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Abstract— Deep reinforcement learning (DRL) has demon-
strated impressive success in solving complex control tasks by
synthesizing control policies from data. However, the safety
and stability of applying DRL to safety-critical systems remain
a primary concern and challenging problem. To address the
problem, we propose the Phy-DRL: a novel physics-model-
regulated deep reinforcement learning framework. The Phy-DRL
is novel in two architectural designs: a physics-model-regulated
reward and residual control, which integrates physics-model-
based control and data-driven control. The concurrent designs
enable the Phy-DRL the mathematically provable safety and
stability guarantees. Finally, the effectiveness of the Phy-DRL
is validated by an inverted pendulum system. Additionally, the
experimental results demonstrate that the Phy-DRL features
remarkably accelerated training and enlarged reward.

I. INTRODUCTION

Deep reinforcement learning (DRL) has achieved tremen-
dous success in many complex decision-making tasks with
high-dimensional state and action spaces, such as vision-based
control of robots [1]. Recent advances in DRL synthesize
control policies to tackle the non-linearity and uncertainties in
complex control tasks from interacting with the environment,
achieving impressive performance [2]. This is made possible
by leveraging deep neural networks (DNN) for effective
approximation of value function, action policy, and repre-
sentation learning of environmental states, to name a few.
However, applying DRL to safety-critical autonomous systems
remains a challenging problem. A critical reason is that the
control policy of DRL is typically parameterized by DNNs,
whose behaviors are hard to predict [3] and verify [4], raising
concerns about safety and stability.

In practice, in most autonomous systems, it is common
to have access to approximations of the nonlinear system
dynamics through the process of reasonable linearization.
Using these approximations, the model-based controller can
be derived for controlling the system with verifiable property.
The fundamental question here is whether we can leverage
existing model-based knowledge to regulate the behavior of
data-driven Deep Reinforcement Learning (DRL) systems
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without adversely affecting DRL performance. Additionally,
the model-based knowledge could offer theoretical support
for ensuring the safety and stability of DRL-enabled systems.

Recently, a research focus has been shifted to the integra-
tion of data-driven DRL and model-based control, leading
to a residual control diagram, which holds the promise for
dealing with complex dynamics while retaining the (provable
and verifiable) advantages of the model-based approaches [5],
[6], [7], [8], [9]. Such a residual control diagram can take
advantage of both model-based controllers and data-driven
DRL, as the model-based controller can guide the exploration
of DRL agents during training and regulate the behavior of
the DRL controller. Meanwhile, the DRL controller learns
to effectively deal with the uncertainties and compensate
for the model mismatch errors faced by the model-based
controller. Inspired by the residual control diagram, we
propose a novel physics-model-regulated DRL framework
to guide and regulate the pure data-driven approach using
model-based knowledge. Specifically, we leverage Lyapunov
stability theory to design a lyaponov-like reward function that
can encourage the DRL to learn to stable the system. Further
more, we derive safety and stability conditions using model-
knowledge to provide mathematical provable guarantee. At
last, we make the model-based controller and DRL to work
in conjunction under the residual control diagram to output
more robust control commands.

A. Related work

DRL-enabled control systems should satisfy some safety
constraints and also features a property that, if it starts
from a safe region, it will eventually converge to the goal
state, known as asymptotically stable [10]. To realize such
safety and stability require, model-based approaches focus
on constructing a safety set, and the DRL agent is only
allowed to act in this constrained space [5], [11], [12], [13],
[14], [15]. In this direction, the control Lyapunov function
(CLF) is typically used to constraint the state space with the
objective that all actions will lead the system to decent on
defined CLF, i.e., towards being stable [12], [13]. However,
finding such CLF is often a challenging task for nonlinear
systems. Given the desired safety specification, one can
also leverage control barrier function [5], [14], [16] and
reachability analysis [15] to certify the control command
to satisfy the safety requirement. The approaches [5], [14],
[15] are mainly designed to ensure the safety of the system,
where how to guarantee stability remains an open problem.
Moreover, the model-based approaches are generally limited
to modeling errors and rely on a more accurate dynamics
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model to expand the safe region [5], [13].
Learning-based approaches aim to embed the knowledge

of safety and stability during training, such that the agent
is guided to learn to stabilize the system [17], [18]. Chang
and Gao in [17] proposed to learn a Lyapunov function from
sampled data and use it as an additional critic network to
regulate the control policy optimization toward the decrease of
the Lyapunov critic values. Similarly, Zhao in [16] proposes to
incorporate CLF constraint in objective function for training to
prevent the system diverging from equilibrium. The challenge
moving forward is how to design DRL to exhibit a provable
stability guarantee mathematically. Recently, the seminal
work [18] discovered that if the reward of DRL is CLF-
like, the systems controlled by a well-trained DRL agent
can be proved to retain stability. Building on the work, the
challenges moving forward are two folds: what is the formal
guidance for constructing such CLF-like rewards for DRL
and how to regulate DRL to concurrently guarantee safety
and stability?

