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Abstract— The relations between a control system with delays
given by a nonlinear input-output equation and its realization
are addressed. The algebraic formalism based on rings of
polynomials over the rings associated with the considered
systems and modules of differential one-forms is used to show
the relations between submodules corresponding to the input-
output equation and its realization.

I. INTRODUCTION

Control systems can be described in different ways. One of
the descriptions is given by an input-output (i/o) equation.
In this case there is no state of the system, we have only
the relation between inputs, outputs, and their derivatives at
different delayed time instances. It is well known that some
i/o equations can be described in the state space form called
a realization. Therefore the other description is associated
with control system given in the state space. We will consider
both types of descriptions and explore the relations between
certain algebraic structures related to them.

Studying the realization problem for systems with delays
by using the algebraic formalism based on differential al-
gebra and one-forms can be difficult because the algebraic
objects characterizing the i/o equation and its realization
are different. Most previous results simply ignore the issue.
The possible reason for the latter is that if the order of the
realization is equal to the order of the i/o equation then
there exists a simple isomorphism between the corresponding
algebraic structures. However, if one studies lower order
realizations, then the map between the algebraic structures
has more complicated characteristics. In [5] a kind of sketch
is provided for addressing difficulties arising in case of
unequal orders of system representations. This aspect will
be handled in this paper in a full mathematical rigor. The
purpose of the current paper is to describe the relationship
between certain rings and modules associated with an i/o
equation and its realization. Compared to [5] we use rings of
analytic functions instead of fields of meromorphic functions.
In our opinion rings are more useful for describing the
relations between the algebraic structures associated to i/o
equations and their realizations. The map ξ, which appears
in the definition of realization, is not always injective. This
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happens if the dimension of realization is lower than the
order of the input-output equation. Then the considered map
ξ cannot be an isomorphism, so its kernel is not trivial.
This map ξ may be extended to a map between the fields
of fractions of rings A (associated to an i/o equation) and
Â (associated to a realization) only if it is injective. If
additionally this map is surjective, then it is an isomorphism.
Obviously, it is better to have an isomorphism, because there
is then one-to-one correspondence between the rings (and
their fields of fractions), which is transferred to one-to-one
correspondence between different modules. Unfortunately,
if the dimension of realization is lower than the order of
the input-output equation, then the map ξ cannot be an
isomorphism on both levels: rings and modules. But then
one gets a nice interpretation when we restrict the considered
map ξ to the map from H∞ to Ĥ∞. Then the isomorphism
appears in a different context. Namely, the image im ξ|H∞ is
isomorphic to the quotient module H∞/ker ξ|H∞ . Therefore
in this paper we take into account a more general approach
where the rings of left polynomials are over the ring while in
[5] the rings of polynomials over the field were considered.

The presented relations can provide a framework for
analyzing and designing control systems, in particular for
constructing minimal realizations, i.e. for transforming a
higher order differential equation relating the system outputs
and inputs into a set of first order differential equations
(the so-called state equations), which are observable and
accessible. Besides helping to address minimal realization
problem, the suggested relationship may be useful when
addressing problems whose proofs require to move from one
system representation (input-output equation for instance) to
the other representation (state equations). Moreover, these
relations can help in understanding system behaviour and
determining the system properties as for instance accessibil-
ity, controllability or observability. Additionally, thanks to
the presented relationship engineers can develop algorithms
for computing different realizations for a retarded type time
delay i/o equation.

The paper is organized as follows. In Section II we present
the description of control systems with one input and one
output and introduce the algebraic approach that allows to
check whether the state-space system is an realization of the
considered single-input single-output equation. In Section III
we study observability and accessibility of considered sys-
tems. Section IV is devoted to presenting the realizability
problem and the relation between modules associated with an
input-output equation and its realization. Finally, an example
to illustrate our results is given.
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II. CONTROL SYSTEMS WITH DELAYS

Let us recall from [1], [5] the methodology and basic
notations used in the paper.

A. Description of control systems

Let us start with a single-input and single-output (SISO)
nonlinear retarded time-delay system, described by the fol-
lowing input-output (i/o) equation

y(n)(t) = F (y(n−1)(t− jd), . . . , y(t− jd),

u(s−1)(t− jd), . . . , u(t− jd); j = 0, 1 . . . , p),
(1)

where F is analytic in some open subset of Rn(p+1) ×
Rs(p+1), d is the delay that is assumed to be a non-negative
real number, and p is a non-negative integer, corresponding
to the maximum multiple of the delay d, which is present
in (1). The variables y(i)(t− jd) and u(i)(t− jd) denote the
ith time derivative of the output y and the input u at delayed
time t− jd, respectively.

The control systems can be also described by

ẋ(t) =f(x(t− jd);u(t− jd); j = 0, . . . , q)

y(t) =h(x(t− jd); j = 0, . . . , q)
(2)

for some q ∈ {0} ∪ N, where x(t) = (x1(t), . . . , xñ(t))
T ∈

X ⊆ Rñ, u(t) ∈ U ⊆ R and y(t) ∈ Y ⊆ R, where X ,
U and Y are open, and functions f = (f1, . . . , fñ)

T and h
are analytic in their domains. Similarly as in (1), d is the
delay that is assumed to be a non-negative real number, and
q is a non-negative integer, corresponding to the maximum
multiple of the delay d present in (2).

B. Rings and operators associated with control systems

Similarly as in [1] and [5], one can introduce rings
and operators associated with systems. Then some modules
defined over these rings are used to check systems’ properties
like observability or accessibility.

