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Abstract— Understanding travelers’ day-to-day departure
time choice (DDTC) is vital for managing traffic congestion,
especially in multi-modal transportation systems. While pro-
viding real-time traffic information and alternative trip plans
brings convenience to travelers, their collective travel patterns
may conversely lead to unstable traffic equilibrium states. We
investigate a DDTC problem with mode switching in this paper.
A group of heterogeneous agents can adaptively choose their
modes and departure times to minimize total travel costs in a
dynamic game. Using a customized hierarchical soft actor-critic
(HSAC) algorithm with a continuum approximation of other
agents, the traffic dynamics will converge to an approximate
Markovian Perfect Equilibrium (MPE). Our findings also
shed light on changes in long-term travel behavior due to
the widespread deployment of emerging mobility and travel
information technology. This approach serves as a foundation
for promoting intelligent travel plans through adaptive traffic
control policies.

I. INTRODUCTION

Transportation agencies are now adopting multi-modal
transportation solutions [1] that provide connected travelers
with unified access to various modes of transportation [2].
However, assessing the long-term effects of introducing a
new mode to an existing traffic network is challenging
because the shift of travelers’ collective travel decisions
will perturb the traffic dynamics at equilibrium. In this
process, connected travelers can adaptively observe traffic
patterns and strategically modify their schedules to reduce
their expected travel costs. In order to understand general
patterns in a complex and dynamical transportation system
encompassing massive strategic travelers, researchers often
investigate day-to-day trip planning in aggregate network
models like bottleneck or bathtub models [3], [4]. While
these aggregate models do not estimate traffic dynamics at
the link level, they prove to be effective surrogate models
for drawing systematic implications in early-stage urban
planning and policy-making [5]. In aggregate multi-modal
networks [6], travelers’ long-term mode-switching behavior
and DDTC are interdependent decisions. Their mode choices
determine the population split and the potential level of
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traffic congestion; overloading one mode will then stimulate
travelers to depart at different times to avoid waiting in traffic
jams. The interaction between these two decisions is notably
critical for the early adoption of multi-modal transportation
systems because travelers may not know the traffic patterns
and must gradually learn the most efficient travel plans.
Hence, this work focuses on a fundamental question: How
will learning agents’ mode and departure time choice evolve
over days without prior information about system dynamics?

The difficulty of characterizing the day-to-day traffic
dynamics when travel schedules vary is well-known [7],
particularly due to the instability in finding equilibrium
solutions under specific schedule deviation policies [8], [9].
This instability is further compounded by the fact that het-
erogeneous travelers (agents) do not have prior information
about the overall population distribution, which changes
daily due to mode switching. In this case, identifying optimal
policies for agents to arrive at their desired times relays
on the assumption that traffic congestion patterns, which
depend on the number of travelers on the road, remain
stable at equilibrium. However, since each agent has multiple
transportation mode options, and the daily number of on-
road agents per mode fluctuates, changes in collective travel
behavior disrupt this equilibrium.

This research proposes a novel approach to model day-to-
day mode switching and departure time choices through a
dynamic game with learning agents. Our approach leverages
the extension to a continuum of agents to guarantee stable so-
lutions for the departure time choice, as described in [9]. We
approximate other agents in the system through a generalized
mean-field representation. This mean-field approximation
enables us to use reinforcement learning (RL) techniques to
study the evolution of traffic patterns as heterogeneous agents
adapt their travel plans. More specifically, this study captures
how agents can use RL algorithms to determine their daily
mode of transportation and departure times in a simplified
multi-modal transportation system.