B. Contributions

To address the aforementioned challenges, we propose
the Phy-DRL: a physics-model-regulated deep reinforcement
learning framework built on the residual control diagram. The
novelty of Phy-DRL is summarized as follows:

• Safety and stability-aware Reward. We leverage Lya-
punov stability theory to design a new lyaponov-like
reward function that can encourage the DRL to learn to
stable the system and stay safe.

• Safety and Stability Conditions for Residual Control.
We derive safety and stability conditions using model-
knowledge to provide mathematical provable guarantees.

This paper is organized as follows. In Section II, we
present preliminaries. In Sections III, we investigate physics-
model-regulated reward, residual control and provable safety
and stability of Phy-DRL, respectively. We present the
experimental results in Section IV and conclude this work in
Section V.

II. PRELIMINARIES

For convenience, Table I summarizes the notations used
throughout the paper.

TABLE I
TABLE OF NOTATION

Rn: the set of n-dimensional real vectors
N: the set of natural numbers
[x]i: the i-th entry of vector x
[W]i,:: the i-th row of matrix W
[W]i,j : the element at row i and column j of matrix W
P ≻ 0: the matrix P is positive definite
⊤: the matrix or vector transposition
In: the the n× n-dimensional identity matrix
1n: n-dimensional vector of all ones

A. Real Plant and Residual Control

Without loss of generality, the real system is described by

s(k + 1) = As(k) +Ba(k) + f(s(k),a(k)), k ∈ N (1)

where s(k) ∈ Rn is the real-time system state,
f(s(k),a(k)) ∈ Rn is the unknown model mismatch, a(k) ∈
Rm is the control command.

In most autonomous systems, the conventional feedback
control method is available to design a baseline controller to
partially handle the control problem. This enables us only
training a DRL agent to deal with the residual part, where
the baseline control is incapable of due to the modeling
uncertainties and complexity. As shown in Figure 1, the
terminal control command a(k) from Phy-DRL is given in
the residual form:

a(k) = adrl(k) + aphy(k), (2)

where adrl(k) denotes the date-driven control command from
DRL, while aphy(k) denotes the physics-model-based control
command.

B. Safety Constraints

The considered safety problems stem from practical regu-
lations or constraints on system states, which motivates the
following safety set.

Safety Set: X ≜ {s ∈ Rn|v ≤ D · s− v ≤ v} , (3)

where D ∈ Rh×n, v, v and v ∈ Rh are given by safety
specifications.

The condition in (3) can cover a significant number of
safety problems that are associated with operation regulations
and/or safety constraints. Considering autonomous vehicles
driving in a school zone in Winter as one example [19],
according to traffic regulations, the vehicle speed shall be
around 15 mph. To prevent slipping and sliding for safe
driving in icy roads, the vehicle slip shall not be larger
than 4 mph. Given the information on regulation and safety
constraints, we can let

s =

[
v
w

]
,D =

[
1 0
1 −r

]
,v =

[
15
0

]
,v =

[
2
4

]
,v =

[
−2
−4

]
,

such that condition in (3) can be equivalently transformed to

− 2 ≤ v − 15 ≤ 2, (4)
− 4 ≤ v − r · w ≤ 4, (5)

where v, w, and r denote the vehicle’s longitudinal velocity,
angular velocity and wheel radius. The inequality (4) means
the allowable maximum difference with traffic-regulated
velocity (i.e., 15 mph) is 2 mph. While the inequality (5)
means the vehicle slip (defined as v − r · w) is constrained
to be not larger than 4 mph.
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Fig. 1. The plot shows the diagram of the proposed Phy-DRL framework. It consists of a real plant, a physics-model-based controller, a DRL algorithm of
actor-critic architecture, and a physics-model-guided reward module. The terminal control command is computed by taking the summation of the action
generated from the model-based controller and the action output from the actor-network of DRL. The states, control actions and the reward computed
from the Physical-Model-Guided Reward module will be saved as training data for optimizing the critic and actor networks. The dashed lines indicate the
additional procedures for training.