Denote by A the ring of analytic functions depending on
a finite number of variables from the set Y ∪ U , where

Y :={y(i)[j] : i = 0, . . . , n− 1, j ∈ {0} ∪ N} ,
U :={u(i)[j] : i, j ∈ {0} ∪ N} .

(3)

The variables y(i)[j] and u(i)[j] in (3) correspond to
y(i)(t − jd) and u(i)(t − jd), though they are not seen as
functions of time, but as independent variables. For the sake
of simplicity, y[j], y(1)[j] and y(i)[0] are also denoted as
y[j], ẏ[j] and y(i), respectively. Similar simplified notations
are also used for u(i)[j]. Then, the i/o equation (1) can be
rewritten as follows:

y(n) = F (y(n−1)[j], . . . , y[j],

u(s−1)[j], . . . , u[j]; j = 0, 1 . . . , p),
(4)

where F ∈ A.
Let Â be the corresponding ring of analytic functions in

a finite number of variables from the set {x[j], u(i)[j]; i, j ∈
{0}∪N}. The variables x[j] and u(i)[j] correspond to x(t−
jd) and u(i)(t− jd). Again they are not seen as functions of

time, but as independent variables. Then (2) can be rewritten
as follows:

ẋ =f(x[j];u[j]; j = 0, . . . , q)

y =h(x[j]; j = 0, . . . , q) .
(5)

For the systems (4) and (5) algebraic setting that allows to
study for instance system’s realizability or accessibility is
described in [9], [5].

Similarly as in [5], on the ring A a time-derivative operator
d/dt : A → A and a delay operator D : A → A are defined.
Since the time derivative of y(i)(t−jd) is y(i+1)(t−jd) and
its (one-step) time delay is y(i)(t− (j+1)d), it is natural to
define the operators d/dt and D such that d/dt(y(i)[j]) :=
y(i+1)[j] and D(y(i)[j]) := y(i)[j+1]. However, because the
set Y contains only time-derivatives up to the order n − 1,
then d/dt(y(n−1)[j]) := DjF (·). The operators d/dt and D
act in a similar manner on u(i)[j]. Moreover,

d/dt(G(y(i)[j];u(i)[j]; i = 0, . . . k; j = 0, . . . , s)) :=
k∑

i=0

s∑
j=0

(
∂G

∂y(i)[j]
d/dt(y(i)[j]) +

∂G

∂u(i)[j]
u(i+1)[j])

)
(6)

and

D(G(y(i)[j];u(i)[j]; i = 0, . . . , k; j = 0, . . . , s)) :=

G(y(i)[j + 1];u(i)[j + 1]; i = 0, . . . , k; j = 0, . . . , s)
(7)

for G ∈ A.
In the case of Â one defines a time-derivative operator
ˆd/dt : Â → Â and the delay operator D̂ : Â → Â in a

similar manner as above, namely ˆd/dt(xi[j]) = fi(·)[j], i =
1, . . . , ñ, D̂(xi[j]) = xi[j + 1], i = 1, . . . , ñ, and moreover,

ˆd/dt(Ĝ(x[j];u(i)[j];i = 0, . . . k; j = 0, . . . , s)) :=
s∑

j=0

( ñ∑
i=1

∂Ĝ

∂xi[j]
ˆd/dt(xi[j])

+

k∑
i=0

∂Ĝ

∂u(i)[j]
u(i+1)[j])

)
,

(8)

D̂(Ĝ(x[j];u(i)[j]; i = 0, . . . , k; j = 0, . . . , s)) :=

Ĝ(x[j + 1];u(i)[j + 1]; i = 0, . . . , k; j = 0, . . . , s)
(9)

for and Ĝ ∈ Â.

C. Modules associated with control systems

Consider modules E := spanA{dφ : φ ∈ A} and Ê :=
spanÂ{dφ : φ ∈ Â} of one-forms, where d : A → E and
d : Â → Ê are defined as standard differentials of a function
from the rings A and Â. Next, the time-derivative operators
d/dt : A → A, ˆd/dt : Â → Â and time-delay operators
D : A → A, D̂ : Â → Â are extended to the modules E , Ê .
Note that every element ω ∈ E (ω̂ ∈ Ê) can be represented
as

ω =

r∑
i=1

aidφi (ω̂ =

r∑
i=1

âidφ̂i) (10)
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for some functions ai, φi ∈ A (âi, φ̂i ∈ Â) and integer
r. Based on these representations, time-derivative operators
µ : E → E , µ̂ : Ê → Ê and time-delay operators δ : E → E ,
δ̂ : Ê → Ê are defined on E , Ê as follows:

µ

( r∑
i=1

aidφi

)
:=

r∑
i=1

(
d

dt
(ai)dφi+aid

( d
dt

(φi)
))

, (11)

µ̂

( r∑
i=1

âidφ̂i

)
:=

r∑
i=1

(
d̂

dt
(âi)dφ̂i+âid

( d̂
dt

(φ̂i)
))

, (12)

δ

(
r∑

i=1

aidφi

)
:=

r∑
i=1

D(ai)d(D(φi)) , (13)

δ̂

( r∑
i=1

âidφ̂i

)
:=

r∑
i=1

D̂(âi)d(D̂(φ̂i)) . (14)

