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Abstract— In this paper, it will be shown that the minimum
mean square error (MMSE) for predicting a stationary stochas-
tic time series from its past observations is not generally Turing
computable, even if the spectral density of the stochastic process
is differentiable with a computable first derivative. This implies
that for any approximation sequence that converges to the
MMSE there does not exist an algorithmic stopping criterion
that guarantees that the computed approximation is sufficiently
close to the true value of the MMSE. Furthermore, it will be
shown that under the same conditions on the spectral density, it
is also the case that coefficients of the optimal prediction filter
are not generally Turing computable.

I. INTRODUCTION

A classical problem in many different areas of engineering
is to predict the value x0 of a discrete stochastic time
series x = {xn}n∈Z from observations of its past values
{x−1, x−2, x−3, . . . }. A corresponding linear prediction fil-
ter H has the form

x̂0 = H(x) =
∑∞

n=1 hnx−n (1)

and the problem is to determine the filter coefficients
{hn}∞n=1 in such a way that the mean square error (MSE)
σ2 = E[|x̂0 − x0|2] is minimized. Moreover, the minimal
possible MSE, denoted by σ2

min, is an important performance
measure and therefore it is often necessary to compute σ2

min

for a given x.
This problem is well studied. Starting in the 1940’s with

the seminal works of Kolmogorov [1] and Wiener [2], the
theory was later further developed in different directions
by many other researchers [3]–[6]. Nowadays, this problem
can be found in numerous fields of science and engineering
[7], such as control [8]–[12], communication [13], [14],
signal processing [15]–[18], to mention only very few. Now,
closed form expressions for the optimal filter and σ2

min are
known and there are many different algorithms to determine
approximations of the optimal impulse response {hn}∞n=1 by
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a finite impulse response (FIR) filter {h(N)
n }Nn=1 of order N .

Predicting x0 with such an approximate FIR filter

x̂0 = HN (x) =
∑N

n=1 h
(N)
n x−n (2)

yields an MSE σ2
N ≥ σ2

min that monotonically decreases
as N increases and which eventually converges to σ2

min as
N → ∞. From a practical point of view, the question is then
how to choose the filter length N . It seems to be natural to
chose N such that

∣∣σ2
N−σ2

min

∣∣ is sufficiently small. However,
to make this procedure effective, we still need an algorithmic
stopping criterion, i.e. we need an algorithm whose input is
the desired precision M ∈ N and whose output will be a
filter length N0 that guarantees that

∣∣σ2
N − σ2

min

∣∣ < 2−M as
long as N ≥ N0.

It is a remarkable observation that such an algorithmic
stopping criterion is not known in general, but only for very
special stochastic processes. Therefore, we first investigate
Problem 1: Is it possible to find an algorithmic stopping
criterion for the computation of σ2

min for stochastic processes
with smooth, computable spectral densities?
The answer generally depends on the actual FIR approx-
imation algorithm and on the actual stochastic process.
Nevertheless, we are going to show that there exist (infinitely
many) stochastic processes with a smooth and computable
spectral density such that for any arbitrary FIR approxima-
tion algorithm no such stopping criterion can exist on any
digital computer. In fact, we are going to show that the
minimum mean square error (MMSE) σ2

min is not generally
a computable number.

However, even if for a stochastic process with smooth and
computable spectral density, σ2

min is not computable, we may
ask whether its is possible to effectively compute the optimal
coefficients hn in (1). Assume {h(N)

n : n = 1, · · · , N}N∈N
is a sequence of FIR approximations of the optimal impulse
response {hn : n ∈ N}, i.e. assume limN→∞ h

(N)
n = hn for

every n ∈ N. To make such an approximation effective, one
needs again an algorithmic stopping criterion for each n ∈ N,
i.e. one needs an algorithm with input M ∈ N and output
N0 ∈ N so that

