t)ui

end for
end for

A. Determining the parameters of AdaLRGD

In the following, we discuss how the parameters of
AdaLRGD are determined.

1) Number of iterations per stage Ts: Let us first set a
few notations which is central to our following discussions.
For fixed matrix U = [u1 · · ·ud] and θ ∈ Rd, let S(θ;Ur)
denote the r-dimensional affine subspace passing through θ
and spanned by Ur := [u1 · · ·ur], that is, S(θ;Ur) = θ +
span(Ur). We denote by ∆r, the expected suboptimality of
f when restricted to subspace S(θ;Ur), that is,

∆r := Eθ∼ρ[F
∗
r (θ)]− f∗, F ∗

r (θ) := min
θ′∈S(θ;Ur)

f(θ′). (1)

From this definition, optimizing the objective f in stage
s = 0 with initialization θ0 and restricted to rank-1 subspace
span(u1) yields the residual ∆1 in expectation. Therefore,
there is no point in optimizing the restricted function. Rather,
this stage is terminated after T0 iteration where the average
suboptimality is at most 2∆1, that is, E[f(θ0,T0

)] − f∗ ≤
2∆1. We will later show that running AdaLRGD in stage
s = 0 for T0 = κ ln(∆0/∆1) guarantees such suboptimality
where κ = L/µ denotes the condition number and η = 1/L
is the stepsize. The same logic is used in the following stages
to set the number of iteration per stage. Particularly, for each
stage 1 ≤ s ≤ S − 1, we show that running AdaLRGD for
Ts = κ ln(2∆ds−1/∆ds) iterations guarantees that the final
iterate of stage s is within 2∆ds of the optimal value f∗. We
defer the details to proof of Theorem 1.

2) Number of stages S + 1: The main parameters that
determine the total number of AdaLRGD’s stages are the
residuals ∆r and the target accuracy ϵ. In Theorem 1 we
show that if the target accuracy ϵ satisfies the condition ∆r ≤
ϵ/2 < ∆r/2 for some rank r, then AdaLRGD reaches an ϵ-
optimal solution in stage at most S = log(r) with TS =
κ ln(4∆dS−1

/ϵ) iterations (See Figure 2). Note that in the
worst case, this condition is satisfied with r = d as ∆d = 0.

3316

Fig. 2: Illustration of AdaLRGD.

3) Matrix U: As we will show in Theorem 1, AdaLRGD
can be run with any choice of matrix U. However, as we
elaborated above, both the target accuracy ϵ and residuals
∆r determine the number of stages, which are functions
of the choice of U. A poor choice of U would yield a
large number of stages S and hence large oracle complexity
which defies the purpose of AdaLRGD. Therefore, in order
for AdaLRGD to save in directional gradient computation,
it is critical that for small accuracy ϵ, the stopping criteria
∆r ≤ ϵ/2 < ∆r/2 is satisfied with as small rank r. Though it
remains a challenge to find such U in general, we will show
in Section III-A for special cases that mean gradient outer-
product (MeGO) matrix may indeed be a proper candidate
[29]. For a fixed distribution ρ over Rd, the MeGO matrix
C is defined as

C := Eθ∼ρ[∇f(θ)∇f(θ)⊤]. (2)

In Section IV, we discuss a practical implementation of
AdaLRGD by empirically approximating the MeGO matrix
in (2). There, we also propose a heuristic criteria to determine
the number of iterations per stage, i.e. Ts.

III. MAIN RESULTS

In this section, we characterize the oracle complexity of
the proposed AdaLRGD method and compare it with GD.

Theorem 1. Consider the optimization problem minθ f(θ)
for L-smooth and µ-strongly convex objective f with con-
dition number κ := L/µ. Assume that the target accuracy
ϵ satisfies the condition ∆r ≤ ϵ/2 < ∆r/2 for some rank
1 ≤ r ≤ d with residuals defined in (1). Then, the oracle
complexity of AdaLRGD in Algorithm 1 with stepsize η =
1/L is at most CAdaLRGD ≤ κr ln(2r∆0/ϵ).

Note that the oracle complexity of GD for the same
problem as described in Theorem 1 is CGD = κd ln(∆0/ϵ)
which scales linearly with dimension d. This is due to the fact
that GD computes d-dimensional gradient vectors in every
iteration while AdaLRGD avoids such costly computation by
starting from a small subspace and gradually expanding its
dimension. Moreover, there always exists rank r that satisfies
the condition ∆r ≤ ϵ/2 < ∆r/2 stated in the theorem. That
is, in the worst case when the target accuracy ϵ is very small,
r = d. Therefore, the complexity of AdaLRGD is no worse
than that of GD modulo the logarithmic factor.

