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Abstract— The paper proposes an optimization-based method
for the transient stability assessment of lossy multi-machine
power systems. To achieve this objective, a global control
Lyapunov function candidate including an auxiliary state is
introduced. On this basis, a new excitation control law is
proposed. This control law is well-defined provided that an
‘index’ matrix remains non-singular along the closed-loop
trajectories. Such a matrix plays a key role in the formulation
of an optimization problem, which allows calculating the so-
called critical value associated to the introduced Lyapunov
function. This permits a direct assessment of transient stability
property of the considered post-fault power system. To illustrate
the effectiveness of such an optimization-based method, a case
study on the model of a three-machine system is presented.

I. INTRODUCTION

Transient stability of a multi-machine power system is
considered as its capability, when subject to a large distur-
bance, to maintain synchronism of all synchronous gener-
ators (SGs) [1]–[3]. A typical large disturbance is a short
circuit fault on the transmission facilities, which drives the
dynamic state of the SGs away from the pre-fault operating
equilibrium [1]. After the fault is cleared, the problem of
transient stability assessment (TSA) arises, i.e., problem of
checking whether the post-fault state trajectory converges to
a desired post-fault operating equilibrium [2], [4]. Reliable
TSA is crucial to power system plannings and operations
[1]. Currently, time domain simulations (TDS) provide one
of the most widely accepted methods for TSA [1], [2]. This
is typically achieved by off-line numerical integration of the
dynamic model of the considered post-fault system [1]. If
the resulting state trajectory converges to a desired operating
equilibrium, the post-fault system is deemed to be transiently
stable; otherwise, it is deemed to be transiently unstable
and corrective actions have to be undertaken [1]. However,
since power systems continue to expand, the TDS methods
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have become increasingly computationally expensive [2]. In
addition, the operating conditions of many power systems
have been pushed closer to their stability limits, which makes
such an off-line practice not suitable for future real-time
operations [2].

Compared to the TDS methods, direct methods have a
distinct advantage in that they allow assessing transient
stability without time-consuming numerical integration [2].
In addition, direct methods provide quantitative information
of stability margins. Such information is valuable for power
system plannings and operations [2]. The concept of direct
methods was originally proposed, termed as transient-energy
method, by Magnusson in 1947 (see the seminal work [5]).
The idea is firstly to construct a transient energy function
(TEF), then to estimate the region of attraction (ROA)
of the post-fault equilibrium by calculating the so-called
critical value of the TEF, and finally to check whether the
initial post-fault state is inside the ROA.

Historically, considerable efforts have been devoted to
the design of direct methods especially for lossy multi-
machine power systems, see e.g. [6]–[12]. The problem
encountered at the early stage of this line of research was
to handle the transmission losses, since such an intrinsic
characteristic severely hinders the construction of a well-
defined TEF or Lyapunov function. Several results have been
proposed to confront this problem, see e.g. [7], [9], [10].
These efforts however have been partially in vain, because
the proposed TEFs or Lyapunov functions are either not
well-defined or such that their time-derivatives along the
state trajectories are not always negative definite. In 1984, a
pessimistic conclusion was drawn in [11], implying that there
exists no general analytical TEF for multi-machine power
systems with transmission losses. Compared to traditional
TEFs, control Lyapunov functions (CLFs) can be constructed
together with proper designs of control laws. Hence, it is
believed by the author that CLFs are more suitable to address
the problem of transient stabilization for lossy multi-machine
power systems.