∣∣h(N)
n − hn

∣∣ < 2−M provided N ≥ N0.
Similarly to the above, it is also the case that no stopping
criterion is known, and therefore we consider
Problem 2: Is it possible to find an algorithmic stopping
criterion for the computation of the optimal filter coefficients
hn for stochastic processes with smooth and computable
spectral density?
It will be shown that no such general stopping criterion
can exist for any possible algorithm for determining FIR
approximations {h(N)

n : n = 1, · · · , N}N∈N.
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This paper investigates Problems 1 and 2 for non-
deterministic stationary stochastic time series x = {xn}n∈Z
that are characterized by smooth (i.e. differentiable) and
computable spectral densities φx. We will show that in the
set of stochastic processes with smooth and computable spec-
tral densities there exist infinitely many processes for which
σ2
min is not Turing computable. This implies that there exist

no algorithm for the computation of FIR approximations (2)
so that σ2

N effectively converges to σ2
min and such that the

filter coefficients h
(N)
n effectively converge to the filter coef-

ficient hn of the optimal Wiener prediction filter. It will be
shown that for this class of smooth and computable spectral
densities there does not exist a computable stopping criterion
for calculating the minimum mean square prediction error
σ2
min, and there exist no stopping criterion for computing

the impulse response of the optimal causal Wiener prediction
filter.

The organization of this paper is as follows. Section II
introduces our notation and gives a very short review of
the concepts of computability analysis that we use. Then
Section III gives a more detailed problem formulation from
the point of view of prediction theory for stochastic pro-
cesses. Subsequently, Sections IV and V present our main
results with some discussion. The paper closes with a short
outlook in Section VI. Because of space constraints, this
paper contains no proofs. The technical and long proofs of
our main results will be presented in an extended journal
publication [19].

II. NOTATION AND PRELIMINARIES

Subsection II-A defines our main notation whereas Sub-
section II-B briefly recalls basic concepts from computability
analysis [20]–[22] as far as needed in this paper.

A. General notation

D = {z ∈ C : |z| < 1} stands for the open unit disk and
T = {z ∈ C : |z| = 1} for the unit circle in the complex
plane C. For an arbitrary finite positive measure µ on T and
for any 1 ≤ p < ∞, we write Lp(µ) for the Banach spaces
of integrable functions on T with norm

∥f∥p =
(

1
2π

∫ π

−π

∣∣f(eiθ)∣∣p dµ(eiθ))1/p

< ∞ ,

and L∞(µ) is the Banach space of essentially bounded (with
respect to µ) functions on T, i.e. functions for which

∥f∥∞ = ess supζ∈T |f(ζ)| < ∞ .

If µ is the Lebesgue measure, we simply write Lp(T), and
we notice that L2(µ) is a Hilbert space with inner product
⟨f, g⟩ = 1

2π

∫ π

−π
f(eiθ)g(eiθ) dµ(eiθ). As usual, C(T) de-

notes the Banach space of continuous functions on T with
maximum norm ∥f∥∞ = maxζ∈T |f(ζ)|.

We write H(D) for the set of all functions that are
holomorphic (i.e. analytic) in the unit disk D, and H∞(D)
is the Banach space of all bounded analytic functions,
i.e. the set of all functions f ∈ H(D) with ∥f∥∞ =
sup|z|<1 |f(z)| < ∞. For any f ∈ H∞(D) the radial limit

limr→1 f(re
iθ) = f(eiθ) exists for almost every θ ∈ [−π, π)

and this boundary function belongs to L∞(T). Therewith,
H∞(D) is the closed subspace of all f ∈ L∞(D) that can
be written as a power series f(z) =

∑∞
n=0 cn(f)z

n. Finally,
H∞

0 (D) = {f ∈ H∞(D) : f(0) = 0}.

B. Computability analysis

We work with the standard model of a Turing machine
[21], [23], [24], which is an abstract device that provides a
theoretical model describing the fundamental limits of any
realizable digital computer.
Definition II.1 (Computable number): A number x ∈ R is
said to be computable if there exists a Turing machine TM
with input n ∈ N and output ξ(n) = TM(n) ∈ Q, such that

|x− ξ(n)| ≤ 2−n , for all n ∈ N . (3)

The set of all computable real numbers is denoted by Rc.
Remark: If (3) is satisfied, one says that the sequence
{ξ(n)}n∈N effectively converges to x.
Note that Rc is a proper subfield of R. The following simple
characterization of Rc is of particular relevance for this paper.
Lemma II.1: A real number x ∈ R is computable if and only
if there exist two sequences {ξn}n∈N ⊂ R and {ζn}n∈N ⊂ R
such that ξn+1 ≤ ξn and ζn+1 ≥ ζn for all n ∈ N, and such
that limn→∞ ξn = limn→∞ ζn = x.
So x ∈ R is computable if and only if there exists a
monotonically decreasing and a monotonically increasing
sequence that both converges to x. Our main result will be
based on the fact that for the computability of x it is not
sufficient that only one of these sequences exist. Therefore,
we will need the set Πu ⊂ R of all x ∈ R for which there
exists a sequence {ξn}n∈N ⊂ R such that

ξn+1 ≤ ξn for all n ∈ N and lim
n→∞

ξn = x .

