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Unbiased Extremum Seeking for PDEs

Cemal Tugrul Yilmaz, Mamadou Diagne and Miroslav Krstic

Abstract— There have been recent efforts that combine seem-
ingly disparate methods, extremum seeking (ES) optimization
and partial differential equation (PDE) backstepping, to address
the problem of model-free optimization with PDE actuator
dynamics. In contrast to prior PDE-compensating ES designs,
which only guarantee local stability around the extremum, we
introduce unbiased ES that compensates for delay and diffusion
PDE dynamics while ensuring exponential and unbiased con-
vergence to the optimum. Our method leverages exponentially
decaying/growing signals within the modulation/demodulation
stages and carefully selected design parameters. The stability
analysis of our designs relies on a state transformation, infinite-
dimensional averaging, local exponential stability of the av-
eraged system, local stability of the transformed system, and
local exponential stability of the original system. Numerical
simulations are presented to demonstrate the efficacy of the
developed designs.

I. INTRODUCTION

In the context of real-time optimization, extremum seeking
(ES) emerges as an effective optimization technique with a
century-old history [17], originating from the work of [11].
Its popularity continues to grow over time because it is easy
to use and does not require a detailed model of the cost
function. The expanding theoretical groundwork in ES has
led to diverse applications, ranging from exoskeletons [10]
to quantum computers [2]. However, much of the literature
on ES primarily focuses on optimizing systems described by
ordinary differential equations (ODEs). However, the models
of many physical systems, such as drilling systems, reactors,
batteries, and continuum robots, are more complex and these
systems are better described by partial differential equations
(PDEs).

There exist various optimization challenges in infinite
dimensional systems. In certain systems like network control
systems, and cyber-physical systems, time delays between
control action and system response are inevitable. This issue
requires a delay-aware ES, as designs that ignore the delay
may lead to instability, especially with large delays. In oil
drilling systems [1], the input dynamics involve a cascade
of wave PDE and ODE, and the objective is to maximize
the rate of penetration (ROP) up to a certain threshold
known as the foundering point. Beyond this point, ROP starts
decreasing, leading to energy wastage and potential cutter
damage. In tubular reactors [7], which are defined by coupled
hyperbolic PDEs, the goal is to seek a reactor temperature
profile maximizing the reactor exit concentration. Another
intriguing challenge arises in pool boiling systems [3]. As
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heat flux increases during boiling, bubbles form and rise to
the surface. Beyond a critical heat flux, bubbles cease to
rise, and a vapor film covers the heater surface, acting as
an insulator. This leads to a significant temperature increase
above the heater material’s melting point, causing physical
burnout of the heater. ES can be adapted to stabilize the heat
flux at the unknown optimal level.

It is important to note that existing ES designs [1], [7]
focus on optimization at the steady state and do not fully
account for the PDE dynamics. This limits their applica-
bility to PDE systems with slow transient and motivates
the development of PDE compensated ES designs. Recent
efforts have addressed this gap, focusing on ES designs for
functions with input/output delays [16] or those with inputs
governed by diffusion PDEs [5], wave PDEs [14], and PDE-
PDE cascades [13]. For a more comprehensive treatment of
the problem, refer to the monograph [15]. However, PDE-
compensating ES designs in [5], [13]-[15] can only ensure
convergence to a neighborhood of the optimum point due
to the active perturbing signal in the design, resulting in
suboptimal performance.

This paper is an extension of our earlier work [19], which
introduces the unbiased extremum seeker (UES) for maps
without PDE dynamics, the first ES design demonstrating ex-
ponential and unbiased convergence to an unknown optimum
at a user-defined rate. Expanding upon [19], we introduce ES
designs achieving prescribed-time and unbiased convergence
to the optimum [18], and perfectly tracking time-varying
optimum [20]. In this paper, we present two distinct uES
designs: one can handle arbitrarily long and known time
delays, while the other compensates for diffusion PDEs. The
designs consist of a PDE compensator, a perturbation signal
with exponentially decaying amplitude (to eliminate steady-
state oscillation), demodulation signals with exponentially
growing amplitude and properly selected design parameters
(to ensure unbiased convergence).