To the best of our knowledge, the problem of handling
the transmission losses has been firstly addressed in 2005
in [4]. By Implicit function theorem, [4] has proved the
existence of a flexible form of CLF for transient stabilization
of multi-machine power systems with nontrivial transfer
conductances. However, neither an explicit form of CLFs
nor a feasible control law has been suggested. Later, in
[13], a well-defined excitation control law for transient
stabilization has been proposed. This renders the desired
operating equilibrium asymptotically stable. However, no
follow-up work towards the design of direct methods for
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TSA has been reported. As a step forward, in [14], a well-
defined CLF with emphasis on bounded control input has
been proposed. This has been shown to be applicable to the
direct methods for TSA of a single machine model. However,
the feasibility of extending such a CLF to the TSA for lossy
multi-machine power systems has not been proven yet. Then,
[15] has proposed an explicit form of CLFs by including an
auxiliary state. Such a form of CLFs has been shown to
be applicable to the transient stabilization of lossy multi-
machine power systems with any number of SGs.

This paper presents a continuing work towards the design
of direct methods for TSA of general lossy multi-machine
power systems. Its main contribution is as follows.

• A global CLF for TSA of the model of lossy multi-
machine power systems is introduced. This is mainly
achieved by selecting a globally positive definite func-
tion for the potential-energy-like term. Based on the
CLF candidate, an explicit dynamic control law is
derived. This ensures locally asymptotic stability of the
desired closed-loop post-fault operating equilibrium.

• Compared to the auxiliary state in [15], the new intro-
duced auxiliary state contributes to the derivation of a
more concise form of the denominators of the so-called
cross term. Hence, it simplifies one of the constraints
to be used in the optimization problem.

• The problem of calculating the critical value of the CLF
is converted into a constrained optimization problem.
With the calculated critical value at hand, one can assess
directly the transient stability property of the considered
post-fault power system.

The remaining part of the paper is organized as follows.
In Section II, two matrices facilitating the representations of
the model and the stability analysis are introduced. Then, the
flux decay model of a lossy multi-machine power system is
given. Then, the problem formulation for TSA is presented.
In Section III, a CLF candidate is introduced and a new
excitation control law is proposed. Their properties are
summarized in Proposition 1. In Section IV, the selection
of the potential-energy-like term is discussed, followed by
a constrained optimization problem. This is instrumental to
solve the TSA problem. Then, Algorithm 1 illustrating the
procedure to solve the TSA is presented. The main result
(i.e., the proposed direct method for TSA) is summarized in
Proposition 2. In Section V, a case study on the model of a
three-machine power system to demonstrate the effectiveness
of the proposed method is presented. Finally, conclusions are
drawn and future work is discussed in Section VI.

Notation: All vectors are considered as column vectors.
The subscripts i and j represent the index of the states or
parameters of the ith and the jth SG, respectively; double-
subscripts ij represent the network connection between the
ith and the jth SG. The integer n represents the number of
SGs in the considered multi-machine model, termed as the
n-machine model. Note that i ∈ N, j ∈ N, n ∈ N, i ≤ n and
j ≤ n. The operation diag{·} converts a column vector of
dimension n× 1 into a diagonal matrix of dimension n× n

with diagonal entries given by the elements of the vector. The
number in bold font represents the corresponding column
vector of dimension n × 1, e.g., 0 = [0, 0, . . . , 0]⊤ ∈ Rn.
Finally, the superscript ∗ attached to a variable indicates its
equilibrium value.

II. PRELIMINARIES

To simplify the expressions of the dynamic model, we
define the two n× n matrices

Γ(δ) =


γ11 γ12 · · · γ1n

γ21 γ22 · · · γ2n
...

...
. . .

...
γn1 γn2 · · · γnn

 , (1)

where γij := Yij sin(δi − δj + αij), and

Π(δ, ω) =


π11 π12 · · · π1n

π21 π22 · · · π2n
...

...
. . .

...
πn1 πn2 · · · πnn

 , (2)

where πij := Yij cos(δi− δj +αij)(ωi−ωj). The parameter
Yij ∈ R>0 represents the magnitude of the complex element,
located at the ith row and the jth column of the reduced
bus admittance matrix; while αij ∈ R is the corresponding
complementary angle, see [4, equation (3)].