C. Deep Reinforcement Learning

In this paper, we consider a DRL agent is interacting
with the real plant (1) in discrete timesteps, which can be
formulated as a Markov Desicion Process (MDP) with M =
{S,A,P,R, γ}. In the MDP, S represents a set of states,
A a set of actions, and P : S × A × S 7→ R the state-
transition probability function indicating the probability of a
state-action pair leading to a specific next state. The reward
function R : S ×A 7→ R maps a state-action pair to a real-
valued reward. The discount factor γ ∈ [0, 1] controls the
relative importance of immediate and future rewards. The goal
in DRL is to find a policy π : S 7→ A, mapping a state to an
action that maximizes the expected return Qπ(s(k),adrl(k))
from step k:

Qπ(s(k),adrl(k)) = Es(k)∼S

[ ∞∑
t=k

γt−kR (s(t),adrl(t))

]

= Es(k)∼S

[ ∞∑
t=k

γt−kR (s(t), π (s(t)))

]
.

(6)

We use actor-critic architecture for policy searching as
it shows low variance and higher sample efficiency during
training [20], [21], [22]. As shown in 1, the actor-critic
architecture comprises critic network to approximate the
expected return Qπ(s(k),adrl(k)) and actor network to
approximate the policy π and output control action adrl(k).

III. PHY-DRL: PHYSICS-MODEL-REGULATED DRL

In this section, we investigate leveraging the available
physical knowledge encoded in matrices A and B in the
dynamics model (1) of the real plant to design DRL towards
safety and stability.

A. Safety Envelope

The current safety set formula (3) is not ready for
developing the safety- and stability-aware reward R(·) in
(6). To move forward, we introduce an equivalent variant of
safety set (3):

X̂ ≜
{
s ∈ Rn| − 1h ≤ d ≤ D · s, D · s ≤ 1h

}
, (7)

where for i ∈ {1, 2, . . . , h},

[d]i ≜


1, if [v + v]i > 0

1, if [v + v]i < 0

−1, if [v + v]i > 0, [v + v]i < 0

(8)

with the v, v and v given in (3), and the subscript h ∈ N
indicating the number of constraint or regulation conditions.
The two sets X̂ and X can be equivalent, as stated in the
following lemma, whose proof appears in literature [23].

Lemma 1: Consider the set X defined in (3) and the set
X̂ defined in (7). The X = X̂ holds, if and only if D = D

Λ
and D = D

Λ , where for i, j ∈ {1, 2, . . . , h},

[Λ]i,j ≜


0, if i ̸= j

[v + v]i , if [v + v]i > 0

[v + v]i , if [v + v]i < 0

[v + v]i , if [v + v]i > 0, [v + v]i < 0

(9)

[Λ]i,j ≜


0, if i ̸= j

[v + v]i , if [v + v]i > 0

[v + v]i , if [v + v]i < 0

[−v − v]i , if [v + v]i > 0, [v + v]i < 0.

(10)
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We now introduce the safety envelope, a building block of
safety- and stability-aware reward.

Ω
∆
=

{
s ∈ Rn| s⊤Ps ≤ 1, P ≻ 0

}
. (11)

The following lemma builds a connection between the
safety envelope Ω and the safety set X̂. Specifically, it provides
a condition under which the safety envelope Ω is a subset of
safety set X̂. Its formal proof is presented in [23].

Lemma 2: Consider the safety set X̂ and the safety en-
velope Ω defined in (7) and (11), respectively. The Ω ⊆ X̂
holds, if

DP−1D
⊤ ≤ Ih and[

DP−1D⊤
]
i,i
=

{
≥ 1, if [d]i = 1

≤ 1, if [d]i = −1
, i ∈ {1, . . . , h}. (12)

The condition (12) in Lemma 2 will be used to compute
the model-based control commands (see LMIs (15) and (16)).
In addition, Lemma 2 will be used in the proof of safety
guarantee.

B. Design of Model-based Controller

We compute the physics-model-based control command
aphy(k) according to

aphy(k) = Fs(k), with F = RQ−1,Q−1 = P. (13)

The matrices Q−1 = P and R are computed through solving
the following LMIs via LMI toolbox [24]:[

αQ QA⊤ +R⊤B⊤

AQ+BR Q

]
≻ 0, (14)

Ih −DQD
⊤ ≻ 0, (15)[

DQD⊤
]
i,i

=

{
≥ 1, [d]i = 1

≤ 1, [d]i = −1
, i ∈ {1, . . . , h} (16)

where d is given in (8), and 0 < α < 1 is a predefined scalar
when computing the above matrices.