The operators D and D̂ are used to define left polynomial
rings A[ϑ] and Â[ϑ], respectively. Addition is defined in
A[ϑ], Â[ϑ] as usual, but for multiplication the following rules
are used: ϑφ = D(φ)ϑ for φ ∈ A and ϑφ̂ = D̂(φ̂)ϑ for
φ̂ ∈ Â. The polynomials in A[ϑ] (Â[ϑ]) act as operators on
E (Ê) by the rule ϑω = δ(ω) for all ω ∈ E (ϑω̂ = δ̂(ω̂) for
all ω̂ ∈ Ê). Now, the one-forms can be alternatively viewed
as elements of the modules

N := spanA[ϑ]{dφ | φ ∈ A} , (15)

N̂ := spanÂ[ϑ]{dφ | φ ∈ Â} . (16)

1) Properties of modules: Unlike a vector space, not every
module has a basis. The modules, that do have bases, are
called free modules. Similarly as in [9], A[ϑ] and Â[ϑ]
satisfy the left Ore condition, i.e. for all a[ϑ], b[ϑ] ∈ A[ϑ]
there exist nonzero a1[ϑ], b1[ϑ] ∈ A[ϑ] such that a1[ϑ]b[ϑ] =
b1[ϑ]a[ϑ] (similarly for the ring Â[ϑ]), and any two bases of
a free module over such a ring have the same cardinality,
which is called the rank of the free module and denoted
as rank (F) for a free module F . The definitions presented
below will be given for the ring A[ϑ] and the module N ,
but they also hold for Â[ϑ] and N̂ .

Definition 1: [9] The closure of a submodule F of N ,
denoted by clA[ϑ](F), is defined as clA[ϑ](F) := {ω ∈ N |
∃0 ̸= p ∈ A[ϑ], s.t. p(ϑ)ω ∈ F}. If the closure of the
submodule F is equal to itself, then F is said to be closed.

A property of free submodules F is that the closure
clA[ϑ](F) is the largest free submodule, containing F , and
having the same rank as F , see [9]. One also has the
following result.

Lemma 2: [1] A finitely generated closed submodule F
of N is always free.

One is often interested in free modules, whose elements
can be written as linear combination of k (where k is the
rank of the free module) exact elements, i.e. dφi, φi ∈ A,
i = 1, . . . , k, over the ring A[ϑ]. Such modules are called
integrable.

Definition 3: [6] A set of one-forms {ω1, . . . , ωk}, lin-
early independent over A[ϑ], is said to be integrable if

there exist k independent functions {φ1, . . . , φk}, such that
spanA[ϑ]{ω1, . . . , ωk} = spanA[ϑ]{dφ1, . . . ,dφk}.

If the set of one-forms {ω1, . . . , ωk} is integrable, then
the corresponding submodule spanA[ϑ]{ω1, . . . , ωk} is said
to be integrable.

Note that the time-derivative operators d/dt and ˆd/dt can
be extended to polynomials p ∈ A[ϑ] and p̂ ∈ Â[ϑ] naturally
in the following manner

d

dt
p(ϑ) =

k∑
i=0

d

dt
(pi)ϑ

i , (17)

d̂

dt
p̂(ϑ) =

k∑
i=0

d̂

dt
(p̂i)ϑ

i , (18)

where p(ϑ) =
∑k

i=0 piϑ
i, pi ∈ A, p̂(ϑ) =

∑k
i=0 p̂iϑ

i, p̂i ∈
Â, i = 0, . . . , k.

2) Submodules associated with control systems: In the
modules N and N̂ one can define the following sequences
of submodules:

H1 :=spanA[ϑ]{dy(n−1), . . . ,dy,du(s−1), . . .du}
Hi+1 :={ω ∈ Hi | µ(ω) ∈ Hi}, i ≥ 1

(19)

and

Ĥ1 :=spanÂ[ϑ]{dx1, . . . ,dxñ}

Ĥi+1 :={ω̂ ∈ Ĥi | µ̂(ω̂) ∈ Ĥi}, i ≥ 1 .
(20)

associated with systems (4) and (5), respectively.
Sequences (Hi)i∈N and (Ĥi)i∈N̂ are non-increasing and

converge to a submodules H∞ and Ĥ∞, respectively, i.e.
there exist k and k̂ such that Hk = Hj =: H∞ for all j > k
and Ĥk̂ = Ĥj =: Ĥ∞ for all j > k̂, see [9]. Similarly as in
[9] and [1], the submodules Hi and Ĥi, i ∈ N, are closed
and free.

The properties of the submodule H∞ are presented in [1].
Some of them are recalled in the following.

Lemma 4: [1] A one-form ω ∈ N (ω̂ ∈ N̂ ) belongs to
H∞ (Ĥ∞) if and only if there exists k ∈ N such that ω, µ(ω),
. . . , µk(ω) (ω̂, µ̂(ω̂), . . . , µ̂k(ω̂)) are linearly dependent over
A[ϑ] (Â[ϑ]).

Since the submodules H∞ and Ĥ∞ are the limits of nonin-
creasing sequences of submodules, they can be alternatively
defined as follows:

H∞ := {ω ∈ H1 | µk(ω) ∈ H1, k ≥ 0} (21)

and
Ĥ∞ := {ω̂ ∈ Ĥ1 | µ̂k(ω̂) ∈ Ĥ1, k ≥ 0} . (22)

Taking into account (21) and (22) one gets
Proposition 5: The submodules H∞ and Ĥ∞ are the

biggest invariant submodules of H1 and Ĥ1 with respect
to µ and µ̂, respectively.