Then we will use the fact that Rc ⊊ Πu, i.e. there exist
numbers x ∈ Πu that are not computable.

Later, we need to make the assumption that our given
spectral density can be processed by a digital computer
in order to compute the corresponding optimal prediction
filter and the corresponding MMSE. To his end, the spectral
density needs to be a computable function.
Definition II.2 (Computable function): A function f : T →
R is said to be computable if there exists a computable
sequence of real trigonometric polynomials {pm}m∈N that
effectively and uniformly converges to f on T, i.e. if there
exists a Turing machine TM : N → N such that m ≥
TM(N) implies |f(ζ)− pm(ζ)| ≤ 2−N for all ζ ∈ T.
Remark: Note that the previous definition implies that any
computable function f : T → R is necessarily continuous
(see, e.g., [20]), and we will write Cc(T) for the set of all
continuous computable functions on T.

III. PREDICTION THEORY AND PROBLEM STATEMENTS

This section briefly recalls the main concepts and notation
from prediction theory as far as they are needed in this paper.
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We refer to standard textbooks and recent overview articles
(e.g., [25]–[29]) for details. At the same time, we give a
more detailed problem statement.

A. Stationary stochastic processes

If (Ω,F , ν) is a probability space, then R = R(Ω,F , ν)
denotes the space of all (complex) random variables (rvs) x
with zero mean E[x] =

∫
Ω
x(ω) dν(ω) = 0 and finite second

moments E[|x|2] < ∞. This space is a Hilbert space if the
inner product is defined by the covariance of two rvs, i.e.

⟨x, y⟩R = cov(x, y) = E[xy] =
∫
Ω
x(ω) y(ω) dν(ω) ,

with the corresponding norm ∥x∥R =

√
E[|x|2]. A sequence

x = {xn}n∈Z ⊂ R is said to be a wide-sense stationary
(wss) stochastic process if ⟨xn+k, xk⟩R = ⟨xn, x0⟩R for all
n, k ∈ Z. The corresponding function γx(n) = ⟨xn, x0⟩R,
n ∈ Z is said to be the auto-covariance function of x. To
every wss stochastic process x there exists an orthogonal
stochastic measure Zx = Zx(ω), ω ∈ B(T), on the Borel
sets of T, such that xn =

∫ π

−π
e−inθdZx(e

iθ) for all n ∈ Z,
and the auto-covariance has the spectral representation

γx(n) =
1
2π

∫ π

−π
e−inθdµx(e

iθ) , n ∈ Z ,

with the spectral measure dµx(e
iθ) = 2π

∥∥dZx(e
iθ)

∥∥2
R

which can be decomposed as

dµx(e
iθ) = φx(e

iθ) dθ + dµs(e
iθ) (4)

with the spectral density φx ∈ L1(T) of x and where µs is
the singular part of µx (with respect to Lebesgue measure).

According to the Wold decomposition, any wss stochastic
sequence x has a unique decomposition {xn} = {xr

n} +
{xs

n} into a non-deterministic (or regular) sequence xr =
{xr

n} and a deterministic (or singular) sequence xs = {xs
n}.

The spectral measure of xr is the absolutely continuous part
of µx, whereas the spectral measure of xs is the singular
measure µs of µx. Here, we consider only non-deterministic
sequences for which the singular part is identical to zero.
Such sequences are called purely non-deterministic.

B. The minimum MSE of linear prediction

An important practical problem is to find the best linear
predictor x̂n of xn from finitely (or infinitely) many observa-
tions of the sequence x. Without loss of generality, we only
discuss the prediction of x0 from past observations of x, i.e.
from observations of {x−1, x−2, x−3,...}. Then the optimal
linear prediction is given by

x̂0 = argmin
x∈X[−∞,−1]

∥x− x0∥2R = P[−∞,−1](x0) , (5)

wherein X[−∞,−1] = span{xn : n ≤ −1} ⊂ R stands
for the closed subspace spanned by {x−1, x−2, . . . } and
where P[−∞,−1] : X → X[−∞,−1] denotes the orthogonal
projection from X = span{xn : n ∈ Z} onto X[−∞,−1]. The
resulting MMSE is then

σ2
min = ∥x0 − x̂0∥2R = E

[ ∣∣x0 − P[−∞,−1](x0)
∣∣2 ] .

