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Abstract— A dynamical system is observable if there is a
one-to-one mapping from the system’s measured outputs and
inputs to all of the system’s states. Analytical and empirical
tools exist for quantifying the (full state) observability of linear
and nonlinear systems; however, empirical tools for evaluating
the observability of individual state variables are lacking. Here,
a new empirical approach termed Empirical Individual State
Observability (E-ISO) is developed to quantify the level of
observability of individual state variables. E-ISO first builds an
empirical observability matrix via simulation, then determines
the subset of its rows required to estimate each state variable
individually. We present a convex optimization approach to
do this efficiently. Finally, (un)observability measures for these
subsets are calculated to provide independent estimates of the
observability of each state variable. Multiple example applica-
tions of E-ISO on linear and nonlinear systems are shown to
be consistent with analytical results. Broadly, E-ISO will be an
invaluable tool both for designing active sensing control laws
or optimizing sensor placement to increase the observability of
individual state variables for engineered systems, and analyzing
the trajectory decisions made by organisms.

I. INTRODUCTION

State estimation is a critical component of many tasks
involving dynamic systems. A prerequisite for accurate es-
timation is that a system’s states are observable, i.e. that
there is a one-to-one mapping from a system’s measured
outputs and inputs to its states. Most estimation methods
(e.g. a Kalman filter) rely on all of a system’s states being
observable and will otherwise fail in most cases [1]. Mathe-
matical tools have been developed to assess the observability
of systems and therefore help us understand how well an
estimator will perform [2], [3], [4]. For nonlinear systems,
where the observability may depend on the current states and
control inputs, these tools can inform the design of control
laws to achieve state trajectories and/or sensor locations or
sensor configurations that improve the observability of the
system.

However, certain control tasks only require estimating a
single state variable (or a subset), instead of the full state vec-
tor. For instance, given a (nonlinear) system with unknown
model parameters, it may be desirable to only estimate these
parameters periodically, while ensuring continuous observ-
ability of other states. In some high-dimensional systems,
such as fluid-structure interactions, it may only be necessary
to estimate specific states for purposes of control [5]. Many
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navigation tasks also only require partial observability to
achieve a desired outcome. A classic example is proportional
navigation, a guidance law to ensure a collision course
that only requires estimating one state: absolute bearing
angle [6]. Flying insects engaged in chemical plume tracking
behaviors [7] may also prioritize estimating ambient wind
direction over other states such as ground speed. Prior work
has shown that the stereotyped zigzagging flight trajectories
flying insects use may be tuned to enhance the observability
of the high-priority state (ambient wind direction) [8], [9].
In each of these examples, it is critical to have tools for
evaluating the observability of individual state variables,
instead of the full state vector.

Although analytical tools exist for determining if a partic-
ular state variable of a dynamic system is observable [8],
[10], or if a linear combination of states is functionally
observable [11], there are no established methods to quantify
the level of observability. Attempts to accomplish this task
include using measures based on eigenvalues of the linear
observability Gramian [12], the singular values of the ob-
servability matrix [13], [14], filter performances [15], and the
estimation ambiguity [16]. These analytical methods become
impractical when the dynamic model is missing or sometimes
when the dynamics are nonlinear. As an alternative, empirical
methods have been developed for quantifying a system’s
observability. The advantage of empirical tools, such as the
empirical observability Gramian [17], is that they do not rely
on an analytical model of the system and only require the
ability to simulate it. However, how to tease out the relative
observability of each state variable remains unclear. To our
knowledge, an empirical method to quantify the observability
of individual state variables does not exist.

This work presents a derivative-free empirical framework
for evaluating the observability of individual states: Empir-
ical Individual State Observability (E-ISO). Whereas prior
approaches primarily employ the empirical observability
Gramian, E-ISO utilizes the empirical observability matrix.
First, analytical observability tools are reviewed. Then, a
framework for constructing an empirical observability matrix
is presented. From here, E-ISO selects a subset of rows from
the observability matrix that are necessary for reconstructing
each state individually, and a convex optimization framework
to efficiently perform this selection is presented. Lastly, mea-
sures of (un)observability are calculated for each subset of
rows, yielding an independent measure of (un)observability
for each state variable. By considering example linear and
nonlinear systems, it is shown that E-ISO can facilitate
both sensor selection and trajectory planning to increase the
observability of specific state variables.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 8444



II. NONLINEAR OBSERVABILITY BACKGROUND

To relate our E-ISO method to existing tools, we begin
with a brief review of analytical and empirical observability.

