
Boosting Exploration in Actor-Critic Algorithms by Incentivizing
Plausible Novel States

Chayan Banerjee, Zhiyong Chen, and Nasimul Noman

Abstract— Improvement of exploration and exploitation us-
ing more efficient samples is a critical issue in reinforcement
learning algorithms. A basic strategy of a learning algorithm is
to facilitate indiscriminate exploration of the entire environment
state space, as well as to encourage exploration of rarely visited
states rather than frequently visited ones. Under this strategy,
we propose a new method to boost exploration through an
intrinsic reward, based on the measurement of a state’s novelty
and the associated benefit of exploring the state, collectively
called plausible novelty. By incentivizing exploration of plausi-
ble novel states, an actor-critic (AC) algorithm can improve its
sample efficiency and, consequently, its training performance.
The new method is verified through extensive simulations of
continuous control tasks in MuJoCo environments, using a
variety of prominent off-policy AC algorithms.

I. INTRODUCTION

Reinforcement learning (RL) algorithms have achieved
state-of-the-art performance for many control problems. A
typical strategy of a model-free RL algorithm is to train
an agent by explicitly learning a policy network aided by
a concurrently learned state-value (V-value) or action-value
(Q-value) network, within the actor-critic (AC) architecture
[1]. To boost sample efficiency, an off-policy RL algorithm
maintains a so-called experience replay (ER) buffer, which
stores all past samples for future reuse. In an off-policy AC
algorithm, actor and/or critic networks are trained using data
uniformly sampled from an ER buffer.

Among prominent off-policy AC algorithms, a deep de-
terministic policy gradient algorithm (DDPG) [2], [3] trains
a deterministic policy network and a Q-value network (or
simply called Q-network) and it encourages exploration in
action space by simply adding noise to actions. Although
DDPG can achieve superior performance in certain environ-
ments, it suffers from the issue of overestimating Q-values. A
twin delayed DDPG (TD3) [4] algorithm was introduced to
mitigate the overestimation issue using multiple innovations
including delayed policy-update, target policy smoothing,
and a clipped double Q-value learning approach. As an
ER buffer in off-policy algorithms needs a large number
of samples to maintain a population for meaningful policy
learning, researchers studied a variety of exploration strate-
gies to improve sampling efficiency, such as action space
perturbation used in DDPG and TD3, and policy parameter
perturbation in [5], [6]. These strategies have their features
in different environments, but they do no always perform

C. Banerjee and Z. Chen are with the School of Engineering, The
University of Newcastle, Callaghan, NSW 2308, Australia. N. Noman is
with the School of Information and Physical Sciences, The University of
Newcastle, Callaghan, NSW 2308, Australia. Z. Chen is the corresponding
author. Email: zhiyong.chen@newcastle.edu.au

well in high dimensional and sparse reward environments. It
motivates us to further study more advanced strategies for
boosting exploration in off-policy AC algorithms.

The basic idea used in this paper is to boost exploration
by adding exploration bonus, or called an intrinsic reward, to
a reward function. Specifically, an original extrinsic reward
rt is combined with an intrinsic reward rintrt to form an
augmented reward raugt , denoted by

raugt = rt ⊕ rintrt (1)

where ⊕ represents aggregation between the two sources of
rewards. The intrinsic reward fundamentally quantifies the
novelty of a new state in an exploration process. A more
novel state would receive a higher intrinsic reward and raise
the probability of choosing an action to visit it.

There are extensive researches using the idea of intrinsic
reward in the literature, although not in the off-policy AC
architecture. An intrinsic reward can be defined based on
state visitation count. For example, the intrinsic reward in
[7] quantifies the count of visitations of a certain state using
a density model and a pseudo-count generating method. In
[8], a variational Gaussian mixture model is used to estimate
densities of trajectories, that is, counts of visitations to a
sequence of states and actions. In [9], occurrences of high
dimensional states are recorded and mapped into discrete
hash codes to form intrinsic rewards.