A. Related Work

The analysis of within-day departure time dynamics based
on aggregate network models [10] is a crucial component
of traffic congestion predictions. The bathtub model [11],
[12] is widely used to describe the macroscopic evolution
of traffic patterns [4] affected by travelers’ departure time
choices. The interaction between travelers is modeled by a
delay differential equation, in which a network fundamental
diagram (NFD) [13], [14] characterizes the relationship be-
tween the average speed and the density. Common strategies
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that treat discontinuities in departure rates at the bathtub
model’s equilibrium solution include (1) approximating the
delay differentiable solution [4], (2) developing numerical
methods satisfying unique equilibrium utility conditions [15],
and (3) expanding the population to continuum of trip length
[10] and relaxing the distributional assumption [16]. Our
work aligns with the MFG setting [17] that considers random
desired arrival times and trip lengths to obtain departure time
equilibrium solutions under the most relaxed setting.

The perturbation of the equilibrium state of DDTC has
attracted growing interest, but most previous studies relies
on simulation-based approaches. Numerical simulations in
[18] show the impacts of elastic demand on daily traffic con-
ditions, where travelers may adjust departure times, switch
modes, or divert to alternative routes based on the provided
information, in which travelers’ choices follow a nested logit
model and day-to-day adjustments follows a Markovian pro-
cess. [19] examines the myopic adjustment and the learning
heuristics for travelers’ mode switching policies. The numer-
ical experiments reveal a counter-intuitive phenomenon that
long-memory learning models may lead to unstable day-to-
day dynamics. Analytical results for DDTC are limited to
the point queue model [7], [20]. For example, [8] proposes
a stable day-to-day dynamical system based on a backward
choice, cost-balancing, and scheduling cost-reducing princi-
ple. [9] proposes an alternative stable dynamical system in
which travelers’ local switching policy only depends on the
departure times. Our work considers DDTC in the bathtub
model, which captures hyper-congestion effects and connects
to a large body of NFD literature that has been validated by
empirical traffic data [14].

B. Contributions

Our main contributions include (1) proposing a general-
ized mean-field game (GMFG) model for DDTC with mode-
switching that warrants the approximate MPE solution; (2)
designing an HSAC algorithm that learns the optimal mode
and departure time policies based on traveler characteristics;
(3) providing insights into the evolution of mode splitting
and predicted traffic patterns after the introduction of a new
mode into a multi-modal transportation system.

II. DDTC WITH MODE SWITCHING PROBLEM

Problem statement for N -agent games. Consider travelers
(agents) indexed by i ∈ N ≜ {1, 2, . . . , N} commute to
work over a horizon of h ∈ H ≜ {0, 1 . . . }. Heterogeneous
agents with varying trip lengths and desired arrival times
make joint travel mode and departure time decisions on
the day h to minimize their expected discounted cumulative
travel costs over the horizon. Since the network congestion
level depends on agents’ collective decisions, we model
DDTC with mode switching as a Markovian (dynamic)
game. For simplicity of analysis, the remainder only con-
siders driving and an alternative on-demand transit mode,
which can be generalized to more commuting options. At the
beginning of each day, N agents independently make their
mode and departure time decisions based on their desired

arrival time and trip length without sharing this information
with others. Let mi,h denote the travel mode taken by agent
i on the day h. mi,h = 1 denotes that agent i chooses
to drive and mi,h = 0 for taking the transit mode. Let
ti,h ∈ T d ≜ [0, t] denote the agent i’s departure time on
the day h. The trip length and the desired arrival time of
agent i on the day h is represented by Li,h ∈ L ≜ [0, L] and
ξi,h ∈ X ≜ [0, ξ] respectively, which may shift according to
the observed travel costs from previous days. The individual
state si,h = (Li,h, ξi,h) ∈ S ≜ L × X includes the trip
length and the desired arrival time. The individual action
ai,h = (mi,h, ti,h) ∈ A ≜ {0, 1} × T d includes the mode
choice and the departure time. Thus, the state profile on the
day h is denoted by sh ≜ {si,h}i∈N and the joint actions on
the day h is denoted by ah ≜ {ai,h}i∈N .