A. Analytical Observability: Review

Observability is a fundamental system property that char-
acterizes the existence of an one-to-one (injective) mapping
from measurements to state space with the knowledge of
inputs. For nonlinear systems, we discuss weak observability,
i.e. distinguishability of the unknown initial state in an open
neighborhood based on finite-time measurements and input
information [18].

Consider the continuous-time/discrete-time nonlinear
time-invariant system dynamics,

Σc :
ẋ(t) = f(x(t),u(t))

y(t) = h(x(t)),
/ Σd :

xk+1 = f(xk,uk)

yk = h(xk),
(1)

where states x take values in a smooth n-dimensional state
manifold X, control inputs u take values in a subset U of
an m-dimensional manifold U , and outputs y take values in
Rp. fu := f(·,u) is a smooth vector field for each u ∈ U,
and h =

[
h1 h2 · · · hp

]⊤
is the smooth output map of

the system from X to Rp. Given some control u∗, the first
(w91) time-derivatives of the output for the continuous-time
system with wp ≥ n are given by

y
y′

y′′

...
y(w91)

 =


h(x(t)) = L0

fu∗h

h′(x(t)) = L1
fu∗h

h′′(x(t)) = L2
fu∗h

...
h(w91)(x(t)) = Lw91

fu∗ h

 := Gc(w,x(t),u∗), (2)

where the Lie derivative, Lfu∗h, denotes the derivative of h
with respect to x on the vector field fu∗ , i.e. Lfu∗h = ∂h

∂x fu∗ ,
and repeated Lie derivatives are calculated as Lk

fu∗h =

Lfu∗L
k−1
fu∗ h. The invertibility of the mapping Gc at a given

state vector x0 ∈ Rn requires its Jacobian to have the same
rank as the dimension of the state space at x0, i.e. if the
observability matrix Oc,w := dGc =

∂Gc(w,x,u∗)
∂x |x=x0 is full

column rank, Σc is observable [19].
Similarly, given an input sequence u† =

(u0,u1, . . . ,uw91), w consecutive measurements from
the discrete-time system dynamics would give

yk

yk+1

yk+2

...
yk+w91

 =


h(xk)

h(xk+1) = h ◦ fu0 (xk)
h(xk+2) = h ◦ fu1 (xk) ◦ fu0 (xk)

...
h(xk+w91) = h ◦ fuw91 (xk) ◦ · · · ◦ fu0 (xk)


:= Gd(w,xk,u

†),

(3)

where ◦ denotes function composition. If the mapping Gd

at x0 is invertible, then the discrete-time system is said to
be w-step observable at x0, that is, the observability matrix
Od,w := dGd = ∂Gd(w,x,u†)

∂x |x=x0 being full column rank
implies w-step observability of Σd [20].

One can also check the observability of a particular
state variable by augmenting Oc or Od with the basis
vector corresponding to the state of interest ej ∈ Rn (e.g.

e1 =
[
1 0 0

]⊤
for the first state of a three-state system)

and checking if the rank changes. If rank(
[
O⊤ ej

]
) =

rank(O⊤), then the information required to obtain the state is
already contained within O, thus the jth state is observable.
If the rank does change, then new information about the state
was added to O, thus the state is unobservable [8].

B. Empirical Observability: Review
Although analytical observability tools are valuable for

systems with a known model, analytically obtaining the
observability matrix is not always possible due to require-
ments like differentiability. For such systems, the empirical
observability Gramian was introduced [17]. Here, we show
how to build an empirical observability matrix and relate it
to the observability Gramian.

An empirical continuous-time observability matrix can be
obtained by numerically computing Oc,w. However, calcu-
lating the higher-order (time) derivatives that appear in the
Jacobian of Eq. 2 using difference formulas can be unreliable
[21]. Hence, we focus on building an empirical observability
matrix from discrete-time measurements.