The AdaLRGD method provides significant oracle com-
plexity gain (compared to GD) particularly for “low-rank”
functions. In the language of Theorem 1, such functions
satisfy the condition ∆r ≤ ϵ/2 < ∆r/2 for a small rank r
when the accuracy ϵ is small. In other words, the sequence of
residuals ∆0,∆1,∆2,∆4, · · · for such “low-rank” functions
admits a large gap ∆r/2 ≫ ∆r for a small r ≪ d.

The AdaLRGD method’s ability to reduce the oracle
complexity is however prone to a challenge which is char-
acterizing the residuals ∆r for general functions and distri-
butions. In the following, we discuss a simple and intuitive
examples in which such residuals are exactly characterized
and AdaLRGD provably slashes the oracle complexity.

A. Intuitive example: convex quadratic

In this section, we demonstrate the benefit of AdaLRGD
over GD for the case of quadratic objective as this particular
example lets us to characterize a tighter gain for the proposed
adaptive method. Consider the quadratic function f(θ) =
1
2 (θ − θ∗)⊤Q(θ − θ∗), where Q is positive definite and
admits the SVD Q = UΛU⊤ for diagonal matrix Λ =
diag(λ1, · · · , λd) with λ1 ≥ · · · ≥ λd. In Proposition 1,
we exactly characterize the residuals ∆r for initialization
particularly picked from the normal distribution around θ∗.

Proposition 1. For the convex quadratic form above with
λis as eigenvalues of Q and distribution θ0 ∼ N (θ∗, I), the
residuals for any 0 ≤ r ≤ d are ∆r = 1/2

∑d
i=r+1 λi.

This simple case of convex quadratic with the specified
initialization reveals a few insightful remarks. Firstly, the
exact characterization of the residuals in Proposition 1 de-
termines the number of iterations per stage, Ts, required by
AdaLRGD. Next, consider a fixed target accuracy ϵ and rank
1 ≤ r ≤ d that satisfy the condition ∆r ≤ ϵ/2 < ∆r/2. For
the case of quadratic function, this condition is equivalent to

λr+1 + · · ·+ λd ≤ ϵ < λr/2+1 + · · ·+ λd. (3)

According to Theorem 1, the total oracle complexity of
AdaLRGD to reach ϵ-accuracy is bounded by CAdaLRGD ≤
κr ln(2r∆0/ϵ), where ∆0 = 1/2

∑d
i=1 λi and κ = λ1/λd.

On the one hand, the accuracy ϵ is typically picked as small
as desired. On the other, small ϵ yields larger ranks r that
satisfy the condition (3) which further induces larger oracle
complexity for AdaLRGD. This tradeoff is indeed critical
to determine how much the proposed AdaLRGD is able
to save in oracle complexity compared to canonical GD.
The condition (3) implies that if the eigenvalues λis drop
“sharply”, then one might be able to satisfy (3) with small
ϵ and r as desirable. This particularly holds when λis drop
exponentially fast discussed in the following example.

Example 1. Consider the quadratic loss defined above where
the eigenvalues of the Q matrix drop exponentially fast. More
precisely, λi = 2−i for all 1 ≤ i ≤ d = 104. For any fixed
(normalized) accuracy ϵ/∆0, condition (3) yields the feasible
rank r which determines the number of stages and also the
total oracle complexity of AdaLRGD. Figure 3 demonstrates

3317

Fig. 3: Accuracy vs. oracle complexity
curves for quadratic loss.

Fig. 4: Total oracle complexity for lin-
ear regression with (n, d)=(103, 102).

Fig. 5: Eigenvalues of the covariate
matrix XX⊤ for MNIST digits {0, 8}.

the achievable accuracy-complexity pairs for both AdaLRGD
and GD. As demonstrated, AdaLRGD requires orders of
magnitude fewer calls to the directional oracle compared to
GD for the same target accuracy. This is mainly due to the
fast drop of the eigenvalues λi which makes the condition
(3) hold with small ϵ and r simultaneously. For any accuracy
ϵ/∆0, condition (3) yields the smallest rank r and thus
AdaLRGD’s complexity by Theorem 1. As demonstrated in
Figure 3, AdaLRGD requires an order of magnitudes fewer
oracle calls compared to GD.

