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Abstract— In this paper, the model-free state-derivative and
output-derivative feedback control of continuous-time dynamic
systems are considered. First, an online iterative algorithm is
designed following the reinforcement learning framework, in
which measurements of the system state derivatives are col-
lected to synthesize an optimal state-derivative feedback control
law. The proposed approach employs the integral reinforcement
learning technique to iteratively solve a derivative feedback
algebraic Riccati equation. The iterative algorithm is extended
to the output-derivative feedback case by introducing a state-
parametrization scheme that reconstructs the state-derivative
signal from the output derivatives and input data. Based on
this parametrization, we develop an online iterative algorithm
based on the reinforcement learning framework to determine
the optimal output-derivative feedback controller. Convergence
of the iterative algorithms to the analytical optimal control
solutions is demonstrated. Numerical simulations motivated by
practical applications demonstrate the benefits of our method
compared to the standard output feedback reinforcement learn-
ing algorithms.

I. INTRODUCTION

Many practical applications are restricted to measurements
of state derivatives and output derivatives for feedback
control. For instance, applications in vibration suppression
[25], [8], [9], vehicles’ active suspension systems and robotic
manipulators [19] use accelerometers as the only sensing
device. While accelerometer measurements can be integrated
to obtain velocities and displacements, these signals are sus-
ceptible to large integration drift during continued operation
due to the accumulation of noise. For such applications,
directly utilizing the derivative signals of the state or output
from the accelerometer can result in a simpler and more
robust feedback control solution [1], [2].

Derivative feedback in control is also used for applications
where the equilibrium point is unknown. For example, in
the control of compressor surge [34], the equilibrium flow
states are determined from empirically mapped compressor
characteristic curves, and the resulting surge control solutions
are highly sensitive to errors in the estimated equilibrium
flow curve [4]. State-derivative feedback control is proposed
in [29] to stabilize these types of systems. These results
are extended in [5], [35] for improved robustness to model
uncertainties and actuator saturation.
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The above discussed control methods for derivative feed-
back systems are model-based in their design, and they
require a good understanding of the system dynamics. While
robustness to dynamic uncertainties has been considered
for derivative feedback control in [5], model-free derivative
feedback control solutions have not been treated in the
literature to the best of our knowledge.

Reinforcement Learning (RL) [31] enables learning of
the optimal state-feedback and output-feedback controllers
from the measurements of the systems’ inputs, states and/or
outputs to minimize a prescribed cost function. These model-
free control solutions are thus reminiscent of adaptive opti-
mal control methods [20], [36] and have been used to find
optimal controllers for linear [32], [18], [14] and nonlinear
continuous-time systems [16], [11], [30]. Reinforcement
learning control has so far been successful in solving a
wide range of classical control problems, including output
regulation [6], [7], robust control [15], [33], [23], time delay
control [12], and even inverse learning problems [22], with
applications such as in robotics [13]. When the full states are
not available for feedback control, output feedback solutions
are presented in [21], [10], [11] for discrete-time systems.
In [26], an output feedback RL approach is proposed for
continuous-time systems, which overcomes the estimation
bias issue due to the exploration signal [21] without the
limitation of discounted cost functions [24].

In view of the need for model-free solutions in the
control of systems with state-derivative or output-derivative
measurements, and the potential demonstrated by RL-based
solutions in control applications, this paper investigates RL-
based methods for learning optimal control laws for state-
derivative and output-derivative feedback systems. As part
of the contributions of this work, an iterative algorithm
is formulated to determine the optimal derivative-feedback
control law that minimizes a prescribed quadratic cost func-
tion. The formulated algorithm extends the standard Policy
Iteration (PI) algorithm to the state-derivative feedback case,
and the convergence of the iterative solution to the optimal
control law is demonstrated. An online implementation of
the proposed iterative algorithm is then provided, which
uses measurements of the state derivatives and inputs to
determine the optimal derivative-feedback controller. The
convergence of the proposed online algorithm to the optimal
solution is guaranteed under a full-rank condition. Next, an
output feedback iterative algorithm is presented to provide
an optimal output-derivative feedback controller trained from
the output-derivative measurements.

The remainder of this paper is structured as follows. The
control problem considered in this work is introduced in
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Section II. Iterative algorithms for the synthesis of the model-
free optimal state-derivative and output-derivative feedback
controllers are given in Section III and Section IV, respec-
tively. Section V presents simulation results for the proposed
solutions.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

Consider a linear system given by,

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, input,
and output vectors, respectively. The objective is to design
a state-derivative and output-derivative feedback control law
such that the closed-loop system is asymptotically stable and
the quadratic cost,

V (x(t)) =

∫ ∞

t

(
ẏT(τ)Qy ẏ(τ) + uT(τ)Ru(τ)

)
dτ, (2)

is minimized. If the system states or outputs are available
for feedback control, then iterative algorithms can be used
to design a model-free optimal state feedback [32], [14] or
output feedback controllers [26].