Let x0 be the initial state vector of interest of the observ-
ability analysis, and let u† be a nominal input. To construct
a w-step empirical observability matrix, we perturb each
initial state variable in positive and negative directions with a
perturbation amount ε, that is, we simulate the given system
dynamics 2n times in total and define the perturbed system’s
output vectors at time k as:

y±j
k (x0,u

†, ε) = yk(x0 ± εej,u
†). (4)

Then the w-step empirical discrete-time observability matrix
can be obtained as:

Od,w,ε =
1

2ε


∆y1

0 ∆y2
0 · · · ∆yn

0

∆y1
1 ∆y2

1 · · · ∆yn
1

...
...

. . .
...

∆y1
w91 ∆y2

w91 · · · ∆yn
w91

 , (5)

where ∆yj
k’s are the differences between the output vectors

at time k for the perturbed state j, y+j
k (·) and y−j

k (·), i.e.

∆yj
k(x0,u

†, ε) = y+j
k (x0,u

†, ε)− y−j
k (x0,u

†, ε). (6)

For the purposes of evaluating observability along a state
trajectory, it is convenient to construct the observability
matrix in sliding windows assuming no noise (Fig. 1A).

Finally, the continuous-time observability Gramian for the
time interval [0, w∆t] is defined as [22]:

WOc(0, w∆t) =

∫ w∆t

0

∂x0y
⊤(τ)∂x0y(τ)dτ, (7)

and it can be shown that O⊤
d,w,εOd,w,ε∆t with constant w∆t

would converge to WOc
(0, w∆t) as the perturbation amount

ε and the discretization time step size ∆t go to zero, that is,

WOc(0, w∆t) ≈ O⊤
d,w,εOd,w,ε∆t, (8)

for small ε,∆t. Hereafter, we simplify Od,ε and WOc to Oε

and WO, respectively, and we use a value of ε = 10−3,
considering that the standard size of each state variable is of
order one.
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C. Unobservability Measures: Review

Since observability is determined by the invertibility of
WO, established measures for quantifying the level of a
nonlinear system’s unobservability include the reciprocal of
the minimum eigenvalue of WO, 1/

¯
λ(WO), and the condi-

tion number of the same matrix, κ(WO) = λ̄(WO)/
¯
λ(WO),

and they are called the unobservability index and estimation
condition number, respectively [23]. If Oε has full column
rank, then the singular values of Oε approach the square
root of the eigenvalues of 1

∆tWO for small ε,∆t. Since the
method presented in this paper analyzes Oε, we apply these
established measures to the singular values of Oε and focus
on κ(O⊤

ε Oε) = κ(Oε)
2 = [σ̄(Oε)/

¯
σ(Oε)]

2 for brevity.

III. MOTIVATING EXAMPLES

To illustrate the challenges associated quantifying observ-
ability for individual state variables, consider the following
series of examples.

1Oε =

[
10−4 1 0
0 1 0

]
, 2Oε =

[
1 1 0
0 1 0

]
.

In neither case is the system full rank. To assess the ob-
servability of the first state we could augment each system
with the first state basis vector (e⊤1 =

[
1 0 0

]
) and check

to see if the rank has changed (as in [8]). In both cases
the rank does not change, suggesting that the first state is
observable, however, it is clearly more observable in 2Oε,
and a quantification of this difference would be helpful.

Established approaches for quantifying the level of observ-
ability involve looking at the eigenvalues of the Gramian. To
see the challenges associated with these methods, consider
the following.

3Oε =

[
1 0
0 10

]
, 4Oε =

[
1 0
1 1

]
, 5Oε =

[
1 10−16

0 10−16

]
.