If σ2
min = 0 then x0 can be perfectly predicted from the past

observations and so x is called deterministic. If, on the other
hand, σ2

min > 0, the process x is said to be non-deterministic.
We only consider non-deterministic stochastic processes and
the following theorem characterizes such stochastic processes
x in terms of their spectral measure.
Theorem III.1: Let x be a wss stochastic sequence with
spectral measure (4). Then x is non-deterministic if and only
if logφx ∈ L1(T), i.e. if and only if∫ π

−π

logφx(e
iθ) dθ > −∞ . (6)

In this case the minimum mean square error is given by

σ2
min(φx) = exp

(
1

2π

∫ π

−π

logφx(e
iθ) dθ

)
> 0 . (7)

Remark: Condition (6), is also known as Szegö’s condition
[30], whereas (7) is known as Kolmogorov’s formula [31].
Theorem III.1 implies that the spectral measure of a non-
deterministic wss stochastic process x has necessarily a non-
vanishing spectral density φx, and (7) shows that the MMSE
σ2
min depends only on φx.
The MMSE, given in (7), is an important performance

measure since it gives a lower bound on the achievable error
for linear prediction. Therefore, it is of practical importance
to compute this value for a given spectral density φx.
However, (7) already indicates that σ2

min is generally not a
simple rational number and so the question arises whether
σ2
min is generally a computable number:

Question 1: Let MD be a set of smooth and computable
spectral densities. Does there exist a Turing machine TM
with two inputs φ ∈ MD and M ∈ N and with output
σ2
φ,M = TM(φ,M) such that for all φ ∈ MD and every

M ∈ N, we have
∣∣TM(φ,M)− σ2

min(φ)
∣∣ < 2−M .

The set MD will be defined precisely in Section IV and it
will be shown that the answer to this question is negative. In
fact, we will prove an even stronger statement, namely that
in MD there exist infinitely many spectral densities such that
for any such φ there exists no Turing machine TMφ (which
is designed precisely for this particular φ) with input M ∈ N
and output σ2

M = TMφ(M) so that
∣∣σ2

M − σ2
min

∣∣ < 2−M .

C. Optimal linear prediction filters

A linear predictor (5) has the form of a causal linear filter
(1) with impulse response {hk}∞k=1 and transfer function
h(eiθ) =

∑∞
k=1 hk e

ikθ. The input of H is a stationary
stochastic process with auto-covariance γx and spectral mea-
sure µx. Therefore (1) converges in mean square (i.e. in the
norm of R) if the impulse response {hk}k∈N satisfies

E[|x̂0|2] =
∑∞

k=1

∑∞
ℓ=1 hkhℓ γx(ℓ− k) < ∞ ,

i.e. if h ∈ L2(µx). The filter (1) is a causal filter, i.e. hk = 0
for all k ≤ 0. Therefore, the transfer function h can be
extended to a function h(z) =

∑∞
k=1 hkz

k which is analytic
in D and satisfies h(0) = 0. So we have to require that h
belongs at least to H0(D) ∩ L2(µx).

8225



Let h ∈ H0(D)∩L2(µx) be an arbitrary but fixed transfer
function of a prediction filter (1). Then it is not hard to see,
that the corresponding (MSE) is

σ2
h = ∥x0 − x̂0∥2R =

1

2π

∫ π

−π

∣∣1− h(eiθ)
∣∣2 dµx(e

iθ) . (8)

This MSE depends on the chosen transfer function h. Opti-
mizing (8) over all h ∈ H∞

0 (D) gives the MMSE (7), i.e.

σ2
min = inf

h∈H∞
0 (D)

E
[
|x0 −H(x)|2

]
= inf
h∈H∞

0 (D)
∥1− h∥2L2(µx)

,

(9)
and the unique minimizer will be denoted by hopt. A closed
form expression for hopt can be obtained by means of the
spectral factorization of the spectral density φx of x.
Definition III.1 (Spectral factorization): A non-negative
φ ∈ L1(T) is said to possess a spectral factorization if there
exists a φ+ ∈ H(D) with φ+(z) ̸= 0 for all z ∈ D so that

φ(eiθ) =
∣∣φ+(e

iθ)
∣∣2 for almost all θ ∈ [−π, π) .