Notation: We denote the Euclidean norm by |-|. The partial
derivatives of a function u(x,t) are denoted by d,u(z,t) =
ou(zx,t)/0x, Owu(x,t) = du(x,t)/0t. The spatial L2[0, D]
norm of u(z,t) is denoted by ||u(-,t)||* = fOD u?(x, t)dz.

II. PROBLEM STATEMENT

We consider the optimization problem given by

min Q(6), )]

0ER

where 6§ € R represents the input, @ € R — R is
an unknown smooth function. We introduce the following
assumption regarding the unknown static map Q(-).
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Delay compensator

Fig. 1.
exponentially growing multiplicative signals, M (t) =

Unbiased ES with delay compensator. The design employs
%e“ sin(wt), and
N(t) = - a%eQ’\t cos(2wt), as well as exponentially decaying dither signal
S(t+ D) = % (e=2t+P)gsin(w(t + D))) to achieve exponential and
unbiased convergence to the optimum 6* at the rate of the user-defined
A>0.

Assumption 1: The unknown static map is characterized
by the following quadratic form

Q) =y + 5007, @

where y* € R and §* € R denote the unknown optimal
output and input values, respectively, and H > 0 represents
the unknown Hessian of the static map Q(0).

In [19], we design a multivariable ES that achieves unbi-
ased and exponential convergence to the optimum, assuming
the absence of actuator dynamics. This work addresses
a more challenging and application-relevant optimization
problem by considering the same objective function (1)
but incorporating actuator dynamics modeled by a delay
and diffusion PDE. Our current objective is to develop a
scalar unbiased ES that compensates for PDE dynamics and
exponentially guides the input 6(t) towards the optimum 6*.

III. UNBIASED ES WITH DELAY

In this section, we consider the scenario where the output
y(t) is subject to a known and constant delay D > 0,
expressed as

y(t) = Q(0(t = D)),

Note that the static map Q(6) enables the representation of
the overall delay D as the sum of individual components,
denoted as D,, and D,, corresponding to the delays in the
actuation and measurement paths, respectively. Fig. 1 illus-
trates the closed-loop unbiased ES with delay compensator.
Before delving into the estimator design, we introduce the
signals presented in Fig. 1 in the following subsection.

t € 10,00). 3)

A. Excitation signals and gradient/Hessian estimates

Let us define the following parameter estimate

0(t) = 0(t) — S(t + D), 4)
with the perturbation signal

S(t+ D) = e P g sin(w(t + D)), (5)

where A > 0 is the decay rate of the perturbation signal,
a € R is the perturbation amplitude, w > 0 is the probing
frequency. Let us define the delay-free and delayed parameter
estimation error variables

6(t) =0(t)— 0", 6(t—D)=0(t—D)—6*. (6
Applying the technique in [9], we represent the signals (6)
through the transport PDE as

é(t - D) = 17,(07 t)v (7N
opu(z,t) = Oyu(x,t), (8)
a(D,t) = 6(t) ©)

for x € (0, D). The solution of this PDE is given by
u(x,t) = 0(t +x — D). (10)
We compute the estimate of the gradient and Hessian as

G(t) = M(t)(y(t) — n(t)), (1)
H(t) = N(t)(y(t) — n(t)), (12)

where the multiplicative excitation signals are given by

2
M(t) = EBM sin(wt), N(t) = —%62”’ cos(2wt) (13)
and n(t) is governed by
N(t) = —wen(t) + wry(t). (14)

We use exponentially decaying signals in the modulation
stage, as defined in (5), and exponentially growing signals
in the demodulation stage, as defined in (11) and (12). The
important aspect of our design lies in the fact that the high-
pass filtered state y — 7 exhibits exponential decay to zero at
the rate of 2. This crucial feature ensures that despite the
growing amplitudes in (13), the estimates in (11) and (12)
remain bounded.