IV. NUMERICAL SIMULATIONS

In the previous section, we elaborated in detail on the
case of quadratic loss function. Here, we provide more
evidence from real datasets and demonstrate the applicability
of AdaLRGD on different machine learning tasks.
Linear regression: We consider the linear regression problem
minθ∈Rd f(θ) = 1

2n∥Xθ− Y ∥2, where X ∈ Rn×d and Y ∈
Rn denote the feature and response variables for n = 1000
data samples with dimension d = 100. To embed the low-
rank structure in the objective function, we let the covariate
matrix be X = UV ⊤ where U ∈ Rn×R and V ∈ Rd×R are
low-rank random matrices with i.i.d. entries realized from
standard normal distribution. Here, the design parameter R
determines the efficient rank of X and we pick R = 10 in our
experiment. The response variables are then generated from
a linear model Y = Xθ∗+N where θ∗ = [1 · · · 1]⊤ denotes
the ground truth model and N is the matrix of small centered
Gaussian noises with variance 0.01. As discussed in Section
II, the AdaLRGD algorithm requires the orthogonal matrix U
denoting the direction of the subspaces used in each stage. A
practical implementation of AdaLRGD first identifies a fairly
good MeGO matrix U by the following approximation (See
(2)). AdaLRGD runs a few iterations–denoted by m–of GD
and stores the gradient vectors ∇f(θi) for i = 1, · · · ,m.
The SVD of following empirical MeGO matrix is then used
to determine the directions of the active subspace, i.e. the
U matrix in Algorithm 1: Ĉ = 1/m

∑m
i=1 ∇f(θi)∇f(θi)⊤.

Figure 4 demonstrates the decay of the training error (or
the function value) for GD and AdaLRGD with different
choices of the parameter m descried above. It is worth
noting that the cost of AdaLRGD on this figure includes
the initial gradient computation cost for computing the Ĉ

matrix. Lower picks for m induces less gradient computation
cost initially, however, the corresponding Ĉ matrix does
not accurately identifies the significant directions, hence,
AdaLRGD saturates in inaccurate subspaces till the last stage
where all the directions are involved and the training error
reaches the one for GD eventually. Nonetheless, a proper
pick such as m = 7 enables AdaLRGD to leverage the low-
rank structure in the objective and outperform GD. We also
monitor the function value and terminate each stage if such
improvement is less than a predefined threshold.
Low-rank structures in MNIST: Consider the problem of
linear least squares with covariate matrix X ∈ Rn×d and
response variables Y ∈ Rn where n denotes the number
samples. The optimization problem can be stated as fitting
the parameter vector θ ∈ Rd such that f(θ) = ∥Xθ − Y ∥22
is minimized which is a quadratic function of the input
θ. Therefore, the Hessian of the objective f is ∇2f(θ) =
X⊤X . Recall from our discussion in Section III-A that
AdaLRGD manifests significant computation reduction (com-
pared to GD) when there is a “sharp” decay in the eigenvalues
of ∇2f . To examine this, we pick n = 11774 samples from
MNIST dataset consisting of the two digits 0 and 8 [30].
Here, the dimension of the parameter is d = 784. Figure 5
demonstrates the fast decay of the normalized eigenvalues of
X⊤X , further highlighting the inherent low-rank structures
in data. For instance, in order to reach 0.01-optimal solution
of the least square problem above, AdaLRGD will return the
desired parameter after involving only r = 224 directions.

V. PROOF OF MAIN RESULTS

A. Proof of Theorem 1

As described in Algorithm 1, AdaLRGD is run through
stages denoted by s = 0, 1, 2, · · · . For any stage s, let us
denote by ds and {θs,t : t = 0, 1, 2, · · · , Ts} the dimension
of the active subspace and the iterates of AdaLRGD, respec-
tively. Here, Ts is a positive integer denoting the number
of iterate updates in stage s. For simplicity of presentation,
we assume that d0 = 1 and d = 2S for some positive
integer S. Recall that 1 ≤ r ≤ d is the rank satisfying
∆r ≤ ϵ/2 ≤ ∆r/2. We will later show that AdaLRGD
requires only R := log(r) stages analyzed in the following.