Note that the non-zero diagonal entries in (1) represent
the transfer conductances, i.e., γii = Yii sinαii = Gii for
all i. This indicates the intrinsic property that the system is
lossy. Note also that the diagonal entries in (2) are zeros,
i.e., πii = 0 for all i.

A. Dynamic Model

With these two matrices, the dynamics of all the SGs in a
lossy n-machine power system can be described by the flux
decay model in vector form (see e.g. [15, equation (1)], or
[12], [13], [16] for the original scalar form). This is given
by the equations

δ̇ = ω,

ω̇ = −diag{D}ω + P − diag{E}ΓE,
Ė = u,

(3)

where the dynamic state vectors consist of the SG rotor
angles δ(t) ∈ Rn, the angular speed deviations with respect
to the synchronous speed ω(t) ∈ Rn, and the internal
transient voltages E(t) ∈ Rn>0. The system parameters
include the damping ratios D ∈ Rn>0 and the constant
mechanical powers P ∈ Rn>0. Finally, u(t) ∈ Rn is the
vector of excitation control inputs after partial feedback
linearization.

To simplify the expression for the CLF, we define the
vector function

I(δ, E) := ΓE. (4)
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It is worth noting that the time-derivative of (4) along the
solution of (3) is given by

İ = ΠE + ΓĖ. (5)

Denote by x∗ =
[
x∗1

⊤, x∗2
⊤, · · · , x∗n

⊤]⊤ ∈ R3n the desired
operating equilibrium of (3), where x∗i = [δ∗i , 0, E

∗
i ]

⊤ ∈ R3

for the ith SG.
Assumption 1: The equilibria of the rotor angular sepa-

rations and of the internal transient voltages for all SGs, i.e.,
δ∗ij := δ∗i − δ∗j and E∗

i , for all i and j, are known.
Note that Assumption 1 is standard in transient stability

analysis. By considering the rotor angular separation, we
remove the requirement that each rotor angle converge to
a specific equilibrium.

B. Problem Formulation

Consider the model (3) and a desired post-fault operating
equilibrium x∗. The objective of designing a direct method
for TSA is

• to construct a well-defined control Lyapunov function,
the time-derivative of which along the post-fault state
trajectories is negative definite;

• to estimate the ROA of x∗ by calculating the criti-
cal value of the Lyapunov function;

• to check whether a given initial post-fault state con-
verges to x∗.

III. CONTROL LYAPUNOV FUNCTION DESIGN

A. A Brief Review

Recall that [4] has proved the existence of a form of CLF
for transient stabilization of multi-machine power systems
with nontrivial transfer conductances. The proposed CLF is
given by (see [4, equation (27)])

Hd(δ, ω,E) = ψ(δ) +
1

2
|ω|2

+
1

2
[E − diag{λ(δ)}E∗]⊤[E − diag{λ(δ)}E∗],

(6)

where ψ : Rn → R is the so-called potential-energy-like
term and λ : Rn → Rn is the so-called cross-term. Both are
functions to be defined. Note that ψ(δ∗) = 0 and λ(δ∗) = 1.

The inclusion of the cross-term λ allows the selection of
any suitable potential-energy-like term ψ in (6). However,
this leads to the difficulty in the explicit computation of the
cross-term.

B. CLF Candidate With an Auxiliary State

To construct a CLF for TSA, we need to compute ex-
plicitly the cross-term. To this end, we consider an auxiliary
state denoted by ζ(t) ∈ Rn. Such a state is motivated by
the requirement that, during the transient, it provides an
approximation of the vector function in (4), i.e., ζ(t) ≈ I(t)
for all t ≥ 0.