An aggregate state is introduced to simplify the state
space, which would otherwise grow exponentially with the
number of agents, while still fully characterizing the trip
distributions. LetNl,h denote a set of agents who drive with a
trip length equal to l on the day h, and let Nl,h be the number
of such agents. The trip length mass ℓh, is a distribution of
driving agents, where ℓl,h = Nl,h for any l ∈ L. It serves as
an aggregate state at the beginning of day h, and L denotes
the space of all possible trip length mass distributions. Each
agent in this Markovian game only observes the individual
state si,h and the aggregate state ℓh to determine their mode
choice and departure time on the day h.

Traffic dynamics under the collected mode and departure
time decisions are modeled by a generalized bathtub model
[16] with heterogeneous travelers. Agents who choose to
drive on the day h and depart at ti,h arrive at ti,h +
T (ti,h) ∈ T ≜ [0, t

′
], and their travel times are affected

by the traffic congestion of the capacitated road network.
The system density at each time x is given by kh(x) =∑

i∈Nh
1[ti,h,ti,h+T (ti,h))(x), where 1A(x) is an indicator

function. The relationship between the traffic velocity vh(x)
and the system density kh(x) follows a NFD equation, as
vh(x) = V (kh(x)). To calculate the agent i’s travel time,
we consider a virtual agent who drives from x = 0 to t

′

on the day h. Her travel distance at time x is ψh(x; ℓh) :=∫ x

0
V (kh(u))du. Since ψh is invertible, the travel time of

agent i on the day h with the departure time ti,h is expressed
as T (ti,h) = ψ−1

h (Li,h+ψh(ti,h; ℓh))−ti,h. The daily travel
cost is calculated by an α− β − γ function:

c(si,h, ℓh, ah) ={
cLi, if mi,h = 0,
αT (ti,h) + cschedule(ξi,h, ti,h), if mi,h = 1,

(1)

where c and α are travel time cost coefficients for transit and
driving, respectively; the scheduled cost cschedule(ξi,h, ti,h)
is given by

cschedule(ξi,h, ti,h) = β(ξi,h − ti,h − T (ti,h))++
γ(ξi,h − ti,h − T (ti,h))−. (2)

Here β, and γ are the cost coefficients for early arrival and
late arrival, respectively. The implicit assumptions made are
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(1) the average transit travel time is independent of their
departure time [21], (2) α > min{β, γ}, meaning that agents
prefer to avoid traffic congestion. The state transition of each
agent i is modeled by a stationary function P : S × L ×
AN → ∆(S×L), where ∆(X) denotes the set of probability
distributions on X . Given the joint action ah on the day h, the
transition probability from the individual state si,h and the
trip length mass ℓh to the next individual state si,h+1 and trip
length mass ℓh+1 is given by P (si,h+1, ℓh+1|si,h, ℓh, ah).

We study stationary Markov policies for DDTC with mode
switching in an infinite horizon N-agent stochastic game
(a discounted non-zero-sum stochastic game), denoted as
πi : S × L → ∆(A). Let Π denote the Markov policy
space. A policy profile π = π1 × · · · × πN maps a state
profile and a trip length mass to a joint action. Given
π, the transition probability and the daily travel cost are
functions of the current individual state si,h ∈ S and the
aggregate state ℓh ∈ L, denoted as Pπ(si,h+1, ℓh+1|si,h, ℓh)
and cπ(si,h, ℓh), respectively. Agents aim to minimize their
expected discounted cumulative cost over an infinite hori-
zon by adaptively updating their mode and departure time
choices. Denote the initial individual state as s, the initial
trip length mass as ℓ, and the policy profile as π. The
expected discounted cumulative cost of the agent i, denoted
by Jπi,π−i : S× L→ R, is defined as:

Jπi,π−i(s, ℓ) := E

[ ∞∑
h=0

λhc(si,h, ℓh, ah)
∣∣∣∣si,0 = s, ℓ0 = ℓ,

ah ∼ π(sh, ℓh), (si,h+1, ℓh+1) ∼ Pπ(si,h, ℓh)