Estimating the first state variable (j = 1) is equally well-
posed for 3Oε and 4Oε, and practically, 5Oε too. However,
the condition numbers of the Gramians are all different.
Investigating the rows of the Gramians does not provide
additional insight either, e.g. 4WOε =

[
2 1
1 1

]
hides the fact

that the first state is directly observable. The second row
of 4WOε

does not actually provide any information about
the first state (unless there is a different measurement, or
there are dynamics, that make it possible to decouple this
combined measurement into its components). To summa-
rize, each row of Oε that does not contribute to closely
reconstructing the basis vector ej can confound efforts to
quantify the observability of the jth state. Thus, we develop
an approach for finding a small subset of Oε that is sufficient
for reconstructing ej , and which yields a small condition
number. There are, however, likely cases where in practice
(e.g. with noisy sensors) using more rows of Oε (e.g. more
sensors, or more measurements in time) will yield a better
state estimate for the jth state, despite corresponding to a
larger condition number compared the small subset of rows
that we select.

IV. EMPIRICAL INDIVIDUAL STATE OBSERVABILITY
(E-ISO)

E-ISO provides measures of (un)observability for indi-
vidual state variables by quantifying how well-posed the
problem of estimating a single state variable is given mea-
surements and inputs from a time window of length w.
This process involves finding the combination of sensors
and measurements, i.e. rows of Oε, that provide the “best”
value for the chosen measure (e.g. the smallest condition
number). Solving this problem with a brute force approach
would be computationally intractable for large systems, as
this is equivalent to finding the best possible combination of
rows in Oε for observing the state variable of interest. The
number of combinations that would need to be evaluated for
such an approach is given by

N =

pw∑
r=1

(
pw

r

)
=

pw∑
r=1

(pw)!

r!(pw − r)!
, (9)

where pw is the number of rows in Oε. For perspective, in a
system with four outputs and 25 simulation steps (pw = 100)
there are N > 1030 combinations.

This section details an efficient, but approximate, so-
lution consisting of three steps. First, a sparse subset of
rows is selected (Oej

ε ) whose linear combination can recon-
struct ej to within a user-specified tolerance (β). Second,
(un)observability measures of the corresponding approximate
observable subspace (Ôej

ε ) are evaluated. Finally, since many
unique subsets of rows of Oε can be found to recon-
struct ej , these unique subsets are sequentially gathered,
in order of decreasing sparsity, into a collection iOej

ε that
increases in size with each iteration (i). For each iteration,
(un)observability measures of the approximate observable
subspace are calculated. The final measure that describes the
approximate observability of the state variable of interest is
the “best” of these. Pseudo-code is provided at the end of
the section.

A. Selecting a sparse subset of the observability matrix

For a state to be observable given Oε, it must be possible
to linearly combine the rows to reconstruct the basis state
vector corresponding to the state variable of interest (ej for
the jth state variable). That is, there must be a vector v such
that

e⊤
j = v⊤Oε. (10)

We define Oej
ε as the subset of Oε corresponding to non-zero

elements in v. To efficiently exclude as many rows from Oej
ε

as possible, we use established optimization tools [24], [25]
to find vo that minimizes a constrained convex problem,

vo =
argmin

v
||ej −O⊤

ε v||2 + α||v||1

s.t. |(ej −O⊤
ε v⊤)s| ≤ β, s = {1, 2, ..., n}

, (11)

where α is a scalar hyper-parameter, and β > 0 is a
tolerance on how closely each state element of ej must be
reconstructed. The objective function consists of two terms:
1) the ℓ2-norm of the reconstruction error, and 2) the ℓ1-norm
of the free variable v. The first term drives v to reconstruct
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the basis vector ej , whereas the second term is a regularizer
that promotes sparsity in v. Furthermore, the ℓ1-norm penalty
on v also helps to prioritize the selection of rows of Oε

containing large values, thereby choosing rows that are likely
to increase the magnitude of the singular values of Oε. In
practice, the ℓ1-norm does not always drive small elements
of v to zero. Thus, we add an extra step to eliminate small
values in v0 by sequentially adding the largest elements until
the tolerance set on ej is met. Figure 1C, gray shading,
shows that this optimization selects a single row from Oε to
estimate e1. Rows highlighted in green and teal are discussed
in Sec. IV-C. If no solution to the optimization can be found,
barring computational idiosyncrasies of the selected solver,
we conclude that the system is approximately unobservable.

Fig. 1. Graphical illustration of E-ISO applied to a fully observable
linear system with the dynamics ẋ = Ax =

[
0 1 0
−2 0 1
1 0 −1

]
x, y =

[
1 0 0
1 1 1
0 0 1

]
x.