Theorem 6: [1] The submodule H∞ (Ĥ∞) is always
integrable.
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III. PROPERTIES OF CONSIDERED CONTROL
SYSTEMS

One of the properties of control systems in the form (2)
(or equivalently, in (5)) is observability. Different notion
of observability for time-delay systems of the form (5) are
described in [3].

Definition 7: [3] System (5) is weakly observable if there
exist polynomials α̂i ∈ Â[ϑ], i = 1, . . . , ñ, such that

α̂i(ϑ)dxi ∈ spanÂ[ϑ]{dh
(ñ−1), . . . ,dh,

du(ñ−2), . . . ,du} ,
(23)

where i = 1, . . . , ñ. When α̂i can be chosen as α̂i(ϑ) =
1 for i = 1, . . . , ñ, then system (5) is said to be strongly
observable. If there exist Ñ ≥ ñ such that

dxi ∈ spanÂ[ϑ]{dh
(Ñ−1), . . . ,dh,du(Ñ−2), . . . ,du} ,

where i = 1, . . . , ñ, then system (5) is said to be regularly
observable.
Observe that (23) is equivalent to

dxi ∈ clÂ[ϑ]

(
spanÂ[ϑ]{dh

(ñ−1), . . . ,dh,du(ñ−2), . . . ,du}
)
.

Directly form Definition 7 one gets:
Proposition 8: If system (5) is strongly observable, then

it is regularly observable. Moreover, regular observability of
(5) implies its weak observability.

Let g be an r-dimensional vector with entries gj ∈ Â.
Then ∂g/∂x denotes the r × ñ matrix with entries(

∂g

∂x

)
j,i

=
∑
ℓ≥0

∂gj
∂xi[ℓ]

ϑℓ ∈ Â[ϑ] .

Let us define the rank of a matrix over Â[ϑ] as the number
of linearly independent rows.

Definition 9: The least nonnegative integer s such that

rankÂ[ϑ]

∂
(
h, . . . , h(s−1)

)
∂x

=rankÂ[ϑ]

∂
(
h, . . . , h(s)

)
∂x

(24)

is called the observability index of (5).
Proposition 10: System (5) is weakly observable if and

only if its observability index equals to ñ.
Proof: Let the observability index of (5) be s,

i.e. the rows of the matrix A :=


∂h
∂x
...

∂h(s−1)

∂x

 are lin-

early independent over Â[ϑ] and the rows of the matrix
∂h
∂x
...

∂h(i)

∂x

 are linearly dependent over Â[ϑ] for i ≥ s,

where ∂h(i)

∂x =
(∑q

ℓ=0
∂h(i)

∂x1[ℓ]
ϑℓ . . .

∑q
ℓ=0

∂h(i)

∂xñ[ℓ]
ϑℓ
)

∈(
Â[ϑ]

)1×n̄

. Since dh(i) = ∂h(i)

∂x dx+ ∂h(i)

∂u du+ ∂h(i)

∂u(1) du
(1)+

. . .+ ∂h(i)

∂u(i−1) du
(i−1),

Adx =


dh

dh(1)

...
dh(s−1)



−


0 0 . . . 0

∂h(1)

∂u 0 . . . 0
...

...
. . .

...
∂h(s−1)

∂u
∂h(s−1)

∂u(1) . . . ∂h(s−1)

∂u(s−2)




du
du(1)

...
du(s−2)

 . (25)

where ∂h(i)

∂u(j) =
∑q

ℓ=0
∂h(i)

∂u(j)[ℓ]
ϑℓ ∈ Â[ϑ], j = 0, . . . , s− 2. If

s = ñ, then A is a ñ×ñ matrix with entries in the ring Â[ϑ].
Since the ring Â[ϑ] satisfies the left Ore condition, the Gauss
elimination can be applied (by adding a linear combination
of rows, see [2]) and system (25) can be transformed to the
form

αi(ϑ)dxi =

s−1∑
j=0

βj(ϑ)dh
(j) +

s−2∑
k=0

γk(ϑ)du
(k) (26)

and consequently, one gets the weak observability of (5).
For s < ñ, A is a s × ñ matrix with entries in the

ring Â[ϑ] and rankÂ[ϑ]A ≤ s. Then it is not possible to
transform matrix A to a diagonal form and hence (25) cannot
be transformed to the form (26). Consequently, (5) is not
weakly observable.

Another property associated with the considered systems
is their accessibility that can be defined by using the idea of
autonomous one-forms.

Definition 11: Let ω ∈ N and ω̂ ∈ N̂ . The one form ω
(ω̂) is called the autonomous one-form of system (4) (system
(5)) if there exist polynomials αℓ ∈ A[ϑ] (α̂ℓ ∈ Â[ϑ]), ℓ =
0, . . . , k such that the following relation holds

k∑
ℓ=0

αℓ(ϑ)µ
ℓ(ω) = 0 (

k∑
ℓ=0

α̂ℓ(ϑ)µ̂
ℓ(ω̂) = 0) , (27)

where k ∈ {0}∪N, and the one-forms ω, µ(ω), . . . , µk−1(ω)
(ω̂, µ̂(ω̂), . . . , µ̂k−1(ω̂)) are linearly independent over A[ϑ]
(Â[ϑ]).

Definition 12: We say that system (1) is accessible if there
is no nonzero autonomous one-form of (1). Similarly, system
(2) is accessible if there is no nonzero autonomous one-form
of (2). Otherwise the considered systems are said to be non-
accessible.