An intrinsic reward can also be calculated based on a
prediction error method; an exploration bonus is awarded
if there is improvement of an agent’s knowledge about
the environment dynamics through a predictive model. The
authors of [10] proposed a forward dynamics model that
is trained in encoded state space using an autoencoder. A
state’s novelty and hence the intrinsic reward of visiting the
state is calculated based on the model’s prediction error with
respect to the state. The authors of [11] introduced multiple
forward dynamics models and used the variance over the
model outputs as an intrinsic reward.

Another approach of obtaining an intrinsic reward is
through maximizing entropy of actions, states, or state-action
pairs. For instance, an objective function is augmented with
an intrinsic reward based on a policy’s entropy in [12].
The work in [13] uses a strategy of maximizing the Renyi
entropy over state-action space for better exploration but in
a reward free RL setting. The idea was further improved and
extended for a reward based RL framework in [14]. It uses
a proxy reward, which consists of an extrinsic reward from
environment, augmented by an action entropy maximization

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7003

reward, and an additional intrinsic reward that motivates state
entropy maximization.

Now, an interesting question is how to fit intrinsic reward
based strategies into the architecture of off-policy AC algo-
rithms. On one hand, assigning a reward bonus solely based
on a certain novelty value indiscriminately offered for a state,
as seen in the aforementioned references, is insufficient for
boosting exploration in AC algorithms, because some novel
states may not be worth exploring if they have a poor chance
of benefiting the policy optimization process. On the other
hand, soft actor-critic (SAC) [15], [16] is one of the most
efficient action entropy maximization based algorithms for
benefiting a policy optimization process. Increase in policy’s
entropy results in more exploration and accelerates learning
in SAC. A physics informed intrinsic reward is proposed
in an AC algorithm in [17], which aims to assist an agent
to overcome the difficulty of poor training when a reward
function is sparse or misleading in short term. However,
neither of them includes state novelty into the calculation
of intrinsic rewards.

The new strategy proposed in this paper focuses on
exploration towards the states that have higher chances
of positively impacting policy optimization, based on the
measurement of a state’s novelty as well as the associated
benefit of exploring the state, which is called a state’s
plausible novelty. To the best of our knowledge, this is the
first attempt to consider both state novelty and benefit of
exploring a state towards policy optimization in calculating
an intrinsic reward. Another interesting feature of the new
strategy is that it is an add-on/secondary artifact that can
be applied to any primary off-policy AC type algorithm to
improve its training performance. In particular, three state-of-
the-art off-policy AC algorithms, SAC, DDPG, and TD3, are
respectively treated as the primary algorithms in this paper.

The new strategy is called incentivizing plausible novel
states (IPNS) throughout the paper and it brings two major
innovations. First, we propose a new state novelty scor-
ing scheme, based on estimating a high visitation density
(HVD) point from past experience. The score quantifies the
Euclidean distance between a current state and an HVD
point. Second, we introduce a plausible novelty (PN) score
which is a combined quantification of a state’s novelty score
and its chance of positive contribution towards policy opti-
mization. The chance is estimated by its V-value predicted
by a concurrently trained V-network. The PN score is then
normalized and weighted as an intrinsic reward bonus to be
added on a primary algorithm’s extrinsic reward to form the
final augmented reward, which is used in policy learning.

II. PRELIMINARIES AND MOTIVATION

We consider a Markovian dynamical system represented
by a conditional probability density function p(st+1|st, at),
where st ∈ S and at ∈ A are the state and action,
respectively, at time instant t = 1, 2, · · · . Here, S and A
represent continuous state and action spaces, respectively.
Under a stochastic control policy πφ(at|st), parameterized
by φ, the distribution of the closed-loop trajectory τ =

Fig. 1: Illustration of the proposed IPNS module paired with
SAC as a primary algorithm.

(s1, a1, s2, a2, · · · , sT , aT , sT+1), over one episode t =
1, · · · , T , can be represented by

pφ(τ) = p(s1)

T∏
t=1

πφ(at|st)p(st+1|st, at).

Denote rt = R(at, st+1) as the reward generated at time t.
An optimal policy is represented by the parameter

φ∗ = arg max
φ

Eτ∼pφ(τ)

[T∑
t=1

γtrt

]
︸ ︷︷ ︸

Gφ

,

which maximizes the objective function Gφ with a discount
factor γ ∈ (0, 1). The discounted future reward

∑T
t=1 γ

trt
is also called a return.