A. Simulation from which the empirical observability matrix (Oε) is
constructed over time in a sliding window (w = 100). B. Example Oε

(Eq. 5) and free parameter vector v (Eq. 10) used for optimization. The
rows of Oε selected from the first three optimization iterations of E-ISO
are highlighted. C. The condition number of the observable subspace of
each iteration of E-ISO for each individual state variable, which converge
to the condition number of the observability Gramian (gray dashed line).
D. Same as C, but for combinations of state variables. E-ISO parameters:
α = 10−2, β = 10−3, σ0 = 10−6.

B. Obtaining a quantitative (un)observability measure

To compute quantitative (un)observability measures for
individual state variables, the singular values of Oej

ε can be
analyzed. Since this subset may not have full column rank,
an approximate observable column-subspace of Oej

ε is found
by calculating a rank-truncated singular value decomposition
given a user-specified threshold (σ0). We define the projec-
tion of Oej

ε onto the approximately observable subspace as
Ôej

ε . Now, established (un)observability measures, such as
the condition number, can be applied to Ôej

ε to obtain a
quantitative (un)observability measure for the state variable
of interest (Fig. 1B–C, iteration # = 1).

C. Quantifying observability for iterated subsets of Oε

The optimization problem defined by Eq. 11 yields a
single set of rows corresponding to an observable state
variable, however, there may be multiple valid combinations
of rows. To ensure that all relevant rows are accounted for,
the optimization should ideally be iterated for every possible
combination of rows in Oε, and then the subset of selected
rows with the minimum condition number could be used to
evaluate the observability of the state variable of interest.
The first optimization of Eq. 11 yields 1Oej

ε (Fig. 1B, gray
row). The rows in 1Oej

ε are then removed from Oε and the
optimization is repeated to select new rows (Fig. 1B, green
rows), which are added to 1Oej

ε and the new collection is
defined as 2Oej

ε . This process is repeated (e.g. Fig. 1B, teal
rows) until the optimization fails to find an observable subset.
At each iteration the condition number of iÔej

ε is determined
(Fig. 1C). To obtain the best single measure, the minimum
condition number is selected:

κmin = min{κ(1Ôej
ε )2, κ(2Ôej

ε )2, . . . , κ(wÔej
ε )2}, (12)

where κ(iÔej
ε ) is the condition number of the collection

of rows selected from Oε after i iterations. For directly
measurable states, the smallest κ will occur at the first
iteration (Fig. 1C, e1); for states requiring an accumulation
of sensor measurements (Fig. 1C, e2 and e3) the smallest κ
typically occurs at some intermediate iteration number.

The E-ISO method can be extended to determine a single
observability measure for any combination of z states by
stacking z unique ej’s and defining v as a pw × z matrix
(Fig. 1D). For a fully observable linear system, the condition
number κ(iÔej

ε )2 for each individual state, or any combi-
nation of states, will converge to the condition number of
the observability Gramian κ(WO) after many iterations (Fig.
1C–D), provided that every row of Oε is eventually selected.
For some systems, our iterative algorithm will not, however,
eventually select every row.

Pseudo-code for E-ISO, which we implemented in Python,
is provided below.

Algorithm 1 E-ISO
Input: Oε, ej Parameters: α, β, σ0 Output: κmin

1: Ôej
ε ← (), κ← (), i← 1 ▷ initialize variables

2: IsObservable← True
3: while IsObservable do

▷ reconstruct state with convex optimization
▷ r is the collection of row indices used

4: IsObservable, r ← OPTIMIZE(Oε, ej , α, β)
5: if IsObservable then
6: Ôej

ε ← [Ôej
ε ,Oε(r, :)] ▷ add rows to subset

7: κ(i)← CONDITIONNUMBER(Ôej
ε , σ0)

8: else
9: if i = 1 then ▷ failed on 1st iteration

10: κmin ←∞ ▷ condition # is undefined
11: else
12: κmin ← min(κ) ▷ minimum condition #
13: Oε(r, :)← 0 ▷ set rows to zero
14: i← i+ 1 ▷ next iteration
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V. APPLICATIONS

We apply the E-ISO approach to two examples: a linear
system to highlight sensor selection applications, and a non-
linear biological system to highlight applications to trajectory
planning for active sensing.