Similarly as in [1] one can show that
Proposition 13: ω is an autonomous one-form of (1) ((2))

if and only if ω ∈ H∞ (Ĥ∞).
Corollary 14: System (1) ((2)) is accessible if and only if

H∞ = {0} (Ĥ∞ = {0}).
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IV. REALIZATIONS OF I/O EQUATION

In this section we study the realizability of (4) (or equiv-
alently, (1)). Let ξ : A → Â be the map given by

ξ(y(i)[j]) := ˆdi/dti(h(x[ℓ+ j]; ℓ = 0, . . . , q));

i = 0, . . . , n− 1, j ∈ {0} ∪ N ,
ξ(u(k)[j]) := u(k)[j]; k, j ∈ {0} ∪ N ;

ξ(G(y(n−1)[j], . . . , y[j], u(κ)[j], . . . , u[j])) :=

G(ξ(y(n−1)[j]), . . . , ξ(y[j]), ξ(u(κ)[j]),

. . . , ξ(u[j])), j ∈ {0} ∪ N .

(28)

Definition 15: System (5) is called a realization of (4) if
the map ξ satisfies the condition

ξ(F (y(n−1)[j], . . . , y[j], u(s−1)[j], . . . , u[j];

j = 0, 1 . . . , p)) = h(n)
(29)

where h(n) := ˆdn/dtn(h(x[ℓ]; ℓ = 0, . . . , q)).
Remark 16: Observe that if we replace X in realiza-

tion (5) by a smaller open subset X ′, then we still get a
realization of (4).

Using the introduced rings and their modules similarly as
in [7], [5], one can formulate the conditions that guarantee
the existence of realization (2) of i/o equation (1).

Theorem 17: [7] There exists a strongly observable real-
ization (2) of dimension ñ = n of i/o equation (1) if and
only if Hs+1 is integrable.
Basing on the results given in [5] we get

Proposition 18: There exists a weakly observable and
accessible realization (2) of (1) with ñ < n if and only
if (1) is non-accessible and Hs+1 is integrable.

A. Relation between rings and modules for an i/o equation
and its realization

Let (5) be a realization of i/o equation (4). Then A is the
ring of functions depending on a finite number of variables
from the set Y ∪ U and Â is the ring of functions in finite
number of variables from the set {x[j], u(i)[j]; i, j ∈ {0} ∪
N}. In rings A and Â we have respectively a time-derivative
operators d/dt : A → A, ˆd/dt : Â → Â, the delay operators
D : A → A, D̂ : Â → Â, the polynomial rings A[ϑ],
Â[ϑ] and the modules N , N̂ of one-forms. Observe that the
operators ˆd/dt and D̂ act on Â similarly as d/dt and D act
on A.

Note that ξ : A → Â defined by (28) is a homomorphism
of rings and obviously, ξ ◦ D = D̂ ◦ ξ. Moreover, one can
easily show the following proposition holds.

Proposition 19: Let G ∈ A. Then ξ
(

d
dt (G)

)
= d̂

dt (ξ(G)).
There exists a natural extension of the homomorphism ξ

to the polynomial rings. Namely, ξ : A[ϑ] → Â[ϑ] is a
homomorphism of rings defined by

ξ

(
η∑

i=0

αiϑ
i

)
:=

η∑
i=0

ξ (αi)ϑ
i , (30)

where αi ∈ A, η ≥ 0 and i = 0, . . . , η. Moreover, one can
extend the map ξ to the modules and ξ : N → N̂ is a map
of modules defined as follows

ξ

n−1∑
i=0

aidy
(i) +

κ∑
j=0

bjdu
(j)


:=

n−1∑
i=0

ξ (ai) d
(
ξ
(
y(i)
))

+

κ∑
j=0

ξ (bj) du
(j) ,

(31)

where ai, bj ∈ A[ϑ], i = 0, . . . , n − 1, κ ≥ 0 and j =
0, . . . , κ. Additionally, it is easy to show using induction
principle that the following proposition holds.

Proposition 20: Let ν ∈ N . Then ξ(µk(ν))) = µ̂k(ξ(ν))
for k ≥ 1.

Now, we give relation between submodules H∞ and Ĥ∞
that are associated with accessibility property, see Corol-
lary 14.

Proposition 21: Let H∞ ⊂ N and Ĥ∞ ⊂ N̂ be submod-
ules given by (21) and (22), respectively. Then

ξ(H∞) ⊆ Ĥ∞ . (32)
Proof: Let ν ∈ H∞. By Lemma 4, ω ∈ H∞ if and

only if there exists k ∈ N such that ω,. . . ,µk (ν) are linearly
dependent over A[ϑ], i.e.

∑k
i=0 αi(ϑ)µ

i (ν) = 0. By (28) we
get ξ(0) = 0 and consequently, ξ

(∑k
i=0 αi(ϑ)µ

i (ν)
)

=

0. It is equivalent to
∑k

i=0 ξ(αi(ϑ))ξ(µ
i (ν)) = 0.

Using the fact that ξ(µi (ν)) = µ̂i (ξ(ν)) we get∑k
i=0 ξ(αi(ϑ))µ̂

i (ξ(ν)) = 0. Hence by Lemma 4, ξ(ν) ∈
Ĥ∞.
If M is a subset of the module N̂ , then Â[ϑ]M means the
submodule of N̂ generated by M .