The main objective of this paper is to develop a new
incentive mechanism that can be applied to boost exploration
in off-policy AC algorithms. In this section, we use SAC as
a primary AC algorithm to introduce the incentive mecha-
nism. SAC uses a maximum entropy objective, formed by
augmenting the typical RL objective Gφ with the expected
entropy of the policy over pφ(τ). In other words, an agent
receives an intrinsic reward at each time step which is
proportional to the policy’s entropy at that time-step, given
by rintrt = H(πφ(·|st)). So, the SAC’s entropy-regularized
RL objective to find an optimal policy can be written as

φ∗ = arg max
φ

Eτ∼pφ(τ)
[T∑

t

γt
(
rt + αH(πφ(·|st))

)]
,

where the entropy regularization coefficient α determines the
relative importance of the entropy term against the reward.
The version with a constant α is used in this paper.

The architecture of SAC is illustrated in Fig. 1. SAC learns
a policy πφ in the policy network (actor), which takes in the

7004

current state and generates the mean and standard deviation
of an action distribution (defining a Gaussian). It concur-
rently learns two Q-networks Qψ1 , Qψ2 (critic) to generate
Q-value, which assesses the expected return of a pair of
state and action. The Q-networks are learnt by regressing
to the values generated by a shared pair of target networks,
which are obtained by exponentially moving-averaging the
Q-network parameters over the course of training.

As an off-policy algorithm, SAC alternates between a
“data collection” phase and a “network parameter update”
phase. In the data collection phase, SAC saves transition
tuples det = (set , a

e
t , r

e
t , s

e
t+1) to an ER buffer D, for t =

1, · · · , Te, e = 1, · · · , E (E is total episodes run). The
tuples are obtained by running the current policy in the
environment. In the network parameter update phase, SAC
uniformly samples a mini-batch (B) of saved transition tuples
from the ER buffer D and updates the network parameters.
The total timesteps of the policy learning process is N =∑E
e=1 Te.
The new IPNS mechanism for boosting exploration in

an off-policy AC algorithm is through defining an intrinsic
reward based on measurement of a state’s novelty and the
associated benefit of exploring the state, which altogether
is called plausible novelty. IPNS consists of four functional
modules: state encoder (SE), state novelty scorer (SNS),
plausible novelty scorer (PNS), and Intrinsic reward genera-
tor (IRG). These four modules are illustrated in Fig. 1 and
also elaborated in the next section with more details. A pri-
mary AC algorithm, with the extrinsic reward rt replaced by
the new augmented extrinsic/intrinsic reward raugt following
the IPNS mechanism, is enhanced to a new RL algorithm,
whose advantages in boosting its exploration capacity will
be examined in various benchmark environments.

III. INCENTIVIZING PLAUSIBLE NOVEL STATES

The specific design of the four functional modules of the
proposed IPNS strategy is discussed in the following four
subsections, respectively.

A. State encoder (SE)

The SE module includes an autoencoder and an encoded
state buffer Z . At each timestep, the encoder performs
dimensionality reduction on the original state vector st ∈
Rm and extracts the latent structure of the state vector in
the form of a compressed and normalized code zt ∈ Rm′

with m′ < m. Dimensionality reduction is beneficial for
reducing time-space complexity, simplifying distance metric
calculation, and hence improving learning efficiency. More
discussions about adverse effect of high dimensional space
on distance metric calculation can be found in [18].

An autoencoder can be defined as a deep learning algo-
rithm that consists of a symmetrical network, with a certain
hidden layer called bottleneck layer. The left half of the
network learns an encoder function enc(·) and generates
the output zt = sig(enc(st)) through the sigmoid activation
function sig(x) = 1

1+exp(−x) to further normalize encoded
state vectors. The right half of the network learns a decoder

function dec(·) and generates ŝt = dec(zt). The network
is trained by minimizing the loss function L(st, ŝt) that
penalizes ŝt for being dissimilar to st in the sense of mean
square error. This network training is before initiating the
policy optimization process, and it uses the data collected
by running a random policy in the relevant environment for
certain timesteps, denoted as Nencode. It is worth noting that
these Nencode timesteps are not part of the N timesteps of
the policy learning process.