The function φ+ is called the spectral factor of φ.
The following well known statement gives a necessary and
sufficient condition on a spectral density φ ∈ L1(T) so that
it possesses a spectral factorization and it provides a closed
form expression for the corresponding spectral factor φ+.
Theorem III.2: A function φ ∈ L1(T) possesses a spectral
factorization if and only if φ satisfies Szegö’s condition (6).
Then its spectral factor is given by

φ+(z) = exp

(
1

4π

∫ π

−π

logφ(eiθ)
eiθ + z

eiθ − z
dθ

)
, z ∈ D ,

where the integral is a Cauchy principal value integral. The
spectral factor φ+ is unique up to a unitary factor.
If x is a non-deterministic wss stochastic process then its
spectral density φ satisfies Szegö’s condition (cf. Theo-
rem III.1) and therefore φ+ always exists. Therewith, one can
express the transfer function hopt of the optimal predictor.
Theorem III.3: Let x be a purely non-deterministic wss
stochastic process with spectral density φ. Then the optimal
prediction filter for estimating x0 from the past is given by

hopt(z) =
φ+(z)− φ+(0)

φ+(z)
= 1− φ+(0)

φ+(z)
, (10)

wherein φ+ is the spectral factor of φ.
Since φ+ is an outer function, i.e. analytic and non-zero in

D, its inverse φ−1
+ is again analytic in D and so (10) shows

that hopt is an analytic function in D with hopt(0) = 0.
Thus hopt ∈ H0(D) and so it generally defines an infinite
impulse response (IIR) prediction filter (1). However, from
a practical point of view, only FIR filters of the form (2)
can be implemented. Such an FIR approximation might,
for example, be obtained from the optimal IIR filter (1) by
truncating the infinite sum at a certain degree N .

Similarly as in the previous subsection, (10) indicates
that the filter coefficients of hopt are not generally rational
numbers. So the question arises whether it is always possible

to find a Turing machine that is able to effectively compute
an FIR approximation of the optimal prediction filter.
Question 2: Let MD be a set of smooth and computable
spectral densities. Does there exists an algorithm that is
able to determine for any φ ∈ MD a computable sequence{
h(N)

}
N∈N =

{
h
(N)
n : n = 1, 2, . . .

}
N∈N of FIR approxi-

mations of the impulse response {hn : n ∈ N} of the optimal
causal Wiener filter (10) such that

{
h
(N)
n

}
N∈N effectively

converges to hn as N → ∞ for all n = 1, 2, . . . .
In other words, does there exist for any n ∈ N a Turing
machine TMn with inputs φ ∈ MD and N ∈ N and with
output h(N)

n = TMn(φ,N) such that for all φ ∈ MD and
every M ∈ N, we have

∣∣h(N)
n − hn

∣∣ < 2−N .
There exist many known algorithms that determine FIR

approximations that converge to the optimal Wiener filter. So
the important part of the previous question is whether these
algorithms effectively converge, i.e. whether it is possible
to algorithmically control the approximation error. We are
going to show that in the set MD (which is precisely
defined below), there exist infinitely many spectral densities
for which this is not the case. This is even shown for n = 1.

IV. THE NON-COMPUTABILITY OF THE MINIMUM MSE

Let x be a purely non-deterministic wss stationary process
with spectral density φ. According to Theorem III.1, φ
satisfies Szegö’s condition (6) and so the MMSE (7) and
the optimal linear prediction filter (10) are well defined.
Nevertheless, in order to obtain stronger results, we restrict
our considerations to spectral densities that belong to the set

MD =
{
φ ∈ Cc(T) : φ′ ∈ Cc(T) and logφ ∈ L1(T)

}
,

of computable continuous functions on T with first deriva-
tives φ′ that are also computable continuous functions on T
and that satisfy Szegö’s condition (6).

In practical applications, it is often important to compute
the MMSE σ2

min. However, even through MD contains only
spectral densities with very nice analytic properties, it is
clear that even for fairly simple densities φ ∈ MD, (7)
cannot be calculated in closed form and so one generally
needs numerical algorithms to compute σ2

min. This brings
us to Question 1 concerning whether σ2

min is a computable
number for any arbitrary φ ∈ MD.