Consider now the CLF candidate

V (δ, ω,E, ζ) = ψ(δ) + ω⊤diag{a
2
}ω

+ [E − diag{E∗}λ]⊤diag{ b
2
}[E − diag{E∗}λ]

+ [I − ζ]⊤diag{ c
2
}[I − ζ],

(7)

where ψ : Rn → R≥0 is the potential-energy-like term, and
λ : Rn × Rn → Rn is the vector of cross term, both to
be selected; while a ∈ Rn>0, b ∈ Rn>0 and c ∈ Rn>0 are
vectors of weighting coefficients. Note that λ(δ∗, ζ∗) = 1
and ζ∗ = diag{E∗}−1P .

C. Stability Analysis

Taking the time-derivative of V along the trajectories of
the dynamic model (3) yields

V̇ = −ω⊤diag{a}diag{D}ω

+ ω⊤
[∂ψ
∂δ

+ diag{a}
[
P − diag{E∗}diag{λ}ζ

]]
− ω⊤diag{a}diag{E∗}diag{λ}[I − ζ]

− ω⊤diag{a}diag{I}[E − diag{E∗}λ]
+ [E − diag{E∗}λ]⊤diag{b}[Ė − diag{E∗}λ̇]
+ [I − ζ]⊤diag{c}[İ − ζ̇].

(8)

We now present three design selections rendering V̇ , locally
around x∗, strictly negative definite.

1) Cross term design: Let the cross-term be

λ(δ, ζ) =
[
diag{a}diag{E∗}diag{ζ}

]−1[∂ψ
∂δ

+diag{a}P
]
.

(9)
Note that λ is well-defined for all ζ ̸= 0. The time-derivative
of λ in (9) is given by

λ̇ = diag
{∂λ
∂ζ

}
ζ̇ +

∂λ

∂δ
ω. (10)

Assumption 2: The initial values of the auxiliary states
are positive, and the auxiliary state remains positive along
the closed-loop trajectories, i.e., ζ(t) > 0 for all t ≥ 0.

Remark 1: At x∗, we have ζ∗ = diag{E∗}−1P > 0.
By continuity, the auxiliary state remains positive locally
around its equilibrium. Hence, Assumption 2 holds locally.
In addition, compared with the design in [15, equation (17)],
the selection in (9) contains a single state in the denominator.
Therefore, it simplifies the formulation of the constrained
optimization problem in (19).

2) Auxiliary state design: We select the dynamics of the
auxiliary state as

ζ̇ = ΠE + ΓĖ + diag{d}[I − ζ]

− diag{c}−1diag{a}diag{E∗}diag{λ}ω,
(11)

where d ∈ Rn>0 is a vector of tunable constant. Note that
one could always set the initial value of the auxiliary state
as its equilibrium ζ∗.
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3) Control law design: Recall that Ė = u in (3). We
select the control law in such a way that

Ė = diag{E∗}λ̇+ diag{b}−1diag{a}diag{I}ω
− SAT(E − diag{E∗}λ),

(12)

where SAT(·) : Rn → Rn is any monotonically increasing
saturation function.

Substitute (11) into ζ̇ in (10) and then substitute (10) into
λ̇ in (12). This yields the equation for calculating Ė, i.e.,

Ė = A(δ, ζ)Ė + B(δ, ω,E, ζ), (13)

where
A = diag{E∗}diag

{∂λ
∂ζ

}
Γ, (14)

and

B = diag{E∗}diag
{∂λ
∂ζ

}[
ΠE + diag{d}[I − ζ]

− diag{c}−1diag{a}diag{E∗}diag{λ}ω
]

+ diag{E∗}∂λ
∂δ
ω + diag{b}−1diag{a}diag{I}ω

− SAT(E − diag{E∗}λ).
(15)

Hence, the resulting dynamic control law is given by the
explicit expression

u(δ, ω,E, ζ) = [I − A]−1B. (16)

Assumption 3: The index matrix [I −A] is non-singular at
the initial state and it remains non-singular along the trajecto-
ries of the closed-loop system, i.e., det[I−A(δ(t), ζ(t))] ̸= 0
for all t ≥ 0.