During a policy learning process, the trained encoder
network encodes st into a compressed state vector zt, that is
stored in the buffer Z and hence used for state novelty score
calculation as described in the next subsection. The buffer
updated as each timestep n is explicitly denoted as Zn, for
n = 1, · · · , N .

B. State novelty scorer (SNS)

We first define the density of a state z∗ ∈ Zn, denoted
as den(z∗,Zn). For this purpose, we uniformly sample I
mini-batches of size L from the state buffer Zn. These mini-
batches are represented by the sets P i = {zi1, zi2, · · · , ziL}
with zil ∈ Zn, for l = 1, · · · , L and i = 1, · · · , I .
It is worth mentioning that mini-batch size is defined as
L = round(℘% × n), where 0 < ℘ < 100 is a constant
hyperparameter and the operator round(·) returns the nearest
integer. The density estimation formula is adapted from the
density peak clustering algorithm using K nearest neighbors
(DPC-KNN) [19]. In particular, we define the approximate
density value of z∗, estimated from the mini-batch P i, as
follows:

denP (z∗, P i) = e−
1
L

∑L
l=1 {υc‖z

∗−zil‖}, υc = e−c‖z
∗−zil‖,

(2)

where c is a constant and the weight υc penalizes the
contribution of a datapoint in density calculation based on
its distance from the z∗, measured by the Euclidean norm
‖z∗ − zil‖. The approximate density value of z∗ can be
repeatedly estimated from the I mini-batches and forms a
dataset {denP (z∗, P 1), · · · ,denP (z∗, P I)}. It is ready to
calculate the density of z∗ as the average of this dataset
as follows:

den(z∗,Zn) =
1

I

I∑
i=0

denP (z∗, P i). (3)

The SNS module performs two crucial tasks. Firstly, it
calculates the HVD point of the encoded state buffer Zn,
denoted as HVD(Zn). For this purpose, SNS uniformly
samples a set of J candidate HVD datapoints from Zn,
denoted as Q = {z∗1 , z∗2 , · · · , z∗J} with z∗j ∈ Zn, j =
1, · · · , J . It then estimates the density den(z∗j ,Zn) of each
candidate datapoint and selects the one with the highest
density as the HVD of Zn, that is,

HVD(Zn)

=

{
argmaxz∗∈Q{den(z∗,Zn)}, n = M, 2M, 3M, · · ·
HVD(Zn−1), otherwise .

(4)

7005

It is worth mentioning that HVD is not updated for every
timestep, but for every M timesteps. An effective HVD(Zn)
can be calculated only for n ≥ M , that is, the number of
samples reaches the cut-in threshold M . With this definition,
an HVD point represents the highest density zone of a state
butter Zn, and it also represents clusters of states with high
visitation frequency.

Secondly, SNS calculates the novelty score of the current
state zt

1 with respect to the buffer Zn according to the
Euclidean distance between zt and the HVD of Zn, i.e.

η(zt,Zn) = ‖zt −HVD(Zn)‖. (5)

Let us define the absolute density of z∗ in Zn as

abs-den(z∗,Zn) = e−
1
n

∑
z∈Zn {υc‖z

∗−z‖}, υc = e−c‖z
∗−z‖,

and hence the absolute HVD of Zn as the point with the
highest absolute density, that is,

abs-HVD(Zn) = argmaxz∗∈Zn{abs-den(z∗,Zn)}.

These absolute values can be calculated by exhausting all
the points in Zn using (2), (3), and (4) with I = 1, L = n,
and J = n. However, it becomes infeasible when the size
of Zn increases. Therefore, in our algorithms, we use only a
certain amount of samples to calculate the HVD point, which
is practically representative of high density zones.

C. Plausible novelty scorer (PNS)
The PNS module is to measure the so-called plausible

novelty (PN) score of the current state zt with respect to
the buffer Zn, which is a combined score of the state’s
novelty score and the benefit of exploring it towards policy
optimization. The former has been calculated as η(zt,Zn)
and the latter can be quantified as the V-value of the state,
V (st), which measures its expected return. It is noted that
V-value is calculated based on the original state st rather
than the encoded state zt.