B. Parameter estimator design and error dynamics
The time derivative of (7)—(9) is given by

Ou(z,t) = Oyu(x,t), (16)
u(D,1) = 6(t), (17

by noting é(t) = 0(t) from (6). Following the methodology
presented in [9], we consider the following backstepping
transformation

w(zt) = u(z,t) + (é(t _ D)+ /Om u(o, t)da) (18)

to convert the system (15)—(17) into the target system

0(t — D) = —kO(t — D) +w(0,1), (19)
Opw(z,t) = Opw(x,t), (20)
w(D,t) =0, (21)
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with the gain k£ > 0. By substituting z = D into (18) and
considering (17) and (21), we obtain the update law

o) = —k (é(t - D)+ /D u(o, t)da) :
= —Kd(t — D)~k (6(t) — 0(t - D)),

where we use the property u(o,t) = 0ia(o,t) = 0,u(o,t),
use the solution (10), and recall (6). We obviously cannot use
(22) since the error é(t — D) is not measured. To overcome
this limitation, we define k = kH, where H > 0 represents
the unknown Hessian, and the user specifies the positive gain
k. Then, we replace the signals H0(t — D) and H with their
respective estimates, G(t) from (11) and H(t) from (12).
This leads to the following implementable version of (22)

(22)

() = — kG(t) — kH(1) (00— D). @3
The design parameters should satisfy
Wh, A
A< 5 k> T (24)

The essence of these conditions is that the adaptation (learn-
ing) rate should surpass the decay rate of the perturbation
(exploration) signal. In view of the transformation,

i) =n(t) —y*, (25)
we write the closed-loop system in the form
6(t — D) = u(0, 1), (26)
oru(z,t) = Oyu(z,t), 27
a(D,t) = 0(t), (28)
0(t) = — kG(t) — kE()(B(t) — 6(t — D)), (29)
i(t) = —wnii(t) +wn (y(t) — ¥, (30)
where (11) and (12) are rewritten as
2
G(t) = e sin(wt) (y(t) —y" — (1)), 31
A(1) = — o™ cos(2ut) (y(t) " — (1)) B2)
Recalling (2)—(6), the output (3) is rewritten as
yt) =y* + g (é(t —D)+e Mg sin(o.)t))2 . (33

C. Stability analysis

Theorem 1: Let Assumption 1 hold and the parameters
satisfy (24). Then, there exists w and for any w > @, the
closed-loop system (26)—(30) is exponentially stable at the
origin in the sense of the norm

(laC- 011 + 1) + o)

Furthermore, the input 6(¢) and output y(t) exponentially
converge to 0* and y* at the rates of A and 2, respectively.
Proof: Let us proceed through the proof step by step.

(34)

Step 1: State transformation. Let us consider the fol-
lowing transformations

0¢(t — D) = X=P)g(0, 1) (35)
ip(z,t) = Pz, b), (36)
05 (t) = (1), (37)
g (t) = (1), (38)
which transform (26)—(30) to the following system
¢(t — D) = a(0,1), (39)
(9t’l]f($(}, t) = amﬁf(sc, t), (40)
ﬁf(D,t) Zéf t), 41)
67(6) = As(t) — k2 bln(wt)g {( ADG (¢ — D)
+a sin(wt — 7 ( } (— cos(2wt)>
2
<5 | (2050~ D)+ asinte)” ~ is(o)
X (éf(t) — AP (t— D)) , 42)
. H
y(t) = — (wn = 2A)iy () +wn
y (ewgf(t — D)+ asin(wt)>2 , 43)

in view of (31)—(33).