]
, (3)

where λ ∈ (0, 1) is the discount factor.
Maskin [22] shows that presuming Markov properties in

policy profiles can greatly simplify the analysis of equilib-
rium solutions. Hence, a stationary Markov policy profile π
is considered a Markovian perfect equilibrium (MPE) of the
N-agent DDTC if, for each agent i ∈ N , any individual
state s ∈ S, and any aggregate state ℓ ∈ L, the following
inequality holds for all π̂i ∈ Π:

Jπi,π−i(s, ℓ) ≤ J π̂i,π−i(s, ℓ). (4)

Although using an aggregate state simplifies the decision-
making process of each agent by requiring less information
about the population, finding an MPE for the N-agent DDTC
problem is inherently complex for several reasons. Firstly,
the day-to-day and within-day traffic dynamics are coupled,
resulting in a complex doubly dynamic system where each
agent is influenced by the decisions of all other agents.
Secondly, The state space and action space of the stochastic
game grow rapidly with the number of agents, and ℓh is
a combinatorially explosive state of Nh that depends on
each agent’s mode choice, making it challenging to solve
the problem exactly. Thirdly, ensuring stability in day-to-day
departure time dynamics is a difficult task, especially when
considering the presence of learning agents [7], [8]. To over-
come these challenges, we use the mean-field approximation

inspired by a continuum of agents for within-day departure
time choice [17].
GMFG formulation for DDTC. The computation of
MPE in the complex N-agent stochastic game for DDTC
with mode switching can be characterized by assuming
indistinguishable and interchangeable agents as a mean field.
The trip length distribution µh(l) ∈ ∆(L) represents the
aggregate pattern of the traffic demand as the number of
agents N tends to infinity, which is the limit of the trip

length mass as µh(l) := limN→∞

∑N
j=1,j ̸=i 1Lj,h=l,mj,h=1

N .
The departure time distribution τh(t) ∈ ∆(T d) represents
the aggregate departure flow of drivers on the day h, which
is the limit of the departure time profile as τh(t) :=

limN→∞

∑N
j=1,j ̸=i 1tj,h=t,mj,h=1

N . The mean-field Γh ∈ G ≜
∆(L×T d) is introduced as travelers’ joint distribution of trip
length and departure time, with marginal distributions µh and
τh. With a large population simultaneously making departure
time and mode choice decisions repeatedly, the mean-field of
agents converges to a stable distribution as marginal changes
in the individual state and action are averaged out. On the day
h, the characteristic agent makes near-optimal decisions for
ah ∈ A using an oblivious policy π(sh,Γ) : S×G→ ∆(A),
receives the daily travel cost c(sh, ah,Γ), and experiences
state transitions according to the dynamics P (·|sh, ah,Γ).
Here, both c : S×A×G→ R and P : S×A×G→ ∆(S) are
measurable functions and c is bounded. We call the policy
oblivious [23] because it involves decisions made without
the full knowledge of other agents. The expected discounted
cumulative cost of the agent under the mean-field game
framework is given by

Jπ(s,Γ) := E

[ ∞∑
h=0

λhc(sh, ah,Γ)

∣∣∣∣s0 = s,

sh+1 ∼ P (sh, ah,Γ), ah ∼ π(sh,Γ)
]
, (5)

The MPE of the N-agent problem is now approximated in
the mean-field game framework:

Definition 1: A profile of (π∗,Γ∗) is an approximate MPE
if the following conditions are satisfied.

1. Given the mean-field Γ∗, ∀π and ∀s ∈ S, it holds that

Jπ∗
(s,Γ∗) ≤ Jπ(s,Γ∗). (6)

2. When the agent exercises the policy π∗, the joint
distribution of {Lh, th|mh = 1}∞h=0 converges to Γ∗,
which is generated by the dynamics L0 ∼ µ0, ah ∼
π∗(sh,Γh), and sh+1 ∼ P (sh, ah,Γh). Here, Γh is the
empirical mean-field distribution on the day h.