When only derivatives of states or outputs are available for
feedback, they can be integrated to obtain the system states
or outputs. However, this leads to drift in the estimated states,
driving the system away from equilibrium, and causing
potential instability [3]. Therefore, it is preferable to use the
derivatives of the states or outputs as the feedback signal in
such control applications.

A. State-Derivative Feedback Controller
The state-derivative feedback controller is given by,

u(t) = −Kẋ(t), (3)

where K ∈ Rm×n is the controller gain.
The dynamics of the closed-loop system is given by,

(I +BK)ẋ = Ax. (4)

The optimal state-derivative feedback controller (3), which
minimizes the cost function (2), can be obtained by solving
an Algebraic Riccati Equation.

Proposition 2.1: ([2]) For system (1) with full-rank A,
controllable pair (A,B) and detectable pair (

√
QyC,A), the

state-derivative feedback controller gain that minimizes the
cost function (2) is given by,

K∗ = −R−1BTA−1TP ∗, (5)

where P ∗ > 0 is the solution of the ARE,

P ∗A−1 +A−1TP ∗ − P ∗A−1BR−1BTA−1TP ∗ +Qx = 0.
(6)

where
√

Qy
T√

Qy = Qy and Qx = CTQyC.

III. ITERATIVE SOLUTION FOR OPTIMAL
STATE-DERIVATIVE FEEDBACK CONTROL

In this section, model-based and model-free iterative al-
gorithms are proposed to solve the ARE (6) for estimating
the optimal state-derivative feedback controller gain (5).

A. Model-Based Policy Iteration

First, an extension to the classical policy iteration (PI)
algorithm [17] is presented here to account for the ARE (6)
associated with the optimal state-derivative feedback control.
We propose a PI algorithm to provide an iterative solution
to (5) and (6).

Theorem 3.1: Let K0 be any stabilizing state-derivative
feedback controller gain and Pi > 0 be the solution of the
Lyapunov equation,

PiA
−1
i +A−1

i

T
Pi +Qx +KT

i RKi = 0, (7)

where A−1
i = A−1(I +BKi). For Ki+1 calculated as,

Ki+1 = −R−1BTA−1
i

T
Pi, (8)

with i = 0, 1, 2, . . . , the following hold,
1) (I +BKi+1)

−1A is Hurwitz,
2) P ∗ ≤ Pi+1 ≤ Pi,
3) limi→∞ Pi = P ∗, limi→∞ Ki = K∗.

Proof: 1) For a stabilizing state-derivative feedback
controller gain Ki, let Vi(x(t)) be the cost function of the
form (2) associated with gain Ki,

Vi(x(t)) =

∫ ∞

t

ẋT(t)(Qx +KT
i RKi)ẋ(t)dτ. (9)

As Ki is a stabilizing controller gain, the integral (9)
converges to a finite value that is quadratic in x [2],

Vi(x(t)) = xT(t)Pix(t). (10)

Differentiating both sides of (9) and (10) along the state
trajectories generated by Ki, and equating the right-hand side
of the resulting equations, yield (7).

Now we show that (10) is also a Lyapunov function of the
state trajectories generated by the controller Ki+1. Taking the
derivative of Vi(x(t)) along the state trajectories generated
by the controller Ki+1, results in,

V̇i(x(t)) = ẋT(t)(PiA
−1
i+1 +A−1

i+1

T
Pi)ẋ(t). (11)

Substituting A−1
i+1 = A−1

i − A−1B(Ki −Ki+1) in (11) we
get,

V̇i(x(t)) = ẋT(t)
(
PiA

−1
i +A−1

i

T
Pi

−PiA
−1B(Ki−Ki+1)−(Ki−Ki+1)

TBTA−1TPi

)
ẋ(t).