A. Sensor selection

The need for efficiently estimating states of high dimen-
sional systems while minimizing the quantity of physical
sensors has spurred the development of sparse sensing ap-
proaches [26], [27], but these methods focus on full state
estimation. Here, E-ISO is applied to a simple discrete-time
linear system with various output configurations to illustrate
how sensors could be chosen to maximize the observability
of an individual state variable of interest. The analysis shows
that the condition number of the Gramian is correlated
with the least observable state variable (R2 = 0.99)—
thus obscuring information about the more observable state
variables—whereas E-ISO can resolve differences in observ-
ability between state variables (Fig. 2).

Fig. 2. The condition number of the observability Gramian (top) is
generalized to individual state variables with E-ISO (middle). Different
sensor sets are represented by C matrices (bottom) applied to a discrete-
time linear system with dynamics xk+1 = Axk , yk = Cxk where A =[
0.9952 0.095 0
−0.095 0.9002 0

0 0 0.9048

]
. E-ISO parameters: α = 10−4, β = 10−2, σ0 = 10−6

multiplied by maximum eigenvalue.

B. State trajectory planning for active sensing

For nonlinear systems, the observability of the state vari-
ables can depend on the current state, and some non-zero
inputs may be required to guarantee observability [28]. To il-
lustrate E-ISO’s application to such active sensing objectives,
consider the following system inspired by a flying insect such
as a fruit fly [8]:

ẋ =


ḋ
ġ
ẇ

ϕ̇

ζ̇

 =


0
ug

0
uϕ

0

 , h(x(t)) =

 ϕ
g/d
γ

 . (13)

States 1–3 represent magnitudes describing the fly’s alti-
tude d, ground speed g, and the ambient wind speed w. States
4–5 are angular quantities describing the fly’s heading ϕ and
the ambient wind direction ζ. For simplicity heading and
course direction are defined to be equal. In this example,
d, w, and ζ are constant, whereas ϕ and g are directly
controlled with inputs uϕ and ug . All dynamics (inertial,
aerodynamics, etc.) are excluded to simplify the presentation
of the observability analysis. The nonlinear outputs h(x(t))
of the system consist of ϕ measured directly, optic flow

approximated by g/d [29], and the air speed angle in the
global frame:

γ = arctan

(
−g sinϕ+ w sin ζ

−g cosϕ+ w cos ζ

)
. (14)

For a fly engaged in a chemical plume tracking behavior,
estimating ζ is especially important [7]. Thus, ζ can be
considered a high-priority estimate, whereas g, d, w are not
needed for most plume tracking algorithms. E-ISO can
reveal which inputs are needed to ensure observability of
an individual state variable, such as ζ. The following E-
ISO results confirm prior analytical work and its exten-
sion to the exact dynamics given above ([8], see also:
https://github.com/BenCellini/EISO).

First, the observability of all the state variables was
evaluated for a non-zero constant optic flow trajectory ġ = 0
with zero inputs ug = uϕ = 0. Only ϕ, a direct measurement,
is observable (Fig. 3A).

Prior work has shown that flies perform rapid turns called
saccades at a rate of 0.5Hz during flight [30], which could
potentially improve their ability to estimate the ambient wind
direction [8], [9]. In Eq. 13, saccades can be emulated by
introducing a nonzero change in heading ϕ̇ ̸= 0 by setting
uϕ ̸= 0. Applying E-ISO to the resulting trajectories reveals
that ζ becomes observable, but the rest of the states (aside
from ϕ) remain unobservable (Fig. 3B).

Prior work has also shown that with monocular optic flow
measurements g/d, both d and g are only observable when
a known translational acceleration ġ ̸= 0 is applied (i.e.
ug ̸= 0 in Eq. 13) [29], [31]. Applying E-ISO to acceler-
ating trajectories revealed that all the state variables become
observable (Fig. 3C). Together, the E-ISO results suggest that
flies could use two distinct active sensing strategies, turning
and/or accelerating, to estimate ζ—but flies would require
acceleration to observe the full state (this result does require
any model parameters to be calibrated [8]).