V-value is calculated by a V-network, parameterized by
θ and denoted as Vθ. The simplest update of the network
parameter vector θn+1 ← θn, according to the sample
(st, rt, st+1), can be

Vθn+1
(st)← Vθn(st) + µδt,

δt = rt + γVθn(st+1)− Vθn(st),

where δt is the temporal-difference (TD) error minimized
using a gradient descent approach with the network learnt
over time; µ is a learning rate. The V-network is trained by
using the same samples that train the primary algorithm’s
policy and critic networks. This choice is for the proposed
artifacts to be easily merged with a conventional off-policy
AC algorithm without any substantial change to its existing
architecture.

As a result, the PN score of the current state (st and zt)
with respect to the buffer Zn, based on the V-network Vθn ,
is defined as follows:

ξ(st, zt,Zn) = η(zt,Zn)× Vθn(st). (6)
1More specifically, it should be denoted as zet that represents the current

state of the e-th episode. We ignore the superscript e for notation simplicity.

D. Intrinsic reward generator (IRG)

The IRG module receives the PN score ξ(st, zt,Zn) of the
current state and normalizes it based on its significance in
its local neighborhood. This normalized value is regarded as
a new intrinsic reward, that is incorporated with the reward
rt to make an augmented reward.

For normalization of a PN score, IRG generates K samples
around the current state vector zt, denoted as

ẑkt = zt + ρ, ρ ∼ N (0, 0.1), k = 1, 2, · · · ,K.

Also denote the set of neighboring samples of zt as Ẑt =
{ẑ1t , · · · , ẑKt }. For each sample ẑkt , the PN score is calculated
as ξ(dec(ẑkt), ẑkt ,Zn), where the original version of ẑkt is
not available but it can be estimated as dec(ẑkt) by the right
half of the autoencoder network, i.e., the decoder. Then, the
highest PN score of the K samples is defined as

ξmax(zt,Zn) = max
ẑt∈Ẑt

{ξ(dec(ẑt), ẑt,Zn)}

and hence the intrinsic reward defined as

ζ(st, zt,Zn) =
2

eξ̃ + e−ξ̃

ξ̃ = ξmax(zt,Zn)− ξ(st, zt,Zn).

Here, ξ̃ is the difference between the highest PN score of
the neighboring samples of zt and its own PN score. It is
noted that the intrinsic reward ζ(st, zt,Zn) ∈ (0, 1]. When
the difference ξ̃ = 0, that is, zt also receives the highest
PN score of its neighboring samples, the intrinsic reward
ζ(st, zt,Zn) = 1 is maximized; otherwise, ζ(st, zt,Zn) < 1.

For a given extrinsic reward rt of the primary algorithm
and an intrinsic reward rintrt = ζ(st, zt,Zn) as calculated
above, we can construct an augmented reward as follows:

raugt = (1− β)rt + βζ(st, zt,Zn), (7)

where β ∈ [0, 1) is a regularization coefficient that controls
the infusion of the intrinsic reward into the extrinsic reward.
In some scenarios, an epsilon-greedy method is used to
control the probability of assigning an intrinsic reward, that
is,

raugt =

{
(1− β)rt + βζ(st, zt,Zn), probability 1− ε
rt, probability ε

for ε ∈ [0, 1). In the paper, we use ε = 0 unless a nonzero
value is explicitly specified. It is also worth mentioning that
SAC already contains an intrinsic reward proportional to the
policy’s entropyH(πφ(·|st)). When IPNS is applied on SAC,
the augmented reward becomes

raugt = (1− β)(rt + αH(πφ(·|st))) + βζ(st, zt,Zn).

The three reward regularization coefficients α, β, ε are hy-
perparameters in a learning process and a grid search can
be adopted to determine appropriate values in different
environments.

7006

IV. MUJOCO EXPERIMENTS

The discussion in this section is based on the experiments
of a MuJoco InvertedDoublePendulum-v2 (InvDP). They
were implemented in OpenAI Gym using a computer with a
six-core Intel(R) Core(TM) i7-8750H CPU@2.20GHz. The
objective is to study performance improvement by applica-
tion of the IPNS module over three prominent off-policy AC
type algorithms: SAC, DDPG, and TD3.