Corollary 22: By relation (32) given in Proposition 21
and the fact that Ĥ∞ is closed one gets

clÂ[ϑ]Â[ϑ]ξ(H∞) ⊂ Ĥ∞ . (33)
Now, let us study the properties of the map ξ with regard

to observability.
Proposition 23: If realization (5) of (4) is weakly observ-

able, then ñ ≤ n.
Proof: Weak observability means that for i = 1, . . . , ñ

there are αi[ϑ], βij [ϑ], γik[ϑ] ∈ Â[ϑ], j = 0, . . . , ñ − 1,
k = 0, . . . , ñ− 2 such that αi[ϑ]dxi =

∑ñ−1
j=0 βij [ϑ]dh

(j) +∑ñ−2
k=0 γik[ϑ]du

(k). Since dh(j), j = 0, . . . , ñ − 1, contain
dxi, i = 1, . . . , ñ, and αi[ϑ]dxi are linearly independent,
dh(j), j = 0, . . . , ñ − 1, must also be linearly independent.
From the definition of realization dh, . . . , dh(n) are linearly
independent over Â[ϑ] (modulo du(k)). So ñ ≤ n.

Observe that Proposition 23 gives only a necessary condi-
tion for the weak observability of a realization. The sufficient
and necessary condition for this property can be expressed
by using modules N and N̂ as follows:

Theorem 24: Realization (5) of (4) is weakly observable
if and only if

clÂ[ϑ]Â[ϑ]ξ(N ) = N̂ . (34)
Proof: ”⇒” Assume that the realization is weakly

observable. Then by Proposition 23, ñ ≤ n and
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for i = 1, . . . , ñ there is αi[ϑ] ∈ Â[ϑ] such that
αi[ϑ]dxi ∈ spanÂ[ϑ]{ξ(dy(j)), ξ(du(k)), j = 0, . . . , ñ −
1, k = 0, . . . , ñ − 2} ⊆ spanÂ[ϑ]ξ(N ) = Â[ϑ]ξ(N ).
Moreover du(k) ∈ Â[ϑ]ξ(N ) for k ≥ 0. Therefore N̂ ⊆
clÂ[ϑ]Â[ϑ]ξ(N ). Because N̂ is closed and ξ(N ) ⊂ N̂ , then
clÂ[ϑ]Â[ϑ]ξ(N ) ⊆ N̂ . This gives (34).

”⇐” Assume that (34) holds. This implies that for i =
1, . . . , ñ there is αi[ϑ] ∈ Â[ϑ] such that

αi[ϑ]dxi =

n−1∑
j=0

βij [ϑ]ξ(dy
(j)) +

κ∑
k=0

γik[ϑ]ξ(du
(k))

=

n−1∑
j=0

βij [ϑ]dh
(j) +

κ∑
k=0

γik[ϑ]du
(k)

(35)

for some κ ≥ 0, βij [ϑ], γik[ϑ] ∈ Â[ϑ]. Assume that n ≤ ñ.
Since in dh(j) only du, . . . , du(j−1) can appear, (35) implies
that κ ≤ n − 2 ≤ ñ − 2. This means that the realization is
weakly observable. Now assume that ñ < n. First observe
that for l ≥ ñ dh, . . . , dh(ñ−1), dh(l) are linearly dependent
modulo du(k), k ≥ 0, so for some εlj [ϑ] ∈ Â[ϑ], j =
0, . . . , ñ−1, l ≥ ñ, we get εl0[ϑ]dh+ . . . εl,ñ−1[ϑ]dh

(ñ−1)+
εll[ϑ]dh

(l) = 0 (mod du(k), k ≥ 0). Using left fractions of
the ring Â[ϑ] we get dh(l) = −εll[ϑ](−1)εl0[ϑ]dh + . . . +
εll[ϑ]

(−1)εl,ñ−1[ϑ]dh
(ñ−1) for l ≥ ñ. After substituting it

to (35) we can express αi[ϑ]dxi as a linear combinations
of dh, . . . , dh(ñ−1) and du(k), k ≥ 0. Now observe that
βij [ϑ]εjj [ϑ]

−1 = ε̃jj [ϑ]
−1β̃ij [ϑ] for some ε̃jj [ϑ], β̃ij [ϑ] ∈

Â[ϑ] (from left Ore property). Multiplying both sides of (35)
by ε̃jj [ϑ] from the left allows to eliminate this denominator
from the right-hand side of (35). Continuing this procedure
allows for elimination of other denominators. This means
weak observability of the realization.
From Proposition 23 we get the following implication:

Corollary 25: If a realization is strongly or regularly
observable, then ñ ≤ n.
Similarly as for the weak observability modules N and
Ñ can be used to check whether a realization is regularly
observable and the following theorem holds:

Theorem 26: A realization (5) of (4) is regularly observ-
able if and only if

ξ(N ) = Ñ (36)

after possibly reducing the state space of the realization.
Proof: ”⇐” Assume that ξ(N ) = N̂ . Then for

every i = 1, . . . , ñ dxi =
∑n−1

j=0 ξ(αij [ϑ])ξ(dy
(j)) +∑κ

k=0 ξ(βik[ϑ])ξ(du
(k)) =

∑n−1
j=0 α̂ij [ϑ]dh

(j) +∑κ
k=0 β̂ik[ϑ]du

(k) for some αij [ϑ], βik[ϑ] ∈ A[ϑ] and
α̂ij [ϑ] = ξ(αij [ϑ]) ∈ Â[ϑ], β̂ik[ϑ] = ξ(βik[ϑ]) ∈ Â[ϑ]. As
in the proof of Proposition 23 and Theorem 24 we can
show that dh, . . . , dh(ñ−1) must be linearly independent
and κ ≤ n− 2. Then n ≥ ñ and the realization is regularly
observable.