Stage s = 0. The first stage is initialized with θ0,0 = θ0
where θ0 ∼ ρ. Moreover, the active subspace of this stage

3318

is Ud0
= U1 = [u1]. According to AdaLRGD, the iterates

of the first stage are θ0,t+1 = θ0,t − ηU1U
⊤
1 ∇f(θ0,t), for

t = 0, 1, · · · , T1 − 1. Given an orthonormal basis U for Rd,
any fixed θ ∈ Rd and dimension 1 ≤ r ≤ d, we define the
function Fr(·; θ) : Rr → R as follows

Fr(ω; θ) := f
(
θ +Ur(ω −U⊤

r θ)
)
, ∀ω ∈ Rr. (4)

Lemma 1. (i) Let Fr denote the function f restricted to
subspace S(θ;Ur) as defined in (4). Then, Fr is L-smooth
and µ-strongly convex, as is f by assumption.

(ii) Consider stage s of the AdaLRGD algorithm with
iterates {θs,t : t = 0, 1, · · · } generated with stepsize η and
subspace rank ds. We denote by {ωt : t = 0, 1, · · · } GD iter-
ates on Fds

generated by the same stepsize η and initialized
with ω0 := U⊤

ds
θs,0, i.e., ωt+1 = ωt−η∇Fds(ωt; θs,0). Then,

for every iteration t = 0, 1, · · · , we have ωt = U⊤
ds
θs,t.

Particularly for rank r = 1 and stepsize η = 1/L, the
convergence of the iterates {θ0,t} is as follows

f(θ0,t)− F ∗
1 (θ0,0) ≤ e−t/κ

(
f(θ0,0)− F ∗

1 (θ0,0)
)
.

This yields that after T0 iterations in stage s = 0,
the final suboptimality is bounded as f(θ0,T0

) − f∗ ≤
e−T0/κ

(
f(θ0,0)−f∗)+F ∗

1 (θ0,0)−f∗. The only randomness
here is the initialization θ0,0 = θ0 ∼ ρ. Therefore,

E[f(θ0,T0
)− f∗] ≤ e−T0/κE[f(θ0,0)− f∗]

+ E[F ∗
1 (θ0,0)− f∗] = e−T0/κ∆0 +∆1.

To determine T0, we balance the tow terms in the RHS of
the above equation, i.e. e−T0/κ∆0 = ∆1 which yields that
T0 = κ ln(∆0/∆1), and E[f(θ0,T0)]− f∗ ≤ 2∆1.

Stage 1 ≤ s ≤ R − 1. As described in Algorithm 1,
the rank of the active subspace is doubled in each stage
which implies that ds = 2ds−1 = 2s. Moreover, we initialize
each stage with the final iterate of the previous stage, that is,
θs,0 = θs−1,Ts−1

. By similar arguments made in stage s = 0
and employing Lemma 1, after Ts iteration in stage s, the
final expected suboptimality can be bounded as follows

E[f(θs,Ts
)− f∗] ≤ e−Ts/κE[f(θs,0)− F ∗

ds
(θs,0)]

+ E[F ∗
ds
(θs,0)− f∗]. (5)

Next, we bound each of the two terms in the RHS of (5)
separately. The first term can be bounded as follows

E[f(θs,0)− F ∗
ds
(θs,0)] ≤ E[f(θs,0)]− f∗

= E[f(θs−1,T−1)]− f∗ ≤ 2∆ds−1
, (6)

where we used the initialization rule and the fact that 2∆ds−1

upper bounds the suboptimality of the final iterate of the
previous stage. The second term in the RHS of (5) is bounded
as follows which is stated and proved in Lemma 2,

E[F ∗
ds
(θs,0)− f∗] = E[F ∗

ds
(θ0)]− f∗ = ∆ds

. (7)

Lemma 2. Consider AdaLRGD with initialization θ0 ∼ ρ
and stage s with initialization θs,0. Then, for any s, we have

Eθ0 [F
∗
ds
(θs,0)]− f∗ = Eθ0 [F

∗
ds
(θ0)]− f∗ = ∆ds

.

where F ∗
r (θ) :=minθ′∈D(θ0;r) f(θ

′) for any θ and 1 ≤ r ≤ d.

Putting (6) and (7) together with (5) yields that
E[f(θs,Ts

)]−f∗ ≤ 2e−Ts/κ∆ds−1
+∆ds

. Balancing the two
terms above yields the required number of iterates for stage
s and its final suboptimality as Ts = κ ln(2∆ds−1/∆ds), and
E[f(θs,Ts)]− f∗ ≤ 2∆ds . Note that the suboptimality of the
final iterate in stage R − 1 is at least 2∆dR−1 ≥ ϵ which
may not be as small as desired.

