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Abstract— Examining the behavior of multi-agent systems is
vitally important to many emerging distributed applications -
game theory has emerged as a powerful tool set in which to
do so. The main approach of game-theoretic techniques is to
model agents as players in a game, and predict the emergent
behavior through the relevant Nash equilibria. The virtue from
this viewpoint is that by assuming that self-interested decision-
making processes lead to Nash equilibrium, system behavior
can then be captured by Nash equilibrium without studying
the decision-making processes explicitly. This approach has
seen success in a wide variety of domains, such as sensor
coverage, traffic networks, auctions, and network coordination.
However, in many other problem settings, Nash equilibria
are not necessarily guaranteed to exist or emerge from self-
interested processes. Thus the main focus of the paper is on the
study of sink equilibria, which are defined as the attractors of
these decision-making processes. By classifying system outcomes
through a global objective function, we can analyze the resulting
approximation guarantees that sink equilibria have for a given
game. Our main result is an approximation guarantee on
the sink equilibria through defining an introduced metric of
misalignment, which captures how uniform agents are in their
self-interested decision making. Overall, sink equilibria are
naturally occurring in many multi-agent contexts, and we
display our results on their quality with respect to two practical
problem settings.

I. INTRODUCTION

The analysis of multi-agent systems has received a sig-
nificant amount of attention recently, primarily due to the
emergence of distributed structures in wireless communica-
tion, biology, IOT, and many other application domains. This
has led to a rich variety of theoretical approaches [1], [2],
[3]. In this paper, we specifically consider a game theoretic
approach, where the emergent properties of the multi-agent
system are studied using tools from game theory.

The main idea of this approach is to model agents as self-
interested decision makers, where each agent’s preference
over the collective system outcome is designated through a
utility function. The agents are then presumed to undergo a
best (or better) response process, where each agent updates
their decision in a self-interested manner to maximize their
individual utility. The emergent system outcomes from this
process are traditionally expected to be Nash equilibrium,
which can be expressed as the limit points of the best
response process. Thus, many previous works study the
emergent system behavior through characterizing properties
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of the Nash equilibrium; this has been done in many different
contexts, such as traffic systems, power networks, etc. [4],
[5].

But is it reasonable to expect agents to converge to
Nash equilibria from best response processes? In the
class of potential games [6] and variants [7], best response
processes are indeed guaranteed to converge to Nash equi-
libria [8]. In potential games, agents are fully cooperative,
and self-interested decisions made by agents always lead
to improvements in a given global objective. However, a
variety of natural multi-agent settings fall outside of this
class. The system may display competitive interactions; for
e.g., business firms may have competing economic interests.
In social systems, agents’ may be inherently misaligned
in their preferences; for e.g., drivers may have different
sensitivities to tolls. Even for multi-agent systems that are
fully engineered, there are operational concerns such as
prediction errors or informational privacy that must be ac-
counted for. All of these scenarios do not exhibit a potential
game structure, and thus guarantees of convergence to Nash
equilibria can not be established. We describe two examples
of this kind in Example 1 and 2. In these instances, can the
emergent system outcomes still be characterized, where
either Nash equilibrium do not exist or best response
processes does not converge to Nash equilibria? This is
the main focus of this paper.

We utilize sink equilibria in [9] as an alternate solution
concept 1 to address this, which are specified as the attractors
of the best response process. By definition, sink equilibria
are well defined and have guarantees of convergence for any
given game. Thus, we analyze the behavior of sink equilibria
in this paper. Specifically, we assume that system outcomes
are evaluated through a given global objective function.
The utility function of each agent may not be aligned with
this global objective. In these settings, we can characterize
performance guarantees of the induced sink equilibria with
respect to the global objective - this is the main result of the
paper.