After a policy is trained for every certain steps (called one
training unit for convenience), its performance is immedi-
ately evaluated by running the corresponding deterministic
policy for five consecutive episodes. One training unit is
2, 000 steps and there are U = 50 training units (the
corresponding total training steps are 0.1 million). The
average return over five evaluation episodes is regarded as the
episodic return Rωu for the training unit u = 1, · · · , U . For
each algorithm, this process is repeated for five times with
ω = 1, · · · , 5. Each repeated run is with a different random
seed. The same set of five random seeds was used for every
pair of primary and IPNS algorithms for fair comparison.

The autoencoder models used for different environments
were trained using Nencode = 10, 000 datapoints. These
training datapoints or state vectors were obtained by running
a random policy in relevant environments. We chose an
appropriate dimension of bottleneck layer such that the
autoencoder’s training loss L(st, ŝt) is as low as with one
significant digit (∼ 0.01).

The evolution curves of the episodic return versus the
number of training units (i.e. in terms of the total number
of training steps) are plotted in the figures in this section.
A solid curve indicates the mean of the five repeated runs,
i.e., R̄u =

∑5
ω=1Rωu/5 and the shaded area shows the

confidence interval of the repeats representing the corre-
sponding standard deviation σu. Each curve is smoothed
using its moving average of eleven training units for clarity
of understanding. The efficiency of the IPNS strategy is
discussed for InvertedDoublePendulum-v2 including HVD
estimation, intrinsic reward calculation, ablation evaluation,
and performance comparison with benchmarks.

1) HVD estimation: The HVD point estimation in the
SNS module involves three parameters, J , I , and ℘. For
fast computational purpose, we intent to keep J to a small
number but not compromising with the quality of HVD
estimation. It is evident from the experiments that a higher
value of J , i.e. J ≥ 10 makes the HVD point be well close to
the two peaks. Also, the HVD estimations due to these values
are almost similar. Therefore, we choose J = 10 for the
current environment. Using the similar argument, we choose
I = 100 and ℘ = 1.

The calculation of HVD is updated for every M timesteps.
Training performance in the experiments with different val-
ues of M is shown in Fig. 2. When M is relatively small,
e.g., M = 200, an HVD point is updated too frequently.
The estimates are significantly affected by transient density
distribution variations especially when the buffer is compara-
tively empty, which results in fluctuation in estimated values

Fig. 2: Training performance of SAC+IPNS with different
update step size M and different sample number K.

Fig. 3: Training performance SAC+IPNS with different in-
trinsic reward regularization coefficient β.

over time and hence leads to slow policy learning. For a too
large M , e.g., M = 1000, an HVD point likely becomes
outdated and poorly represents the latest data distribution,
which may score a state’s novelty erroneously. Based on
these observations, we select M = 500 to be comparatively
better for the environment.

2) Intrinsic reward calculation: IRG generates K samples
around the current state vector to calculate its intrinsic
reward. We also run experiments to study the effect of K
on training performance. It is observed in Fig. 2 that a small
K = 10 leads to poor normalization of PNS score, resulting
in learning an inferior policy; a policy with a large K = 50
acts myopically and shows initial rise, but fails to maintain
its performance with time. We choose K = 25 that enables
good normalization and hence superior performance.

Another important parameter for intrinsic reward assign-
ment is the intrinsic reward regularization coefficient β. The
influence of β on training performance is demonstrated in
Fig. 3. We select β = 0.1 with which the best training
performance is achieved by SAC+IPNS.

3) Ablation evaluation of IPNS: Experiments using differ-
ent modules of IPNS were conducted to study their unique
contributions, as shown in Fig. 4. We start the evaluation
with simple SAC+ SNS and SAC+ PNS without SE. It
is observed that SAC+ SNS picks up performance earlier

7007

Fig. 4: Ablation evaluation of individual artifacts of the IPNS
algorithm.