Before we answer this question, we give a formal algo-
rithm for the calculation of σ2

min which also helps to illustrate
the proofs of the subsequent results.
Algorithm 1: As discussed in Section III-C, the minimal
MSE σ2

min can be obtained by the optimization problem (9).
Therefore, we define for n ∈ N the simpler problem

σ2
n(φ) = inf

p∈Pn,0

1

2π

∫ π

−π

∣∣1− p(eiθ)
∣∣2 φ(eiθ) dθ , (11)

where the minimization is only over the set Pn,0 of all
polynomials p of degree n with p(0) = 0. Thus σ2

n is the
MMSE that can be achieved by predicting x0 from its n
past values {x−1, x−2, x−3, · · · , x−n} using a linear filter
of length n. It is clear from the definition that σ2

n+1 ≤ σ2
n
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for all n ∈ N and that limn→∞ σ2
n = σ2

min. Therefore, one
may use (11) to compute an approximation of σ2

min.
To make Algorithm 1 effective, one needs an algorithmic

stopping criterion, i.e. one needs a Turing machine that is
able to find algorithmically for any M ∈ N an index N ∈ N
so that

∣∣σ2
N − σ2

min

∣∣ < 2−M . This brings us to
Question 3: Does there exist a Turing machine TM with
two inputs φ ∈ MD and M ∈ N and with output N =
TM(φ,M) ∈ N such that for all φ ∈ MD and every M ∈ N,
we have

∣∣σ2
N (φ)− σ2

min(φ)
∣∣ < 2−M?

We are going to show that both Question 1 and Question 3
have a negative answers. This will easily follow from the
following theorem. Its proof will be published in [19].
Theorem IV.1: For every φ ∈ MD, the corresponding
MMSE (7) satisfies σ2

min(φ) ∈ Πu. Conversely, to every
s ∈ Πu, s > 0 there exists a φs ∈ MD such that

σ2
min(φs) = exp

(
1

2π

∫ π

−π

logφs(e
iθ) dθ

)
= s .

Recall that the set Rc of all computable numbers is a proper
subset of Πu. So in the second statement of Theorem IV.1, we
may choose a positive number s ∈ Πu that is not computable.
This gives the following important observation.
Corollary IV.2: To every s ∈ Πu, s > 0, s /∈ Rc there exists
a spectral density φs ∈ MD such that σ2

min(φs) = s ̸∈ Rc.
In other words there exist spectral densities φ ∈ MD for
which the corresponding MMSE σ2

min(φ) is not a com-
putable number. As an immediate consequence, we have
the following result concerning the approximation method
of Algorithm 1.
Corollary IV.3: Let φs ∈ MD be constructed as in Corol-
lary IV.2, and let σ2

min(φs) and σ2
N (φs) be given by (7) and

(11), respectively. There exists no Turing machine TMφs
with

input M ∈ N and that is able to compute a stopping index
N = TMφs(M) ∈ N so that

∣∣σ2
N (φs)− σ2

min(φs)
∣∣ < 2−M .

However, Corollary IV.2 does not only imply that the par-
ticular way to approximate σ2

min(φ), as described by Algo-
rithm 1, is not effective, but that any method to approximate
σ2
min(φ) is generally not effective for infinitely many spectral

densities φ ∈ MD.
Corollary IV.4: Let φs ∈ MD be constructed as in Corol-
lary IV.2, and let σ2

min(φs) be given by (7). There exists
no Turing machine TMφs

with input M ∈ N and that is
able to compute an approximation σ̃2 = TMφs

(M) so that∣∣σ̃2 − σ2
min(φs)

∣∣ < 2−M .
It is important to note that the Turing machines in the

statements of Corollaries IV.3 and IV.4 are designed for
the chosen spectral density φs. So in these corollaries it
is assumed that for any chosen spectral density φ ∈ MD,
we are allowed to construct a particular Turing machine
TMφ that computes the desired approximation index and
the desired approximation, respectively. Then the previous
corollaries show that in the set MD, there always exist
(infinitely many) spectral densities for which such a Turing
machine can not be constructed. But of course, MD contains

also spectral densities for which such a Turing machine
exists.

In practical applications, however, we usually look for a
universal Turing machine for the whole set MD. The input of
such a universal Turing machine would be (a description of)
an arbitrary spectral density φ ∈ MD and the precision M .
The output would be the desired approximation index or the
desired approximation (see Questions 1 and 3). However, it
is clear that if it is not possible to design for each individual
φ ∈ MD a particular Turing machine with the desired
properties, then it is a fortiori not possible to have a universal
Turing machine for the wole set MD.
Corollary IV.5: The answer to Questions 1 and 3 is nega-
tive.