Remark 2: At the operating equilibrium x∗, we have
det[I−A(δ∗, ζ∗)] > 0. By continuity, det[I−A] is non-zero
locally around x∗.

D. Summary of CLF Design
In summary, the three design selections (9), (11) and (16)

are such that
V̇ =− ω⊤diag{a}diag{D}ω

− [E − diag{E∗}λ]⊤diag{b}SAT(E − diag{E∗}λ)
− [I − ζ]⊤diag{c}diag{d}[I − ζ] ≤ 0,

(17)

which is well-defined provided that ζ > 0 and det[I −A] ̸=
0.

From (17), we conclude that Assumptions 3 holds lo-
cally and that the desired closed-loop operating equilibrium
x∗ is locally stable. Furthermore, a direct application of
LaSalle’s invariance principle shows that x∗ is also attrac-
tive, hence it is locally asymptotically stable. The discussion
is summarized in the following statement.

Proposition 1: Consider the lossy multi-machine system
model (3) and a desired operating equilibrium x∗. Let ψ :
Rn→R≥0 be such that ψ ∈ C2 and δ∗ = arg minψ. Hence,
∂ψ
∂δ |δ=δ∗ = 0. Then, the dynamic control law (16) is such
that x∗ is a locally asymptotically stable equilibrium of the
closed-loop system.

IV. THE OPTIMIZATION PROBLEM FOR CALCULATING
THE CRITICAL VALUE

A. Selection of the Potential-energy-like Term

The potential-energy-like term offers a degree of freedom
in the construction of a CLF, as long as it satisfies the
conditions stated in Proposition 1. In what follows, we select

ψ(δ) :=

n−1∑
i=1

n∑
j=i+1

σ

2
(δi − δj − δ∗ij)

2, (18)

where σ ∈ R>0 is a tunable weighting coefficient.

B. Formulation of the Optimization Problem

With the globally positive definite ψ in (18), we now dis-
cuss how an estimation of the ROA of x∗ can be calculated.
To this end, we consider the problem of calculating the so-
called critical value of V . Note in (17) that the negative
definiteness of V̇ is guaranteed provided that ζ > 0 and
det[I − A] ̸= 0.

Hence, the critical value can be obtained by solving the
constrained optimization problem

minV (δ, ω,E, ζ),

s.t. ζ > 0,

det[I − A(δ, ζ)] = 0.

(19)

Remark 3: The objective of (19) is to determine the smallest
level line of V which is contained in the set ζ > 0 and is
“tangent” to the set of points such that det[I −A(δ, ζ)] = 0.
The global solution of (19) yields the critical value of V ,
denoted by Vcr.

On its basis, the estimated ROA of the desired post-fault
operating equilibrium x∗ is given by the set

A(x∗) =
{
x ∈ R3n : V (δ, ω,E, ζ∗) < Vcr

}
. (20)

As a result, the transient stability property of any given initial
post-fault state can be assessed by Algorithm 1.

Algorithm 1
Require: Let the state, at the instant the fault is cleared, be
xc, and evaluate V (xc, ζ

∗)
if V (xc, ζ

∗) < Vcr then
the post-fault trajectory starting from xc converges to

the desired operating equilibrium x∗

else
no conclusion is drawn, and TDS has to be conducted

for deriving the post-fault trajectory
end if

The result of the optimization-based method for TSA is
summarized as follows.

Proposition 2: Consider the closed-loop post-fault system
(3) controlled with (16), and a desired post-fault operating
equilibrium x∗. Select the CLF (7) with the potential-energy-
like term in (18). Let Vcr be given. Then, if V (xc, ζ

∗) < Vcr,
the state xc is “transiently” stable.
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Load A Load B

Load C

𝐒𝐆𝟏

𝐒𝐆𝟐 𝐒𝐆𝟑

1

2 3

4

5 6

7 8 9

F

Fig. 1. Diagram of the three-machine system model. The label F identifies
the location where the fault is applied. After the fault is cleared by opening
the line 5-7, the system is switched into the post-fault mode.