”⇒” Assume that the realization is regularly observable.
Then, from Proposition 23, n ≥ ñ, and for i = 1, . . . , ñ

there are α̂ij [ϑ], β̂ik[ϑ] ∈ Â[ϑ] such that

dxi =

m−1∑
j=0

α̂ij [ϑ]dh
(j) +

m−2∑
k=0

β̂ik[ϑ]du
(k) (37)

for m ≥ ñ. For j ≥ n, dh(j) is a linear combination
of dh, . . . , dh(n−1), du . . . , du(n−2), so we can assume that
m ≤ n. The right-hand side of (37) belongs to a codistribu-
tion spanned by dh(j)[r], du(k)[r], where j = 0, . . . , n − 1,
k = 0, . . . , n − 2, r = 0, . . . , s. After restricting to some
smaller set we may assume that this codistribution has a
constant dimension. Using Lemma 6.2 in [8] we get xi =
ϕi(dh

(j)[r], u(k)[r], j = 0, . . . , n − 1, k = 0, . . . , n − 2, r =
0, . . . , s) = ξ(ϕi(dy

(j)[r], u(k)[r], j = 0, . . . , n − 1, k =
0, . . . , n − 2, r = 0, . . . , s)) for some analytic functions ϕi,
i = 1, . . . , ñ and some s ≥ 0. This means that ξ(A) = Â,
so also ξ(N ) = N̂ .

From the proof of Theorem 24 it follows that when the
realization (5) is regulary observable, then ξ : A → Â is an
epimorphism. Moreover, the following Proposition holds:

Proposition 27: If system (5) is a regularly observable
realization of (4), then

ξ(H∞) = Ĥ∞ . (38)
Proof: By Proposition 21 one gets (32). Let us prove

Ĥ∞ ⊆ ξ(H∞). Let υ̂ ∈ Ĥ∞. Then using the fact that
ξ(N ) = N̂ and ξ(A) = Â, one gets ξ(υ) = υ̂ for some
υ ∈ N . Since for some k ∈ N and α̂i ∈ Â[ϑ], i = 0, . . . , k,∑k

i=0 α̂i(ϑ)µ̂
i(υ̂) = 0 and α̂i = ξ(αi) for αi ∈ A[ϑ], one

gets ξ(
∑k

i=0 αi(ϑ)µ
i(υ)) = 0. Hence

∑k
i=0 αi(ϑ)µ

i(υ) ∈
H∞. By Lemma 4 there exist βj ∈ A[ϑ], j = 0, . . . , ℓ such
that

∑ℓ
j=0 βj(ϑ)µ

j
(∑k

i=0 αi(ϑ)µ
i(υ)

)
= 0. Then

ℓ∑
j=0

k∑
i=0

j∑
s=0

βj(ϑ)

(
j

s

)
ds

dts
(αi)(ϑ)µ

i+j−s(υ) = 0

and consequently, by Lemma 4 we get υ ∈ H∞.
Proposition 28: If system (5) is a weakly observable

realization of (4), then

clÂ[ϑ]Â[ϑ]ξ(H∞) = Ĥ∞ . (39)
Proof: By Corollary 22 one gets (33). Therefore one

has to show that Ĥ∞ ⊆ clÂ[ϑ]Â[ϑ]ξ(H∞). Assume that ω̂ ∈
Ĥ∞. Then there are α̂[ϑ], β̂[ϑ] ∈ Â[ϑ] and ω ∈ N such that
α̂[ϑ]ω̂ = β̂[ϑ]ξ(ω). As ω̂ ∈ Ĥ∞, then ω̃ := α̂[ϑ]ω̂ ∈ Ĥ∞
as well. This means that ω̃(i) ∈ Ĥ1 = spanÂ[ϑ]{dxj , j =

1, . . . , ñ} for i ≥ 0. Thus (β̂[ϑ]ξ(ω))(i) ∈ Ĥ1 for i ≥ 0.
From β̂[ϑ]ξ(ω) ∈ Ĥ1 it follows that ξ(ω) ∈ Ĥ1 (Ĥ1 is
closed). Then, similarly µ̂(ξ(ω)) ∈ Ĥ1 and consequently
(ξ(ω))(i) ∈ Ĥ1 for i ≥ 0. But (ξ(ω))(i) = ξ(ω(i)), so
ξ(ω(i)) ∈ Ĥ1. Weak observability of realization (5) implies
that ω(i) ∈ H1 for i ≥ 0, which means that ω ∈ H∞.

Proposition 29: If ξ : N → N̂ is injective, then ñ ≥ n.
Proof: Assume that ξ : N → N̂ is injective. Then

dh(k) = ξ(dy(k)), k = 0, . . . , n − 1 are linearly inde-
pendent. Note that dh =

∑ñ
i=1 α̂ki[ϑ]dxi and dh(k) =∑ñ

i=1 α̂ki[ϑ]dxi +
∑k−1

j=0 β̂kj [ϑ]du
(j), k = 1, . . . , n − 1 for
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α̂ki[ϑ], β̂kj [ϑ] ∈ Â[ϑ] and one forms: dxi, i = 1, . . . , ñ,
du(j), j = 0, . . . , n− 2 are linearly independent. Hence we
get ñ ≥ n.