We next present a property of a real plant with residual
control, which will be used to prove the safety and stability
guarantees of Phy-DRL in the next section. The lemma proof
is given in [23].

Lemma 3: For the systems (1) with residual control (2),
define the function:

V (s(k))
∆
= s⊤(k) ·P · s(k). (17)

If the model-based control (13) in the residual control (2)
satisfies the condition (14), the function V (s(k)) along real
plant satisfies

V (s(k+1))−V (s(k))<r(s(k),a(k))+(α−1)V (s(k)) (18)

where

r(s(k),a(k))
∆
= (f(s(k),a(k))+Badrl(k))

⊤
P(f(s(k),a(k))+Badrl(k))

+ 2(As(k))⊤P (f(s(k),a(k))+Badrl(k)) . (19)

C. Safety- and Stability-Aware Reward

In light of the condition of the safety envelope (11) and (18),
we are ready to propose a safety- and stability-aware reward.
For the sake of simplifying the remaining presentations, we
define the following:

A
∆
= A+BF, (20)

The real plant under the control of Phy-DRL can be
rewritten as

s(k + 1) = As(k) +Badrl(k) + f(s(k),a(k)), k ∈ N (21)

Hereto, the proposed reward is

R(s(k),a(k)) =
[
s⊤(k)A

⊤
PAs(k)− s⊤(k+1)Ps(k+1)

]
+ g(s(k),a(k)), (22)

where P is given in (13). The term g(s(k),a(k)) is designed
for encouraging high operation performance (such as avoiding
jerky motions for comfortable driving), while remaining terms
are motivated by the aim of safety and stability guarantees.

Remark 1 (Reward Motivation and Explanation): In light
of (21), we obtain from (19) that

r(s(k),a(k))

= 2
(
As(k)

)⊤
P
(
s(k + 1)−As(k)

)
+

(
s(k + 1)−As(k)

)⊤
)P

(
s(k + 1)−As(k)

)
= (s(k + 1))

⊤
P (s(k + 1))− s⊤(k)

(
A

⊤
PA

)
s(k),

which means the reward (22) includes a sub-reward term
−r(sk,uk) = s⊤k

(
A

⊤
PA

)
sk − (sk+1)

⊤
P (sk+1) that the

data-driven control commands adrl(k) from Phy-DRL try to
maximize. In another word, the reward (22) has one objective
of encouraging choices of control commands for decreasing
r(sk,uk) over time. As proved in Theorem 1, the smaller
r(sk,uk) favors the safety and stability of the system.

D. Phy-DRL: Provable Safety and Stability Guarantees

The conjunctive physics-model-regulated reward (22) and
residual control (2) empower the Phy-DRL with the provable
safety and stability guarantees. Before presenting the result,
we introduce a practical assumption pertaining to the data-
driven term (19).

Assumption 1: Along the real plant under the control of a
Phy-DRL, the function (19) satisfies

r(s(k),a(k)) < β(s(k)). (23)

Remark 2: The upper bound β(s(k)) in (23) is a function
of system state s(k), which is motivated by the fact that
both model-based control aphy(k) and data-driven control
adrl(k) depend on system state only. In practice, according
to (19), the β(s(k)) can be obtained through estimating the
residual model mismatch f(s(k),a(k)), since the A, B, P
and adrl(k) in (19) are known. Furthermore, according to
(21), the mismatch f(s(k),a(k)) can be estimated from the
samples (s(k),a(k), s(k + 1)) generated by the real plant
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under control of Phy-DRL, for example, using Gaussian
Proess (GP) as in [5].
The safety and stability of Phy-DRL are formally presented
in the following theorem, whose proof appears in [23].

Theorem 1: Consider the real plant (1) under the control
of Phy-DRL, whose reward is given in (22) and the control
command is given in (2) with (13), where the involved
matrices A, B, Q−1 = P, F and R satisfy the conditions
(14)–(16). Under Assumption 1, we have:

• If β(s(k))
1−α < 1 holds for any k ∈ N, the control policy

of Phy-DRL renders the given safety envelope Ω (11)
invariant, i.e., if s(1) ∈ Ω ⊆ X̂ = X, then s(k) ∈ Ω ⊆
X̂ = X for any k ∈ N.

• If β(s(k))+(α−1) ·V (s(k)) ≤ 0 holds for any k ∈ N,
the control policy of Phy-DRL asymptotically stabilizes
the real system (1) and renders the given safety Ω (11)
invariant.