Now using the controller update (8) and (7) we get,

V̇i(x(t)) = ẋT(t)
(
PiA

−1
i +A−1

i

T
Pi

+KT
i+1R(Ki −Ki+1) + (Ki −Ki+1)

TRKi+1

)
ẋ(t),

which can be further simplified to,

V̇i(x(t)) = ẋT(t)
(
PiA

−1
i +A−1

i

T
Pi +KT

i RKi

−KT
i+1RKi+1 − (Ki −Ki+1)

TR(Ki −Ki+1)
)
ẋ(t).
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Using (7) we get,

V̇i(x(t)) = −ẋT(t)(Qx +KT
i+1RKi+1)ẋ(t)

− ẋT(t)
(
(Ki −Ki+1)

TR(Ki −Ki+1)
)
ẋ(t). (12)

Therefore, V̇i(x(t)) ≤ 0. Then, according to the LaSalle’s
invariance principle, all state trajectories of (4) converge to
the set I = {x|V̇i(x(t)) = 0} = {x|ẋ = 0}. As A in
(4) is full rank, the set I contains only the trivial trajectory
x(t) = 0. Therefore, Ki+1 is a stabilizing state-derivative
feedback controller gain.

2) Let Vi+1(x(t)) be the value function associated with
the controller gain Ki+1,

Vi+1(x(t)) =

∫ ∞

t

ẋT(t)(Qx +KT
i+1RKi+1)ẋ(t). (13)

As Ki+1 is stabilizing due to (12), the above integral is
bounded. Let,

Vi+1(x(t)) = xT(t)Pi+1x(t). (14)

Taking the derivative of Vi+1 along the trajectories generated
by Ki+1 and using (13) and (14) we get,

Pi+1A
−1
i+1 +A−1

i+1

T
Pi+1 = −(Qx +KT

i+1RKi+1). (15)

By subtracting (15) from (7), and then using A−1
i = A−1

i+1+
A−1B(Ki − Ki+1) and the controller update equation (8)
we get,

(Pi − Pi+1)A
−1
i+1 +A−1

i+1

T
(Pi − Pi+1)

+ (Ki −Ki+1)
TR(Ki −Ki+1)

T = 0. (16)

As Ai+1 is Hurwitz due to (12), there exists a positive
definite solution of the above Lyapunov equation,

Pi − Pi+1 ≥ 0. (17)

Therefore, Pi+1 ≤ Pi. It can similarly be shown that P ∗ ≤
Pi+1

3) As the sequence Pi is monotonic and all Pi are positive
operators, there exists a P∞ > 0 and a corresponding K∞
such that, limi→∞ Pi = P∞ from the theorem on monotonic
convergence of positive operators [17], and K∞ satisfies (8).
Substitute this K∞ into (7) to get,

P∞A−1+A−1TP∞−P∞A−1BR−1BTA−1TP∞+Qx = 0,
(18)

which is the same ARE as in (6). Because P ∗ is a unique
solution to (6), K∞ = K∗ and P∞ = P ∗ must hold.

B. Model-free Online Policy Iteration

This section presents an online model-free algorithm based
on reinforcement learning techniques that computes the it-
erations in Theorem 3.1 using perturbed measurements of
the state x̄, the state derivative ẋ and the input u. These
results extend existing model-free [14] and partially model-
free [32] RL-based PI methods to the online estimation of
optimal state-derivative feedback control.

A perturbed measurement x̄ = x+ xb of the system state
x and an unknown static perturbation xb is considered for

the training of the proposed controller. This is motivated
by the assumption that only measurements of the state
derivatives are available for control, and integrating these
measurements to determine the system states adds a slow-
changing perturbation caused by the accumulation of noise
and uncertainty in the initial conditions. The presence of
the perturbation xb in the state information also aligns with
the challenges of controlling dynamic systems with uncertain
equilibrium states, as discussed in Section I.

Under the control law (3) and for some positive real value
T > 0, (10) and (7) yields,

xT(t)Pix(t)− xT(t+ T )Pix(t+ T ) =∫ t+T

t

ẋT(τ)(Qx +KT
i RKi)ẋ(τ)dτ

− 2

∫ t+T

t

(u(τ) +Kiẋ(τ))
T
RKi+1ẋ(τ)dτ. (19)

The right-hand-side of (19) is rewritten as,∫ t+T

t

ẋT(τ)(Qx +KT
i RKi)ẋ(τ)dτ

= It,t+T
xx vec(Qx +KT

i RKi), (20)

and∫ t+T

t

(u(τ) +Kiẋ(τ))
T
RKi+1ẋ(τ)dτ

=
(
It,t+T
xx (In ⊗KT

i R) + It,t+T
xu (In ⊗R)

)
vec(Ki+1),

(21)

where

It,t+T
xx =

∫ t+T

t

ẋT(τ)⊗ ẋT(τ)dτ,

It,t+T
xu =

∫ t+T

t

ẋT(τ)⊗ uT(τ)dτ,

and vec(·) is the vectorization of a given matrix. It is also
noted that x = x̄− xb and,

xT(t)Pix(t) = x̄T(t)Pix̄(t) + ϵTx̄+ xT
bPixb,

for ϵ = −2Pixb. Using this relation, we can write the left-
hand-side of (19) as,

xT(t)Pix(t)− xT(t+ T )Pix(t+ T )

= vec(Pi)
T (xκ(t+ T )− xκ(t))+ϵT (x̄(t+ T )− x̄(t)) ,

(22)

where xκ is the polynomial basis of the measured system
states calculated using the Kronecker product xκ = x̄⊗ x̄.