III. SOLUTION METHOD AND HSAC ALGORITHM

Agents in a multimodal transportation system does not
have prior information about daily travel costs and the state
transition function, especially with newly added on-demand
transit modes [1]. This section presents a soft actor-critic RL
algorithm incorporating a hierarchical policy to overcome the
challenge of computing approximate MPE for the DDTC
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problem. Various RL methods for computing approximate
equilibrium solutions in mean-field games have been pro-
posed, such as Q-learning [24] proximal policy optimization
[25], and actor-critic method [26].

However, the joint mode and departure time choices
present a unique hierarchical structure of policies, which
require the development of new RL algorithms for solving
the approximate MPE. We propose an RL method called
the Mean-Field Hierarchical Soft Actor-Critic (MF-HSAC)
algorithm. MF-HSAC consists of an inner-loop RL step
and an outer-loop mean-field updating step, which has two
features: (1) utilizing the hierarchical policy of mode and
departure time choices, MF-HSAC can significantly speed
up the overall learning process; (2) the actor-critic method
in the inner loop only accesses to the driver’s trip length
and departure time distributions compared to traditional
RL methods requiring the entire state-action distributional
information.

MF-HSAC Algorithm. Recall that the daily travel cost
for transit modes is independent of the departure time
decision, the inner loop of MF-HSAC focuses on finding
the optimal departure time policy for driving agents through
the Soft Actor-Critic (SAC) algorithm [27], [28]. Given the
mean-field distribution Γ, the departure time policy (actor)
for the driving mode is represented by πΓ,θ(s), and the
corresponding state-action value function (critic) is repre-
sented by QΓ,w(s, t). The policy and the value function
are parameterized by θ and w, respectively. After the critic
value gets stable after several training episodes, the expected
critic value, which represents the future value of driving,
is compared with the future value of the alternative mode,
denoted as Q, and the mode is decided accordingly. Let νΓ(s)
denote the mode policy, which is a Bernoulli distribution
with the probability mass function (PMF) computed by
softmaxω

(
Et∼πΓ,θ

(QΓ,w(s, t)), Q
)
. Here, softmaxω(x)i =

exp(xi/ω)∑
j exp(xj/ω) is the Boltzmann exploration operator with a

temperature parameter ω. Without loss of generality, we
assume the agent also follows πΓ,θ(s) in the transit mode.
The oblivious policy is then represented in a hierarchical
form, with πΓ = νΓ ◦ πΓ,θ. The traffic congestion k(x)
and the characteristic trip length ψ(x) are computed in
the discretized bathtub model given Γ, further determining
the inner-loop traffic dynamics. We refer to this process as
{c(·, ·,Γ), P (·, ·,Γ)} ∼ Θ(Γ) and omit details of calculating
traffic dynamics (see [17] for more information).

The outer loop of MF-HSAC involves sampling a state
s from the population, making an action a according to
the policy πΓ(s) learned from the previous step, observing
the next state s′ ∼ P (·|s, a,Γ), and taking another action
a′ ∼ πΓ(s′). The mean-field distribution, Γ, is then updated
to Γ′ as an aggregate state-action distribution. Let Γ′ ∼
Φ(πΓ,Γ) represent the whole updating process. The MF-
HSAC algorithm is fully described in Algorithm 1, where αθ

and αw are learning rates of SAC. Policy πΓh
is substituted

by πh for brevity of notation.

Algorithm 1: MF-HSAC
Input: Initial mean-field Γ0, initial parameter of

actor θ, initial parameter of critic w
1 for h = 0, 1, . . . : do
2 1. Determine the traffic dynamics:

c(·, ·,Γh), P (·, ·,Γh) ∼ Θ(Γh)
3 2. Learn the departure time policy:
4 s← s0
5 m← 1
6 for j = 0, 1, . . . : do
7 choose departure time t ∼ πΓh,θ(s)
8 Take action a = (m, t) in s
9 Observe s′ ∼ P (s, a,Γh) and

r = −c(s, a,Γh)
10 σ ← r + λmaxt{QΓh,w(s

′, ·)} −QΓh,w(s, t)

11 θ ← θ + αθ
δ log πΓh,θ(t|s)

δθ σ

12 w ← w + αw
δQΓh,w(s,t)