E-ISO can also identify which sensor combinations are
necessary to observe an individual state variable given some
trajectory. E-ISO shows that the angular sensor set alone is
enough to estimate ζ for turning trajectories, but the full
sensor set is still required to estimate the full state when
accelerating (Fig. 3D).

VI. DISCUSSION

Variations. Although the narrative and examples presented
here focus on the discrete-time empirical observability matrix
as the starting point, trivial modifications include starting
from an analytically determined observability matrix, or a
constructability matrix. Furthermore, although we focus on
the condition number, alternative measures such as the un-
observability index can be used instead. In fact, by working
with Oε, instead of the Gramian WO, additional measures
can be explored including: how many distinct sensors are
necessary, how many measurements are needed, and the
size of the time window required to capture the level of
observability along state trajectories.

Limitations and practical recommendations. We recom-
mend scaling state variable units such that all states are as
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Fig. 3. E-ISO reveals flies must turn or accelerate to estimate wind direction. A. Simulated five-second trajectory from Eq. 13 with constant optic flow, no
turning, and ∆t = 0.1 . For each individual state variable in Eq. 13, color shading indicates the observability level (Eq. 12) for sliding windows (w = 3).
E-ISO parameters: α = 10−6, β = 10−3, σ0 = 10−8. B. Same as A, but for a trajectory with turns. C. Same as A, for a trajectory with translational
acceleration. D. Different sensors from Eq. 13 are needed to estimate ζ for different trajectories: only ϕ and γ are necessary when turning, but g/d is also
required when accelerating.

comparable in magnitude over time as possible, and scaling
outputs according to their expected noise levels. Normalizing
the outputs is not recommended, as this would change the
interpretation of the singular values of Ôej

ε with respect
to the states themselves. E-ISO has three hyper-parameters
that may require tuning, or a methodical sweep. When state
values are scaled from 0.1 to 10, we recommend starting
with: α = 10−6, β = 10−3. For systems with a large number
of states and/or measurements, we suggest increasing α and
β to find sparse sets of Oε, at the expense of reconstruction
tolerance. When choosing the singular value threshold σ0, for
which to calculate the rank-truncated condition number, it is
generally critical to pick a value that excludes any singular
values that are not required to reconstruct the state variable
of interest. As a test, a rank-truncated observability matrix
can be constructed from a subset of the singular values of the
full observability matrix Oε. This procedure can be iterated
starting from the largest singular value until the state variable
of interest can be reconstructed within the β tolerance from
the rank-truncated observability matrix—and the last value
of the smallest singular value required can be set as the
σ0 threshold. Without this routine, an arbitrary chosen σ0

can lead to inaccurate condition numbers. When possible,
for smaller systems, this method of choosing σ0 combined
with evaluating every possible combination of rows will yield
the most accurate condition numbers for individual states
variables. We provide an example of this implementation
on the E-ISO GitHub. E-ISO can become computationally
cumbersome for large systems. Rather than implement E-ISO
in real-time for trajectory planning, we recommend using
E-ISO to identify trajectory motifs a priori (e.g. turning or
accelerating), and using these motifs to rank active sensing
trajectories.

Applications. E-ISO provides a practical solution to the
open problem of methodically discovering trajectories that
guarantee observability of specific state variables (or pa-
rameters) in partially observable (nonlinear) systems [32].
E-ISO’s focus on individual state variables can serve as a
practical generalization to full state methods such as empiri-
cal Gramian-based observability methods, and sparse sensor
selection algorithms [26]. In particular, E-ISO goes beyond

established methods like Kalman canonical decomposition,
which can be used to find the observable subspace, but does
not single out individual state variables within that subspace.
Beyond sensor selection and trajectory planning, E-ISO can
also be used to curate data prior to building bespoke ob-
servers using data-hungry machine learning methods to limit
extraneous/unobservable information. E-ISO results could
also be incorporated into partial update Kalman filters that
use observability measures to throttle state estimation [33].
Finally, E-ISO can be used as an elegant analysis and
hypothesis generation tool for understanding active sensing
in biological systems that may not be concerned with full
state estimation.
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