For N data samples collected over time intervals [(j −
1)T, jT ], j = 1, 2, · · · , N , (19), (20), (21) and (22) yield
the following matrix equation,

Xi

 vec(Pi)
ϵ

vec(Ki+1)

 = Yi, (23)
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where

Xi =
[
∆xκ

, ∆x, − 2Ixx(In ⊗KT
i R)− 2Ixu(In ⊗R)

]
,

∆xκ
=

[
xκ(T )−xκ(0), . . . , xκ(NT )−xκ((N − 1)T )

]T
,

∆x =
[
x̄(T )− x̄(0), . . . , x̄(NT )− x̄((N − 1)T )

]T
,

Yi = −Ixxvec(Qx +KT
i RKi),

Ixx =
[
I0,Txx , IT,2T

xx , . . . , I
(N−1)T,NT
xx

]T
,

Ixu =
[
I0,Txu , IT,2T

xu , . . . , I
(N−1)T,NT
xu

]T
.

If Xi is full column rank, then (23) has a solution vec(P̂i)
ϵ̂

vec(K̂i+1)

 = (XT
i Xi)

−1XT
i Yi. (24)

Theorem 3.2: If Xi has full column rank, then P̂i and
K̂i+1 evaluated using (24) are equivalent to the solution of
(7) and (8). Furthermore, if K0 is a stabilizing gain for (4)
then P̂i and K̂i+1 converges to P ∗ and K∗, respectively, as
i→∞.

Proof: Because Pi and Ki+1 satisfy (23), if Xi has full
column rank, then P̂i = Pi and K̂i+1 = Ki+1 are unique
solutions given by (24). Therefore, the solution of (24) is
equivalent to the evaluation of (7) and (8). According to
Theorem 3.1, it then implies that P̂i and K̂i+1 must converge
to the optimal values.

Algorithm 1: Online State-Derivative Feedback PI
Data: Initial stabilizing controller K0, threshold η̄
Result: Optimal controller gain K∗

begin
i = 0
while ∥Pi − Pi−1∥ > η̄ do

Set u = −Kiẋ(t) as the input
Collect training data during the interval
[iNT, (i+ 1)NT ], where N is selected such
that Xi is full rank

Calculate Pi and Ki+1 using (24)
Increment counter i← i+ 1

end
end

IV. ITERATIVE SOLUTION FOR OPTIMAL
OUTPUT-DERIVATIVE FEEDBACK CONTROL

To obtain an optimal output-derivative feedback controller,
a parametrization of the system state will be used to obtain
a model-free output-derivative feedback solution.

Theorem 4.1: There exists a state parametrization,

η(t) = Γuα(t) + Γyβ(t) (25)

that converges exponentially to the state x for an observable
system, where Γu and Γy are system-dependent matrices
containing the system’s transfer function coefficients, and

α(t) =
[
(α1)T(t) (α2)T(t) . . . (αm)T(t)

]T
, (26)

β(t) =
[
(β1)T(t) (β2)T(t) . . . (βp)T(t)

]T
, (27)

are given by,

α̇i(t) = Aαi(t) + Bui(t),∀i = 1, 2, . . . ,m (28)

and,
β̇i(t) = Aβi(t) + Bẏi(t),∀i = 1, 2, . . . , p (29)

where ui and ẏi are the ith input and output derivatives,
respectively. The matrix A is any user-defined Hurwitz
matrix and B =

[
0 0 . . . 1

]T
.

Due to space constraints, the proof of the above theorem
has been omitted.

A. Model-Based Policy Iteration

Using the state parametrization (25), a revised description
of the cost function (10) is given as

V (x(t)) = zT(t)P̄ z(t), (30)

where z(t) =
[
αT(t) βT(t)

]T
and

P̄ =

[
ΓT
uPΓu ΓT

uPΓy

ΓT
y PΓu ΓT

y PΓy

]
. (31)

The output feedback controller takes the form,

u(t) = −K̄ż(t), (32)

where K̄ = K
[
Γu Γy

]
and ż(t) =

[
α̇T(t) β̇T(t)

]T
.