Step 2: Averaging operation. The average of the trans-
formed system (39)—(43) over the period II = 27 /w is given
by

03 (t - D) = 700 44
oy (z,t) = 0, uf (x,1), (45)
uf’ (D,t) = 9av( ); (46)
Gov () = — (bH — N (1), 7

. H

) = — (wn— 2A>n?<t> " whg
x (e2*P(8 +a2/2) (48)
where éav( t), u§(-,t), and 73" () denote the average ver-

sions of the states 05(t), @y (- t), and 77 (t), respectively.
Step 3: Stability of average system. The solution
to (47) is given by 03%(t) = 63(0)e~*H=N! Then,
we write the solution to the PDE (45) as uy'(z,t) =
03" (0)e~(FH=N)(t+2=D) Thus, the (05", u}")-system is ex-
ponentially stable at the origin for kH > . Usmg this fact, it

is trivial to show that 77?"( ) of (48) exponentially converges

to 4(““71{“) for wy, > 2.

Step 4: Invoking averaging theorem. Applying the
averaging theorem for infinite-dimensional systems [6], we
establish that there exists @ and for any w > @, the trans-
formed system (39)—(43) with states (ﬂf(',t),éf(t),ﬁf(t))
has a unique exponentially stable periodic solution
(@ (-, 1), 0 (t), 7 (t)) of period IT = 2 /w and this solution
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dra(z,t) = Ogpar(z,t)

N(t)

Fig. 2. Unbiased ES with diffusion PDE compensator. The design requires
feedback of 6, uses the same excitation signals, M (t) and N (t) as in Fig.
1, and employs a properly designed perturbation signal, S (¢).

satisfies the following for all £ > 0

_ ~ B wpHa? 2\ 3 1

(1o |io- 2255 ) <o(2)
(49)

Considering (49) and recalling the transformations (35)—(38),
we deduce that the original error system (26)—(30) with states
a(-,t),0(t),7(t) has a unique solution and is exponentially
stable at the origin in the sense of the norm (34).

Step 5: Convergence to extremum. Taking into account
the results in Step 4 and recalling from (4)—(6), (37) that

0(t) = e M0 (t) + 0° + e Pgsin(w(t + D)), (50)

we conclude the exponential convergence of 6(t) to 6* at the
rate of \. We establish the convergence of the output y(¢) to
y* at the rate of 2\ from (33) and complete the proof. M

IV. UNBIASED ES wiITH DIFFUSION PDE

We consider the following cascade of a diffusion PDE and
ODE (integrator) with Neumann interconnection

0(t) = 0,(0, 1), (51)

Oz, t) = Moz(x,t), (52)

a(0,1) = (53)

Oza(D,t) = @( ) (54)

for (x,t) € (0, D) x [0, 00). The output of the static map is
u(t) =" + 2 (0(0) ~ 0 (5

2

The diffusion PDE with Neumann actuation arises in thermal
systems, such as Stefan models of thermal phase change [8],
tubular reactors [4], and batteries [12], where the control
input is the heat flux. Our methodology can be extended
to systems with Dirichlet actuation. The unbiased ES with
diffusion PDE compensator is schematically given in Fig. 2.

A. Perturbation signal

Let us define the following parameter estimates to deter-
mine the optimal unknown actuator 6*

(t) = 0(t) — e Ma sin(wt),

o(t (56)
Ot) = O(t) — S(t).

(57)

We need to redesign the perturbation signal, S(¢), such that
when applied as input to the diffusion PDE it produces the
desired output, e *asin(wt). We formulate this trajectory
generation problem as follows

S(t) = 9:8(D, 1), (58)

O B(x,t) = mﬂ(f t), (39

5( t) = (60)