Stage s = R. First note that after TR iteration in
this stage, the suboptimality is bounded as E[f(θR,TR

)] −
f∗ ≤ 2e−TR/κ∆dR−1

+∆dR
. Second, given the assumption

∆R ≤ ϵ/2, it suffices to run this stage of AdaLRGD
for TR = κ ln(4∆dR−1

/ϵ) iterations, which together with
the assumption ∆dR

≤ ϵ/2 yields the final suboptimality
E[f(θR,TR

)]− f∗ ≤ ϵ/2 + ϵ/2 = ϵ.
Total oracle complexity of AdaLRGD. Note that in each

stage 0 ≤ s ≤ R, AdaLRGD updates the iterates for Ts itera-
tion each costing ds = 2s (directional) gradient computation.
Putting all together yields the total oracle complexity

CAdaLRGD =

R∑
s=0

dsTs ≤ κ ln
(∆0

∆1

)
+

R−1∑
s=1

2sκ ln
(
2
∆ds−1

∆ds

)
+ κ2R ln

(
4
∆dR−1

ϵ

)
≤ κr ln

(
2r

∆0

ϵ

)
.

B. Proof of Lemma 1
(i) For θ′ := θ0+Ur(ω−U⊤

r θ0), gradient and the Hessian
of Fr (with respect to ω) are ∇Fr(ω; θ0) = U⊤

r ∇f(θ′) and
∇2Fr(ω; θ0) = U⊤

r ∇2f(θ′)Ur. For any ω′ ∈ Rr,

ω′⊤∇2Fr(ω; θ0)ω
′ = ω′⊤U⊤

r ∇2f(θ′)Urω
′

≤ L∥Urω
′∥2 = L∥ω′∥2,

where we used the facts that (i) U⊤
r Ur = I and (ii) the

eigenvalues of the Hessian of f are at most L, i.e. ∇2f(θ′) ⪯
LI for any θ′. Similarly, one can verify that for any ω′ ∈ Rr,
we have that ω′⊤∇2Fr(ω; θ0)ω

′ ≥ µ∥ω′∥2 which yields that
µI ⪯ ∇2F (ω; θ0) ⪯ LI. In other words, Fr(·; θ0) is also µ-
strongly convex and L-smooth.

(ii) Let us denote r = ds and drop the subscript s from
all the indices for simplicity of notation. By our defined
initialization, we have ω0 = U⊤

r θ0. Now, for some k ≥ 0,
assume that ωt = U⊤

r θt for all 0 ≤ t ≤ k. Then, the next GD
iterate k+1 we can write ωk+1 = ωk−η∇F (ωk; θ0) = ωk−
ηU⊤

r ∇f
(
θ0+Ur(ωk−U⊤

r θ0)
)
. The argument of ∇f(·) here

can be rewritten as θ0+Ur(ωk−U⊤
r θ0) = θ0+Ur(U

⊤
r θk−

U⊤
r θ0) = θk + Ur⊥U

⊤
r⊥(θ0 − θk) = θk which implies

that ωk+1 = ωk − ηU⊤
r ∇f(θk) with Ur⊥ := [ur+1 · · ·ud].

On the other hand, AdaLRGD’s iterates can be written as
θk+1 = θk−ηUrU

⊤
r ∇f(θk). All in all, we have U⊤

r θk+1 =
U⊤

r θk − ηU⊤
r UrU

⊤
r ∇f(θk) = ωk − ηU⊤

r ∇f(θk) = ωk+1

which concludes the induction lemma.

C. Proof of Lemma 2
The claim holds for s = 0 by definition. Consider any

s ≥ 1 and fix θ0. Recall from definition that

F ∗
ds
(θ0)= min

θ∈S(θ0;Uds)
f(θ), F ∗

ds
(θs,0)= min

θ∈S(θs,0;Uds)
f(θ). (8)

3319

where we denote S(θ;Ur) := θ + span(Ur) for any θ and
r. Next, we show that the two subspaces S(θ0;Uds) and
S(θs,0;Uds) are indeed equal. To do so, first note that all the
iterates of stage s = 0 live in S(θ0;U1). Particularly for the
final iterate of stage s = 0 (which is equal to the first iterate
of stage s = 1), θ1,0 = θ0,T0