TABLE I
PARAMETERS, COEFFICIENTS AND EQUILIBRIA

D [0.1973, 0.5655, 0.8016]⊤

P [14.1381, 92.1743, 68.1339]⊤

σ [0.1367, 0.1263, 0.0603]⊤

a [0.0507, 0.0177, 0.0125]⊤

b [0.4054, 0.1415, 0.0998]⊤

c [0.2423, 0.8488, 0.5988]⊤

d [20, 20, 20]⊤

δ∗ [0, 0.6788, 0.4221]⊤

ω∗ [0, 0, 0]⊤

E∗ [1.0970, 1.0552, 1.0248]⊤

ζ∗ [12.8878, 87.3512, 66.4828]⊤

Proj.
Proj.

Proj.

Fig. 2. Illustration of the projections of the estimated ROAs, where x∗i is
the post-fault operating equilibrium point of the ith SG.

V. CASE STUDY

To demonstrate the effectiveness of the proposed method,
we consider the model of a three-machine system as shown in
Fig. 1 (refer to [17, page 38]). The values of the parameters,
of the coefficients, and of the post-fault equilibrium x∗ are
listed in Table I. Based on the aforementioned specifications,
we obtain1 the critical value of the CLF as

Vcr ≈ 439.0574. (21)

1The optimization problem (19) is solved with the function ‘fmincon’ in
MATLAB. Note that different selection of ψ or different specification on
the values of the parameters result in different Vcr .

Fig. 3. The candidates xc that are assessed to be transiently stable,
and the projections of them into S1 (top), S2 (middle) and S3 (bottom),
respectively.

The visualization of the ROA for TSA is not a trivial task.
To confront this problem, we consider a large number of
randomly generated2 initial post-fault state candidates xc

2In this case study, 105 candidates xc are generated with the function
‘rand’ in MATLAB.
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located around x∗. Then, we obtain the estimated ROA by
combining all the transiently stable xc such that V (xc, ζ

∗) <
Vcr in (21). To visualize the estimated ROA, we project these
transiently stable xc into three subspaces, each of which
corresponds to the state space of one SG, i.e., S1, S2 and S3,
respectively. The expected estimation of the ROAs is shown
in Fig. 2.

The resulting projections obtained by Monte Carlo sim-
ulations are shown in Fig. 3. In each plot of projections,
the red circle represents the operating equilibrium x∗i of ith
SG, while the blue dots represent the initial post-fault state
candidates xc that are assessed to be transiently stable. These
provide the estimated ROAs.

A. Verification for TSA

We select randomly two initial post-fault states marked
by the green diamond (denoted by x′) and by the green
square (denoted by x′′), respectively, as shown in Fig. 3.
Then, we verify through time-domain simulation that both
are transiently stable. As shown in Fig. 4, the post-fault state
trajectories starting from x′ and from x′′ converge to the
post-fault operating equilibrium x∗.

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

-2

0

2

0 1 2 3 4 5 6

1

1.2

1.4

0 1 2 3 4 5 6
-0.5

0

0.5

1

0 1 2 3 4 5 6
-5

0

5

0 1 2 3 4 5 6
0.5

1

1.5

Fig. 4. Time histories of the post-fault states starting from x′c (top) and
from x′′c (bottom), respectively.

VI. CONCLUSION

This paper has presented an optimization-based method
for the direct TSA of lossy multi-machine power systems.
A global CLF with a positive definite potential-energy-like
term is proposed. On the basis of this CLF, a constrained
optimization problem for calculating the critical value has
been formulated. This allows assessing directly the transient
stability property of a given initial post-fault state.

One of the potential directions for future work is to in-
vestigate the selection of the potential-energy-like term such
that the estimation of the ROAs becomes less conservative.
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