8(0,1) = e Masin(wt) (61)

for (z,t) € (0, D) x [0, oo). We present the solution to S(t)

in the following lemma.
Lemma 1: The explicit solution to S(t) in (58) is

S(t) = ge’)‘t (sin(wt 4+ ¢D)eP? + sin(wt — gD)e PP)
(62)
where p = }/ VATELEA gpd g = ) YATELEEA
The proof of Lemma 1 can be found in the arXiv version

of the paper. Defining the error variables

O(t)=0(t)—0",  O@)=06()—0*,  (63)
we write the following error system

(t) = 9,u(0,t), (64)
opu(z,t) = Opzu(x,t), (65)
(0, £) = 0, (66)
d,u(D,t) = O(t), (67)

where the time derivative is given by
A(t) = Dyu(0, 1), (68)
Opu(z,t) = Opgu(x,t), (69)
u(0,t) =0, (70)
d,u(D,t) = O(t), (71)

by noting that u(x,t) = dyu(x,t) = a(x,t) — 0:8(x,t) for
(z,t) € (0, D) x [0, 00) and recalling the cascades (51)-(54),
(58)—(61) and the solution of f(x,t).

B. Parameter estimator design and error dynamics

We consider the following backstepping transformation
w(et) =u(e.t) + [ alaryutrtdr +2@00), 72
0

with the gain kernels ¢(z,7) = k(z —r) and y(z) = ku,
k > 0, which transform the cascade (68)—(71) into the target
system

0(t) = — k() + 0,w(0,1), (73)

Ow(x,t) = amw( t), € (0,D), (74)

w(O,t) =0, (75

pw(D,t) =0, (76)

by noting é(t) = é(t) from (63). Taking the derivative of (72)

with respect to x, setting x = D in the resulting expression,
and recalling (76), we derive the update law as

Ot)= —kf(t) —k / 7 u(r, t)dr,
0
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= —kO(t) — K(O(t) — (t)).

In (77), we apply the property that u(z,t) = diu(z,t) =
Orot(z,t), and use (63), (64), and (67). However, (77)
requires direct measurement of (t). As discussed in the text
following (22), we can redesign (77) as follows

O(t) = —kG(t)—kH(t) (6()-6(t)+e Masin(wt)) (78)

(77)

by recalling (56), using the feedback of #(t), and choosing
k = kH where H > 0 represents the unknown Hessian and
k > 0 is the user-defined gain. The estimates G(t), H(t),
and 7)-dynamics have the same form as in (11), (12) and (14),
respectively. Additionally, the parameters should satisfy

/\<m1n{w k‘>i. (79)

72
2 '4D2 H
Using (14), (25), (56), (63)—(67), and (78), we write the
following closed-loop error system

0(t) = 9,u(0,1), (80)

opu(z,t) = Ogptu(x, t), (81)
a(0,t) =0, (82)
d,u(D,t) = O(t), (83)
O(t) = — kG(t) — kH(1)(O(t) — 6(t),  (84)

i(t) = — wnif(t) +wn (y(t) = y"), (85)

where G/(t) and H(t) are rewritten in the same form as (31)

and (32), respectively. Using (56), (63), the output (55) is
rewritten as

yit) =y" + — (5( t) 4+ ae~ sin(wt))?. (86)

C. Stability analysis

Theorem 2: Let Assumption 1 hold and parameters satisfy
(79). Then, there exists tw and for any w > @, the closed-loop
system (80)—(85) is exponentially stable at the origin in the
sense of the norm

(a1 + 162 + 1aw) "

Furthermore, the input 6(¢) and output y(¢) exponentially
converge to 6* and y* at the rates of A and 2\, respectively.
Proof: Let us proceed through the proof step by step.
Step 1: State transformation. Let us consider the fol-
lowing transformations

(87)

05(t) = Ma u(0,t), (88)
(x,t) = eMu(z, 1), (89)
Or(t) = “@( ), (90)
i (t) = e (t), oD

which transform (80)—(85) to the following system
0;(t) = 8,7 (0,1), (92)
Otip(z,t) = Opptiy(z,t) + Aug(x,t), 93)
ur(0,t) =0, 94
dytig(D,t) = O4(1), (95)

& () = A () — k% sin(wt) 2 [(af( )+ asin(wt)>2
<] b (- cos<2wt>) 2150
vasin(en) — i (0] (6;0)  B(1)). ©96)

p(t) = — (wn — 20774 (1)