δw σ
13 end
14 3. Determine the mode choice policy:

15 νΓh
(s) = softmaxω

(
Et∼πΓh,θ

(QΓh,w(s, t)), Q
)

16 4. Update the mean-field distribution:
Γh+1 ∼ Φ(πh,Γh)

17 where πh = νΓh
◦ πΓh,θ

18 end

IV. NUMERICAL EXPERIMENT

Experiment setup. We take a discrete setting for simplicity.
Our numerical experiment is based on the downtown rush-
hour setting in [15], [29]. The desired arrival time space
X and the departure time space T d are both defined on
a discrete-time interval ranging from 0 to 1

3 -hour with an
interval of 1-minute. The actual arrival time space T is
defined as a time interval ranging from 0 to 1 hour. The trip
lengths are either 0.5 miles or 1.0 miles; the space interval
dL is 0.5 miles. The trip length for agents is revealed at
the beginning and is assumed to be constant throughout the
experiment. The desired arrival time ξ is adjusted accordingly
as follows: (1) If the agent ran late on the previous day,
ξ′ = ξ + dt; (2) If the agent arrived early in the previous
day, ξ′ = ξ − dt; (3) If the agent arrives on time, ξ′

remains the same. This adjustment reflects the alteration of
the agent’s expectation for the next arrival time based on their
observations. A similar design is used in [9] to study the local
stability of the bathtub model in DDTC, whereas our RL
framework can handle any adjustment strategies. We assume
the NFD equation V (·) takes Greenshields’ relationship as it
in [15] and has the minimal traffic velocity vmin, described
by V (k) = max{vf (1 − k/k), vmin}, where k is the jam
density. We set the free-flow speed vf in urban networks
to 15 miles per hour (mph), which refers to the morning
rush hour free-flow speed in [15]. The minimum speed
vmin = 5 mph and the jam density k = 0.2, indicating that
the maximum capacity of the traffic system is 20% of the
population on the road. Note that the congestion is measured
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as the fraction of the total population rather than the number
of agents.

The daily travel cost is defined as α−β− γ based on the
study of Lamotte et al. [30], where α, β, and γ are set to
1 $/h, 0.51 $/h, and 2.06 $/h, respectively. The unit cost
of on-demand transit is c = 0.2 $/mile, which represents the
travel cost at the velocity of vmin. This indicates that transit
mode may result in a higher travel time cost, it is considered
a safer option in terms of schedule cost compared to driving.
The state-action value of the transit mode, Q, given the trip
length L, is calculated as Q(L) := −cL

1−λ .
We conduct numerical experiments with both MF-HSAC

and MF-HSAC-Tabular algorithms with 50 outer-loop it-
erations. In each iteration, the departure time policy is
trained separately as there is no transition between trip
lengths. The learning process consists of 10000 episodes,
each lasting 10 days. The numerical experiment assumes that
the population has a uniform distribution over trip length and
desired arrival time. Furthermore, we assume that the initial
mean-field distribution, Γ0, is also uniformly distributed.
The discount factor λ is 0.99. The departure time policy
(actor), πΓ,θ, is parameterized using a Boltzmann policy
with a linear approximation based on polynomial bases in
the order of 3. The Q function in the driving mode (critic),
QΓ,w, is parameterized using a linear approximation based
on polynomial bases in the second order of 2 [31]. All
weights are randomly initialized at the start of training. The
learning rates of critic and actor modes are set to 0.1 and
0.01, respectively, and constant learning rate decay is applied
every 100 episodes. The mode choice policy νΓ uses the
temperature coefficient ω = 1.2. The benchmark model
deploys a tabular representation for the critic or actor and
does not consider hierarchical policies, in which QΓ,w(s, t)
is replaced with a tabular function and referred to as MF-
HSAC-Tabular.