Fig. 5: Performance comparison of IPNS with other bench-
marks for InvertedDoublePendulum-v2.

than SAC but it fails to generalize well with time; SAC+
PNS gives a relatively poor performance since without SNS
the PN score ξ is not weighted by the novelty score. The
evaluation shows the necessity of using both modules, i.e.,
SAC+ SNS+ PNS, which provides better generalization over
time compared to SAC+ SNS, although it takes a long
time to learn superior performance. Next, we examine the
function of the SE module. The improvement achieved
by SAC+SE+SNS over SAC+SNS shows the efficacy of
encoding states using the SE module as it gives a condensed,
normalized latent representation of states and hence leads to
faster policy learning and improved generalization over time.
Finally, adding SE to SAC+ SNS+ PNS forms a complete
SAC+IPNS, which demonstrates best performance utilizing
all the proposed artifacts.

4) Comparison with benchmarks: The comparison is
graphically exhibited in Fig. 5. The comparison shows that
IPNS performs consistently well when paired with any of
the three conventional off-policy algorithms.

V. CONCLUSION

We have proposed a new IPNS strategy for accelerating ex-
ploration in off-policy AC algorithms and thereby improving
sample efficiency. The key idea is to incentivize exploration
towards the states of high plausible novelty scores through

a properly designed intrinsic reward. Plausible novelty of
a state consists of both state novelty and the chance of
positively impacting policy optimization by visiting the state.
An interesting feature of IPNS is its easy implementation
by integrating it with any primary off-policy AC algorithm
without major modification. Three state-of-art off-policy AC
algorithms have been tested as the primary algorithms to
verify the substantial improvement in learning performance
by IPNS, in terms of sample efficiency, stability, and perfor-
mance variance.

REFERENCES

[1] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” Advances
in Neural Information Processing Systems, pp. 1008–1014, 2000.

[2] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” International Con-
ference on Machine Learning, pp. 387–395, 2014.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[4] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” International Conference on
Machine Learning, pp. 1587–1596, 2018.

[5] C. Banerjee, Z. Chen, N. Noman, and M. Zamani, “Optimal actor-
critic policy with optimized training datasets,” IEEE Transactions on
Emerging Topics in Computational Intelligence, 2022.

[6] T. Rückstiess, F. Sehnke, T. Schaul, D. Wierstra, Y. Sun, and
J. Schmidhuber, “Exploring parameter space in reinforcement learn-
ing,” Paladyn, vol. 1, no. 1, pp. 14–24, 2010.

[7] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motiva-
tion,” Advances in Neural Information Processing Systems, vol. 29,
2016.

[8] R. Zhao and V. Tresp, “Curiosity-driven experience prioritization via
density estimation,” arXiv preprint arXiv:1902.08039, 2019.

[9] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. Xi Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, “# exploration: A study of
count-based exploration for deep reinforcement learning,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

[10] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in
reinforcement learning with deep predictive models,” arXiv preprint
arXiv:1507.00814, 2015.

[11] D. Pathak, D. Gandhi, and A. Gupta, “Self-supervised exploration
via disagreement,” in International Conference on Machine Learning.
PMLR, 2019, pp. 5062–5071.

[12] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement
learning with deep energy-based policies,” International Conference
on Machine Learning, pp. 1352–1361, 2017.

[13] C. Zhang, Y. Cai, L. Huang, and J. Li, “Exploration by maximizing
Rényi entropy for reward-free RL framework,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 12, 2021, pp.
10 859–10 867.

[14] M. Yuan, M.-o. Pun, and D. Wang, “Rényi state entropy for
exploration acceleration in reinforcement learning,” arXiv preprint
arXiv:2203.04297, 2022.

[15] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” International Conference on Machine Learning, pp. 1861–
1870, 2018.

[16] C. Banerjee, Z. Chen, and N. Noman, “Improved soft actor-critic:
Mixing prioritized off-policy samples with on-policy experiences,”
IEEE Transactions on Neural Networks and Learning Systems, 2022,
DOI: 10.1109/TNNLS.2022.3174051.

[17] J. Jiang, M. Fu, and Z. Chen, “Physics informed intrinsic rewards
in reinforcement learning,” Proceedings of 2022 Australian and New
Zealand Control Conference, 2022.

[18] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” in Interna-
tional conference on database theory. Springer, 2001, pp. 420–434.

[19] M. Du, S. Ding, and H. Jia, “Study on density peaks clustering
based on K-nearest neighbors and principal component analysis,”
Knowledge-Based Systems, vol. 99, pp. 135–145, 2016.

7008