IV. EXPERIMENTS

We demonstrate the proposed Phy-DRL in an inverted
pendulum case study. The inverted pendulum system is
characterized by the angle of the pendulum from vertical θ,
angular velocity of ω ∆

= θ̇, the position of the cart x and cart
velocity v

∆
= ẋ. The control goal is to stabilize the pendulum

at the equilibrium s∗ = [x∗, v∗, θ∗, ω∗]⊤ = [0, 0, 0, 0]⊤.
To obtain system matrix A and control structure matrix

B, we refer to the dynamics model of inverted pendulum
described in [25] and consider the approximations cos θ ≈
1, sin θ ≈ θ and ω2 sin θ ≈ 0. To better demonstrate the
robustness of Phy-DRL, the matrices A and B below are
obtained without considering friction force, while the real
plant is subject to friction force.

A =


1 0.0333 0 0
0 1 −0.0565 0
0 0 1 0.0333
0 0 0.8980 1

 , (24)

B = [0 0.0334 0 − 0.0783]
⊤
. (25)

The considered safety conditions are

−0.6 ≤ x ≤ 0.6, − 0.4 ≤ θ < 0.4. (26)

We let α = 0.8. The matrices P and F are solved from LMIs
(14)–(16) via Matlab LMI toolbox:

P =


2.0120 0.2701 1.4192 0.2765
0.2701 2.2738 5.1795 1.0674
1.4192 5.1795 31.9812 4.9798
0.2765 1.0674 4.9798 1.0298

 , (27)

F =
[
0.7400 3.6033 35.3534 6.9982

]
. (28)

We let the high-performance reward g(s(k),a(k)) =
−a2(k). Given the sub-reward and the knowledge (24)–(25),
the residual control (2) and reward (22) of Phy-DRL can be
established.

The Phy-DRL’s data-driven controller is constructed using
a DNN with the structure of Multi-layer-perception (MLP)
that maps states to continuous actions. As shown in Figure 1,

Fig. 2. The plot shows an example of state trajectories of the system
controlled by the proposed Phy-DRL. The trajectory of Phy-DRL satisfies
the introduced safety and stability conditions.

the data-driven controller is in conjunction with the model-
based controller (13) to form the terminal residual control
command a(k). For training, we take the cart-pole simulation
provided in Open-AI gym and adapt it to a more realistic
system with friction and continuous action space. We leverage
an off-policy actor-critic algorithm DDPG [20] to train the
DRL-controller with the reward proposed in (22).

In the first experiment, we compare system trajectories of
cart-poles with a model-based controller and Phy-DRL. We
initialize the inverted pendulum in the neighborhood of the
equilibrium and let these two controllers control the system,
respectively. The system trajectories are shown in Figure 2,
observing which we discover that he model-based controller
cannot stabilize the car-pole and guarantee its safety, which
is due to a large model mismatch between (A, B) and real
system model. The control policy of Phy-DRL can stabilize
the pendulum system and guarantee system safety, i.e., the
safety condition (26) holds for any k ∈ N.

In the second experiment, we showcase the influence of
residual control on Phy-DRL training. To perform this, we
consider two rewards:

• Stability-aware (S) reward, i.e.,

R(s(k),a(k)) =
[
s⊤(k)Ps(k)− s⊤(k+1)Ps(k+1)

]
+ g(s(k),a(k)),

which is suggested by the CLF reward studied in [18].
• Safety- and stability-aware (S&S) reward, i.e., the (22).
The plot of log(-reward + 0.005), where a small number

is added to make the argument positive, and log(critic loss)
are shown in Figure 3. We conclude that in the same Phy-
DRL framework, the ‘S reward + residual control’ and ‘S&S
+ residual control’ lead to very similar training behavior.
Compared with purely data-driven DRL (see curves of
S Reward), the Phy-DRL features remarkably accelerated
training and enlarged reward.

8304



(a) Cost during training

(b) Critic loss during training

Fig. 3. The plots illustrate the training progress with and without residual
mechanisms. In the residual control diagram, the model-based control guides
the exploration of the DRL, significantly improving the converging speed
and leading to the enlarged reward (reduced cost).

V. CONCLUSION

In this paper, we proposed Phy-DRL that leverages model-
based knowledge to guide and regulate the data-driven DRL
towards safety and stability guarantees for safety-critical
autonomous systems. The concurrent physical reward and
residual control empower the Phy-DRL with mathematically
provable safety and stability guarantees. Through experiments
on the inverted pendulum, the Phy-DRL features guaranteed
safety, stability, and enhanced robustness while offering
remarkably accelerated training and enlarged reward. In the
future work, we will experiment with different approaches
for estimating the model mismatch and apply the proposed
framework to physical systems.
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