Corollary IV.3 states that there is no Turing machine that
is able to compute a stopping index for the approximation
sequence

{
σ2
n

}
n∈N, defined in (11). However, we would

like to emphasis that Corollary IV.4 implies that the same
result holds for any sequence that approximates the minimum
MSE. In fact, there exist many different algorithms that aim
to determine FIR approximations for the optimal prediction
filter by controlling the corresponding MSE. One well known
example is the Durbin–Levinson algorithm [32], [33]. Simi-
larly as in (11), this recursive algorithm determines at each
iteration an FIR approximation of hopt and the corresponding
MSE σ2

n. Corollary IV.4 shows that also for this algorithm
(and for any other such algorithm) it is generally impossible
to decide algorithmically whether σ2

n is sufficiently close to
the MMSE σ2

min.

V. COMPUTABILITY OF THE OPTIMAL WIENER FILTER

Let x = {xn}n∈Z ⊂ R be a wss stochastic sequence
with spectral density φ ∈ MD and let (1) be the optimal
linear prediction filter for estimating x0 from the past.
Then the transfer function hopt(z) =

∑∞
k=1 hkz

k, |z| < 1
of this optimal filter is given by (10). We are interested
in the question as to whether it is possible to compute
the corresponding filter coefficients {hk}k∈N on a digital
computer. For simplicity and clarity of the presentation, we
only ask whether the first coefficient h1 is computable.
Theorem V.1: Let s ∈ Πu, s > 0, s /∈ Rc be arbitrary and
let φs ∈ MD be the spectral density associated with s as
in Corollary IV.2. If {hn}∞n=1 is the impulse response of the
optimal prediction filter associated with φs then h1 /∈ Rc.

So there are always exist wss stochastic processes x
(whose spectral density φx can be constructed as in The-
orem IV.1) such that the first filter coefficient h1 of the
optimal prediction filter is not a computable number. As a
consequence of Theorem V.1, we obtain that the answer to
Question 2 is negative.
Corollary V.2: Let s ∈ Πu, s > 0, s /∈ Rc be arbitrary
and let φs ∈ MD be the spectral density associated with
s as in Corollary IV.2. Then there exists no computable
sequence

{
h(N)

}
N∈N =

{
h
(N)
n : n = 1, 2, . . .

}
N∈N of FIR

approximations of the optimal causal Wiener filter such that{
h
(N)
1

}
N∈N effectively converges to h1 as N → ∞.
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Remark: The same statement can be proved for IIR approx-
imations.
As mentioned before, there exist many different algorithms
that are designed to give an good approximation of the opti-
mal (IIR) prediction filter. In particular, all these algorithms
can determine a computable sequence

{
h
(N)
1

}
N∈N of com-

putable numbers that converge to the first filter coefficient
of hopt in (10) as N → ∞. Then, from a practical point of
view, one needs a stopping criterion that tells us at which
N ∈ N we can stop such that h(N)

1 is sufficiently close to
h1, i.e. we need an algorithm that computes for any given
M ∈ N an N ∈ N so that

∣∣h(N)
1 −h1

∣∣ < 2−M . Theorem V.1
and Corollary V.2 show that such a general stopping criterion
can not exist.

VI. CONCLUSIONS AND FUTURE WORKS

It has been shown that for wss stochastic processes x with
spectral densities φx in the set MD, the impulse response
of the optimal Wiener prediction filter and the minimum
mean square error of this prediction is not generally Turing
computable. In particular, there is no algorithmic stopping
criterion for calculating these quantities on digital computers.
So all of our Questions 1–3 have a negative answer for the
set MD of differentiable and computable spectral densities
that satisfy Szegö’s condition.

However, it is clear that for sufficiently small sets of
spectral densities, the answers to our three questions might
be positive. So it is an interesting question for future research
to characterize conditions on the spectral densities such that
the MMSE and the optimal impulse response are guaranteed
to be Turing computable.

REFERENCES

[1] A. N. Kolmogorov, “Interpolation und Extrapolation von stationären
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L. Castedo, and R. W. Heath, “Channel estimation and hybrid pre-
coding for frequency selective multiuser mmWave MIMO systems,”
IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 353–367, May
2018.
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