- whg [65(t) + asin(wt)]”. (97)

Step 2: Averaging operation. The average of the trans-
formed system (92)—(97) over the period II = 27 /w is given

67 (t) = 0,05 (0,1), (98)
opu (x,t) = Opaty (z, ) + MuF (2,1), (99)
@y (0,t) =0, (100)
0,uf (D, t) = OF(t), (101)
OF (1) = — (kH = N)OF (1), (102)

7 () = = (wn = 2077 ()

2

tung ((W( )+ “2) . a03)

where é?"(t), ui’ (-, 1), (:)}V(t), and 773 (t) denote the average
versions of the states 0¢(t), @yr(-,t), ©f(t), and 74(t),
respectively.

Step 3: Stability of average system. The solution to
(102) is given by G)av( ) = @a"( e~ (FH=Xt Then, using
the method of separation of vanables we obtain the exact
solution to the reaction-diffusion equation (99)—(101) as

—av _ é?v(()) si —(kH—-M\)t
uf (z,t) = (\/ﬁCOS(FD)) in (@z) e

+i (/\_ 2(271. 1)2> “in (W) M,,

(104)

02D u$ (z,0) sin (M) dz. Thus, the

( ¥, uf V)-system is exponentially stable at the origin for

kH > X and A < 4’2)2 We establish the exponential
convergence of 9"“’( ) to zero recalling (98) and using (104).

Using this fact, it is trivial to show that 73" (f) of (103)
exponentially converges to 42"#{2” for wp > 2.

Step 4: Invoking averaging theorem. Applying the
averaging theorem [6], we establish that there exists @
and for any w > @, the transformed system (92)-(97)
with states (s (-, ), O (t),7(t)) has aumque exponentially
stable periodic solution (uf( t), Gf( )s M ( )) of period
IT = 27 /w and this solution satisfies

where M,, = 5

2 |2\ 3
T 2 1T 42 |+ wpHa (1)
-t t t)—————— < —
(I oipreg P+ o - 2oL ) <o
(105)
for all ¢ > 0. Considering (105) and recalling the transfor-
mations (88)—(91), we deduce that the original error system
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Delay compensation by uES

100 150
Timels]

Fig. 3. The trajectory of input 6 resulting from the application of the
delay-compensated uES (23) in the presence of a delay of D = 5 seconds.

(80)—(85) with states (-, t), ©(t),7(t) has a unique solution
and is exponentially stable at the origin in the sense of
the norm (87). In addition, 6(t) = 0,(0,t) exponentially
converges to zero.

Step 5: Convergence to extremum. Taking into account
the results in Step 4 and recalling from (56), (63) that

0(t) = e 05 (t) + 6° + e Masin(wt), (106)

we conclude the exponential convergence of §(t) to 6* at the
rate of A. Then, we establish the convergence of the output
y(t) to y* at the rate of 2\ from (55) and complete the proof
of Theorem 2. ]

V. NUMERICAL SIMULATION

In this section, we perform a numerical simulation to
evaluate the performance of the developed ES algorithms.
We consider the following static quadratic map

Q6) =1+ (6—2)%

In the first scenario, we examine a case where the map
(107) is measured with a known delay of D = 5. We
implement the delay-compensated uES (23) with parameters
k = 0.03,a = 0.8,w = 5,wp, = 1,A = 0.04. All initial
conditions are set to zero. As illustrated in Fig. 3, the delay-
compensated uES algorithm effectively compensates for the
delay and ensures unbiased convergence of the input 6 to its
optimum value 6* = 2 exponentially at a rate of .

In the second scenario, we examine a case where the map
(107) is coupled with a diffusion PDE (51)—(54), with D = 1.
We employ the diffusion PDE-compensated uES (78) with
parameters identical to those used in the delay-compensated
design, and depict the result in Figure 4. Our approach
effectively compensates for the diffusion PDE dynamics and
achieves exponential convergence to the optimum 6* = 2.

(107)
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