Proposition 30: If realization (5) of (4) is weakly ob-
servable and ξ : N → N̂ is injective, then ñ = n and
rankH∞ = rank Ĥ∞.

Proof: Weak observability of realization and injectivity
of ξ imply that ñ = n. Moreover, ξ(H∞) is a free mod-
ule (over A[ϑ]) whose rank is equal to rankH∞. Since
spanÂ[ϑ]ξ(H∞) is also a free module (over Â[ϑ]) of the
same rank, then rank Ĥ∞ = rank clÂ[ϑ]spanÂ[ϑ]ξ(H∞) =
rankH∞.

Corollary 31: If ξ : N → N̂ is bijective, then ñ = n.
From Propositions 21 and 29 one gets the following

property:
Proposition 32: If realization (5) of (4) is accessible and

ξ is injective, then i/o system (4) is accessible.
Theorem 33: If realization (5) is strongly observable, then

rankH∞ = rank Ĥ∞ + n− ñ . (40)
Proof: Strong observability implies that ξ(H∞) = Ĥ∞.

Then Ĥ∞ ∼= H∞/ker ξ, where ker ξ = {ω ∈ H∞ : ξ(ω) =
0}. Since Ĥ∞ and H∞ are free, so is ker ξ. Let us find
its basis. From strong observability we get that dh(i) =∑ñ−1

j=0 α̂ij [ϑ]dh
(j) +

∑s−1
k=0 β̂ik[ϑ]du

(k) for i = ñ, . . . , n− 1

and α̂ij [ϑ], β̂ik[ϑ] ∈ Â[ϑ]. Therefore α̂ij [ϑ] = ξ(αij [ϑ]) and
β̂ik[ϑ] = ξ(βik[ϑ]) for αij [ϑ], βik[ϑ] ∈ A[ϑ], and

ωi := dy(i) −
ñ−1∑
j=0

αij [ϑ]dy
(j) −

s−1∑
k=0

βik[ϑ]du
(k) ∈ ker ξ

for i = ñ, . . . , n−1. Observe that ωñ, . . . , ωn−1 are linearly
independent. It can be shown that they belong to H∞ and
they span ker ξ. This implies that rank ker ξ = n − ñ and
rankH∞ = rank Ĥ∞ + n− ñ.

Remark 34: Using similar techniques one can show that
(40) holds under the assumption that realization (5) is weakly
observable. This fact was earlier proved in [5] using different
methods.

Example 35: [5] Consider the retarded second order i/o
equation

ÿ(t) = 2u(t)2 +
(ẏ(t)− u(t− 1))u̇(t)

u(t)
+ u̇(t− 1) . (41)

From [5] the system

ẋ1(t) = 2u(t)x2(t) + u(t− 1)

ẋ2(t) = u(t)

y(t) = x1(t)

(42)

is a realization of (41). It is strongly observable but not
accessible, since dx1− (2x2+ϑ)dx2 is an autonomous one-
form of (42). Then ξ : A → Â is given by

ξ(y[j]) := x1[j],

ξ(y(1)[j]) := u[j + 1] + 2u[j]x2[j], j ∈ {0} ∪ N,
ξ(u(i)[j]) := u(i)[j], i, j ∈ {0} ∪ N .

Note that ξ is an isomorphism of rings. Moreover Ĥ1 =
spanÂ[ϑ]{dx1, dx2} = spanÂ[ϑ] {ξ(dy), ξ(dψ)}, where

ψ(y(1), u, u[1]) := y(1)−u[1]
2u and Ĥ∞ = spanÂ[ϑ]{dx1 −

(2x2 + ϑ)dx2} = spanÂ[ϑ] {ξ(dy − (2ψ + ϑ)dψ)}. Let
υ := y − ψ2 − ψ[1]. Then H∞ := spanA[ϑ]{dυ}. Since
dυ = dy − (2ψ + ϑ)dψ, one gets ξ(H∞) = Ĥ∞, see
Proposition 27. Then dυ is an autonomous one-form of (41)
and ξ is an isomorphism of modules H∞ and Ĥ∞. Let us
consider now a weakly observable and accessible realization
of (41) given by

ẋ(t) = u(t)

y(t) = x(t)2 + x(t− 1)
(43)

(see [5]). Then

ξ(y[j]) := x[j]2 + x[j + 1],

ξ(y(1)[j]) = 2x[j]u[j] + u[j + 1],

ξ(u(i)[j]) := u(i)[j], i, j ∈ {0} ∪ N .

Then one gets Ĥ1 = spanÂ[ϑ]{dx} = spanÂ[ϑ] {ξ(dψ)}
and Ĥ∞ = {0}. Note that ξ(dυ) = ξ(dy − dψ2 − dψ[1]) =
dξ(y)− dx2 − dx[1] = 0, so ξ(H∞) = {0} and Proposition
28 holds. Then ξ is not injective and ker ξ|H∞ = H∞.

V. CONCLUSIONS

The paper addresses the problem of relations between the
rings and modules associated with single-input single-output
time-delay nonlinear i/o equations and their realizations. The
algebraic approach based on polynomial tools and modules
of differential one-forms is used to study those relations. We
plan to use these methods to transform a given realization to
a better one, e.g. observable or accessible.
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