In the outer loop, the mean-field distribution is updated
with N = 1000 samples (i.e., the number of characteristic
agents). Two metrics are used to assess the equilibrium,
namely the average daily travel cost per mile of the driver C
and the equilibrium error W. The average daily travel cost per

mile of the driver C is represented as Ch :=
∑N

i ci,h1mi,h=1∑N
i Li,h1mi,h=1

,

where ci,h and Li,h are simulated from Φ(πh,Γh) at each
step h.

The equilibrium error W, which is a measure of the
difference between the policy-induced expected state value
in iteration h and h− 1, is expressed as

Wh = Es∼ζh [V
πh

(s)]− Es∼ζh−1
[V πh−1

(s)]. (7)

To compute the policy-induced state value V π , we first
determine the invariant transition matrix Pπ . This transition
matrix is calculated by the balance equation Pπ(s, s′) =∑
a∈A

P (s′|s, a,Γπ)π(a|s) for all s, s′ ∈ S, as well as

the policy-induced mean-field Γπ conditional on ζ(s) and
π(a|s). Here, ζ represents the invariant state distribution of
the transition matrix Pπ . Due to these equations are implicit,

we can only solve the invariant transition matrix using an
iterative method. Given the invariant transition matrix, the
state-value function can be calculated by value iteration.

Fig. 1. Convergence Results of MF-HSAC: (a) Equilibrium Error, (b) Cost
Comparison

Numerical results. As shown in Figure 1(a), the equilib-
rium error W of MF-HSAC and MF-HSAC-Tabular methods
decrease to near-zero over the course of 50 iterations. The
MF-HSAC method has a faster convergence rate compared to
MF-HSAC-Tabular, particularly in the first 10 iterations. This
trend is more evident in Figure 1(b), where the average daily
travel cost per mile of the driver C decreases by roughly half
of its initial value within the first 5 iterations, and remains
stably small at around 0.2 after 50 iterations. The converged
cost is close to that of transit cost c. This observation
matches the intuition that driving and the alternative mode
are indifferent at the approximate MPE. Despite the faster
convergence rate of MF-HSAC, MF-HSAC-Tabular appears
to perform more stably.

Fig. 2. DDTC solutions at approximate MPE

Recall that DDTC with bathtub model is not tractable [9],
so no previous literature has discovered general equilibrium
solutions except in special cases. Therefore, our results in
Figure 2 present the departure time policy learned by the
MF-HSAC algorithm for driving agents at the approximate
MPE. The heat map shows the probability distribution of
departure times based on the desired arrival time and trip
length. The results indicate that for short trips (L = 0.5),
the agent tends to depart close to their desired arrival time.
However, the agent prefers to depart earlier for longer trips
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Fig. 3. Mode split at equilibrium solution

(L = 1.0). Additionally, the probability of driving is higher
for long-trip agents (see Figure 3), because transit with linear
increasing cost in trip length becomes less favorable when
traffic conditions are not overly congested. On the other hand,
if long-trip agents aim to arrive earlier or undertake the risk
of incurring high late penalties, on-demand transit becomes
a more conservative and reliable option. The probability of
driving increases when agents prefer delayed arrivals, as their
longer planning horizon allows them to search for more cost-
effective departure times in the face of unpredictable traffic.

V. CONCLUSIONS
In this study, we explore the DDTC problem with mode

switching that captures the long-term travel behavior changes
in multimodal transportation systems. The daily traffic dy-
namics affected by travelers’ collective mode and departure
time choices are modeled as a bathtub model, where agents’
decision-making processes are formulated as a Markovian
game with N heterogeneous agents. We introduce a general-
ized mean-field game approximation where the characteristic
agent adopts a Markov policy. A continuum approximation of
agents converges to a stationary mean-field when the number
of agents and the planning horizon reach infinity. Hence,
Markov mode and departure time policies admit approximate
MPE solutions. Since travelers (agents) react distinctly to
newly introduced modes, such as on-demand transit, we
propose an MF-HSAC algorithm. Our numerical experiments
demonstrated its effectiveness in finding approximate MPE,
at which all modes are cost-indifferent but driving is favored
by long-trip travelers.
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