∈ S(θ0;U1). Similarly, all the
iterates of stage s = 1 live in S(θ1,0;U2). Given the fact that
θ1,0 ∈ S(θ0;U1) and span(U1) ⊆ span(U2), we conclude
that S(θ1,0;U2) = S(θ0;U2) yielding the claim for s = 1.
To continue the induction argument, assume that the claim
holds for s ≥ 1, i.e. S(θ0;Uds

) = S(θs,0;Uds
). Note that

θs+1,0 = θs,Ts
∈ S(θs,0;Uds

), hence θs+1,0 ∈ S(θ0;Uds
)

and since S(θ0;Uds) ⊆ S(θ0;Uds+1), we conclude that
θs+1,0 ∈ S(θ0;Uds+1). All in all, the claim is concluded,
i.e. S(θ0;Uds+1

) = S(θs+1,0;Uds+1
).

Having proved that the feasible set of the two minimiza-
tion defined in (8) are identical, we have that F ∗

ds
(θ0) =

F ∗
ds
(θs,0). Note that θ0 ∼ ρ is the only source of randomness.

Taking expectation with respect to θ0 from both sides of the
last inequality yields the claim of the lemma.

D. Proof of Proposition 1

First, ∆r = minθ∈S(θ0;Ur) f(θ) = minω∈Rr Fr(ω; θ0),
since f∗ = 0. Let us denote ω = [ω(1), · · · , ω(r)]⊤ and
θ′ = θ +Ur(ω −U⊤

r θ). We have that Fr(ω; θ0) = f(θ′) =
1
2 (θ

′−θ∗)⊤Q(θ′−θ∗) = 1
2

∑d
i=1 λi⟨ui, θ

′−θ∗⟩2. Note that
for 1 ≤ i ≤ r we have ⟨ui, θ

′−θ∗⟩ = ⟨ui, θ0−θ∗⟩+ω(i)−
⟨ui, θ0⟩ = ω(i)−⟨ui, θ

∗⟩, and for r+1 ≤ i ≤ d it holds that
⟨ui, θ

′−θ∗⟩ = ⟨ui, θ0−θ∗⟩. Therefore, for ω∗(i) = ⟨ui, θ
∗⟩,

min
ω∈Rr

Fr(ω; θ0) = min
ω∈Rr

1

2

r∑
i=1

λi

(
ω(i)− ⟨ui, θ

∗⟩
)2

+
1

2

d∑
i=r+1

λi⟨ui, θ0 − θ∗⟩2 =
1

2

d∑
i=r+1

λi⟨ui, θ0 − θ∗⟩2.

As a result, we conclude ∆r = E
[
minω∈Rr Fr(ω; θ0)

]
=

1
2

∑d
i=r+1 λiE[⟨ui, θ0 − θ∗⟩2] = 1

2

∑d
i=r+1 λi.

REFERENCES

[1] G. Gur-Ari, D. A. Roberts, and E. Dyer, “Gradient descent happens
in a tiny subspace,” December 2018, arXiv:1812.04754 [cs.LG].
[Online]. Available: https://arxiv.org/abs/1812.04754

[2] L. Sagun, U. Evci, V. U. Güney, Y. Dauphin, and L. Bottou, “Empir-
ical analysis of the Hessian of over-parametrized neural networks,”
in Proceedings of the Sixth International Conference on Learning
Representations (ICLR) Workshop, Vancouver, BC, Canada, April 30-
May 3 2018, pp. 1–14.

[3] V. Papyan, “The full spectrum of deepnet Hessians at scale: Dynamics
with SGD training and sample size,” June 2019, arXiv:1811.07062v2
[cs.LG]. [Online]. Available: https://arxiv.org/abs/1811.07062

[4] Y. Wu, X. Zhu, C. Wu, A. Wang, and R. Ge, “Dissecting Hessian:
Understanding common structure of Hessian in neural networks,”
June 2021, arXiv:2010.04261v5 [cs.LG]. [Online]. Available: https:
//arxiv.org/abs/2010.04261

[5] S. P. Singh, G. Bachmann, and T. Hofmann, “Analytic insights into
structure and rank of neural network hessian maps,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[6] T. Le and S. Jegelka, “Training invariances and the low-rank phe-
nomenon: beyond linear networks,” in Proceedings of the Tenth
International Conference on Learning Representations (ICLR), Virtual,
April 25-29 2022, pp. 1–26.