Matrices K̄∗ and P̄ ∗ correspond to the optimal values K∗

and P ∗, respectively.

B. Model-Free Online Policy Iteration

Similar to the procedure presented in Sect. III-B, using
(2), (30) and (32) lead to the following Bellman equation,

zT(t)P̄iz(t)− zT(t+ T )P̄iz(t+ T )

=
∫ t+T

t

(
ẏT(τ)Qy ẏ(τ) + żT(τ)K̄T

i RK̄iż(τ)
)
dτ

− 2
∫ t+T

t

(
u(τ) + K̄iż(τ)

)T
RK̄i+1ż(τ)dτ. (33)

Algorithm 2: Online Output-Derivative Feedback PI

Data: Initial stabilizing controller K̄0, threshold η̄
Result: Optimal controller gain K̄∗

begin
i = 0
while ∥P̄i − P̄i−1∥ > η̄ do

Set u = −K̄iz(t) as the input
Collect measurements of the system’s output

derivatives and inputs
Calculate P̄i and K̄i+1 using (33)
Increment counter i← i+ 1

end
end
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Fig. 1. Top Left and Right: Frobenius norm of error in the estimates of
the value function matrix P and controller gain K. Bottom Left: Control
input. Bottom Right: System states.
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Fig. 2. Top Left and Right: Frobenius norm of error in the estimates of
P and K. Bottom Left: Control input. Bottom Right: System states.

V. NUMERICAL SIMULATION

A. Stabilization of Chaotic System

Algorithm 1 is used to find a local optimal controller for
a Rössler attractor [27] given by the following equations,

ẋ1 = −x2 − x3 + u,

ẋ2 = x1 + ax2 + u,

ẋ3 = b+ x3(x1 − c) + u.

(34)

We consider the values of the uncertain system parameters
to be {a, b, c} = {0.2, 0.2, 5.7}, resulting in equilibrium
at xr =

[
0.007 −0.035 0.035

]T
. It is assumed in the

example that the system dynamics are unknown and thus the
equilibrium state can’t be determined. On the other hand,
with an initial local stabilizing control gain K0 obtained
from [5] and nominal values of a, b and c, a local optimal
control law can be trained using Algorithm 1. An exploratory
input signal e(t) =

∑100
ω=1 10

−3 sin(ωt) is used during
training and is removed after the rank condition is satisfied.

Figure 1 shows the response of the trained controller, and
we observe that the closed-loop system converges to the
equilibrium states and the control input converges to zero.
The controller gain Ki also converges to the optimal value
K∗ =

[
−0.769 1.335 0.434

]
given by the ARE (6).

If above results are compared to the standard PI algorithm
in [14], we note that the latter requires information about the
actual equilibrium states. Using nominal values of the system
parameters, a nominal equilibrium point may be determined
as x0

r =
[
0.021 −0.105 0.105

]T
. Figure 2 shows that

because of the uncertain equilibrium point the estimated
controller gain Ks and value function matrix Ps obtained
by the standard PI method do not converge to the optimal
values. Moreover, the trained controller does not stabilize the
system at the true equilibrium resulting in non-zero steady-
steady state control input.

B. Vibration Suppression Control

In this example, Algorithm 2 is used to find an optimal
output-derivative controller to suppress vibrations in a car
suspension system. The system matrices of the quarter-car
dynamical model [28] are given as,

A =


0 1 0 −1
−58 −3.4 0 3.4
0 0 0 1

284.9 16.9 −3220.3 −16.9

 , (35)

B =


0

0.0034
0

−0.0169

 , C =

[
0 1 0 0
0 0 0 1

]
. (36)

Algorithm 2 is used to learn the output-derivative feedback
controller using output derivatives in the reward function
with Qy = 106 and R = 1. The controller gain K̄i converges
to the optimal output feedback controller gain K̄∗ as shown
in Fig. 3. On the other hand, PI algorithm, which uses
outputs during the training process, does not converge to
the optimal controller due to bias caused by integrating the
output-derivative signals (Fig. 3).

VI. CONCLUSION

In this paper, a new scheme was presented for the online
iterative synthesis of optimal state-derivative and output-
derivative feedback controllers under unknown system dy-
namics. The motivation of the derivative-feedback control
scheme is to mitigate the effect of measurement drift in
control applications, and it is demonstrated that the solutions
of the proposed data-driven iterative algorithms converge to
the analytically derived optimal control laws. Two numerical
examples are offered to illustrate the theoretical results.
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