[7] T. Galanti and T. Poggio, “Sgd noise and implicit low-rank bias in deep
neural networks,” Center for Brains, Minds and Machines (CBMM),
Tech. Rep., 2022.

[8] A. S. Nemirovskiı̆ and D. B. Yudin, Problem Complexity and Method
Efficiency in Optimization, ser. Wiley-Interscience Series in Discrete
Mathematics and Optimization. New York, NY, USA: John Wiley &
Sons Inc., 1983.

[9] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, ser. Applied Optimization. New York, NY, USA: Springer,
2004, vol. 87.

[10] R. Cosson, A. Jadbabaie, A. Makur, A. Reisizadeh, and D. Shah,
“Gradient descent for low-rank functions,” arXiv preprint
arXiv:2206.08257, 2022.

[11] L. Sagun, L. Bottou, and Y. LeCun, “Eigenvalues of the hessian in deep
learning: Singularity and beyond,” arXiv preprint arXiv:1611.07476,
2016.

[12] L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou, “Empirical
analysis of the hessian of over-parametrized neural networks,” arXiv
preprint arXiv:1706.04454, 2017.

[13] B. Ghorbani, S. Krishnan, and Y. Xiao, “An investigation into neural
net optimization via hessian eigenvalue density,” in International
Conference on Machine Learning. PMLR, 2019, pp. 2232–2241.

[14] A. R. Sankar, Y. Khasbage, R. Vigneswaran, and V. N. Balasubra-
manian, “A deeper look at the hessian eigenspectrum of deep neural
networks and its applications to regularization,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 11, 2021, pp.
9481–9488.

[15] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma, “Finding
approximate local minima faster than gradient descent,” in Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
2017, pp. 1195–1199.

[16] V. Feinberg, X. Chen, Y. J. Sun, R. Anil, and E. Hazan, “Sketchy:
Memory-efficient adaptive regularization with frequent directions,”
arXiv preprint arXiv:2302.03764, 2023.

[17] Z. Xie, Q.-Y. Tang, Y. Cai, M. Sun, and P. Li, “On the power-law
hessian spectrums in deep learning,” arXiv preprint arXiv:2201.13011,
2022.

[18] R. Pan, H. Ye, and T. Zhang, “Eigencurve: Optimal learning rate
schedule for sgd on quadratic objectives with skewed hessian spec-
trums,” in International Conference on Learning Representations.

[19] B. F. Logan and L. A. Shepp, “Optimal reconstruction of a function
from its projections,” Duke mathematical journal, vol. 42, no. 4, pp.
645–659, 1975.

[20] D. L. Donoho and I. M. Johnstone, “Projection-based approximation
and a duality with kernel methods,” The Annals of Statistics, pp. 58–
106, 1989.

[21] I. T. Jolliffe, “A note on the use of principal components in regression,”
Journal of the Royal Statistical Society: Series C (Applied Statistics),
vol. 31, no. 3, pp. 300–303, 1982.

[22] E. J. Candès and Y. Plan, “Matrix completion with noise,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 925–936, June 2010.

[23] A. Jadbabaie, A. Makur, and D. Shah, “Gradient-based empirical risk
minimization using local polynomial regression,” November 2020,
arXiv:2011.02522 [cs.LG]. [Online]. Available: https://arxiv.org/abs/
2011.02522

[24] ——, “Federated optimization of smooth loss functions,” January
2022, arXiv:2201.01954 [cs.LG]. [Online]. Available: https://arxiv.
org/abs/2201.01954

[25] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochas-
tic approximation approach to stochastic programming,” SIAM Journal
on Optimization, vol. 19, no. 4, pp. 1574–1609, January 2009.

[26] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, December 1964.

[27] Y. E. Nesterov, “A method of solving a convex programming problem
with convergence rate O

(
1
k2

)
,” Doklady Akademii Nauk SSSR, vol.

269, no. 3, pp. 543–547, 1983, in Russian.
[28] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-

tion,” in Proceedings of the 3rd International Conference on Learning
Representations (ICLR), San Diego, CA, USA, May 7-9 2015, pp.
1–13.

[29] P. G. Constantine, Active subspaces: Emerging ideas for dimension
reduction in parameter studies. SIAM, 2015.

[30] Y. LeCun, C. Cortes, and C. J. C. Burges, “THE MNIST
DATABASE of handwritten digits.” [Online]. Available: http:
//yann.lecun.com/exdb/mnist/

3320