To the author’s knowledge, a general approach to studying
performance guarantees of sink equilibrium has not been
done previously. While sink equilibria have not been studied
in as much detail as Nash equilibria, we still highlight an

1A popular alternative to Nash equilibria are coarse correlated equilibria
which have existence and convergence guarantees [10]. However, these
dynamics requires full knowledge of the history of decisions of all of the
agents. Additionally, only empirical distribution of play is guaranteed to the
converge to coarse correlated equilibria, which may not correspond to the
actualized decisions made by the agents.
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pertinent selection of past literature on sink equilibria. The
seminal work in [9] first established the concept of sink
equilibria in a game-theoretic context, as well as provide
negative results of sink equilibria in valid utility games.
Positive results on sink equilibria behavior were shown in
[11], where it was seen that sink equilibria perform much
better than mixed Nash equilibria. Analysis of sink equilibria
under the name of curb sets was done in [12]. Several
complexity results of sink equilibria were introduced in [13].
Sink equilibria were extended in continuous domains in [14].
Recently, design of sink equilibria selection algorithms was
done in [15]. While the literature on sink equilibrium is
sparse, they naturally emerge when agent utility functions
are not aligned perfectly.

The structure of the paper is as follows. In Section II,
we define our game theoretic setup and formally define the
best response process and sink equilibrium. Additionally, we
introduce two application scenarios where sink equilibria
appear. In Section III, we state our main results, where
we derive performance guarantees of sink equilibria in our
setting with regards the approximation ratio of price of
sinking. A discussion of sink equilibria induced by better
response processes is provided in Section IV. Finally, we
conclude in Section V. We include certain proofs in an
arxived version of the paper.

II. PRELIMINARIES

Consider a general multi-agent scenario with n agents
I = {1, . . . , n}, where each agent is endowed with a finite
decision or action set Ai. We denote an action as ai ∈ Ai,
and a joint action profile as a ∈ A = A1 × · · · × An. The
quality of each joint action profile is evaluated with a global
objective function W : A → R≥0 that characterizes the total
system welfare. In other words, the optimal joint decision of
the system is described as

aopt ∈ argmax
a∈A

W(a). (1)

We assume that solving the decision problem in Eq. (1) can-
not be done in a centralized fashion, due to computational,
informational, administrative, or communication concerns.
Therefore, we assume that each agent selects their decisions
in a distributed manner. We assume that each agent i is
endowed with a utility function Ui : A → R to classify
their preferences over their decision set, resulting in the
game tuple G ≜ (I,A,W, {Ui}i∈I). Moreover, we assume
the utility function Ui depends on the welfare function
W, either naturally or by design. In particular, consider a
completely cooperative scenario, where the agents exhibit the
common interest utility design. Here, the utility functions are
completely aligned with the global objective W 2, where

Ui(a) ≡ W(a) for all a ∈ A and i ∈ I. (2)

2We can relax this constraint to consider utility functions that are prefer-
ence equivalent to the welfare function, where the ordering of preferences
over joint actions is maintained. This is indeed the case for potential and
weighted-potential games.

Under the common interest utility, the emergent joint deci-
sions coincide with the set of Nash equilibrium NE of the
game. A joint action ane is considered a Nash equilibrium
if the following inequality holds

Ui(a
ne) ≥ Ui(ai, a

ne
−i) for all a ∈ A and i ∈ I, (3)

where a−i = (a1, . . . , ai−1, ai+1, . . . , an) corresponds to the
joint action without the decision of agent i. In completely
cooperative settings, where they are guaranteed to exist, we
can then quantify the emergent behavior through the qualities
of the possible resulting Nash equilibrium. This is done
through the metric of price of anarchy which is defined as

PoA(G) =
minane∈NE W(ane)

maxa∈A W(a)
, (4)

where we take the worst case ratio of the welfare of Nash
equilibria over the optimal welfare. Price of anarchy is a
well-studied metric, with many results on its characterization
in the literature [16], [17], [4]. Thus a standardized approach
can be implemented to characterize system behavior in
completely cooperative scenarios.

However, due to operational or design constraints, assum-
ing a common interest utility design may not be feasible (see
Examples 1 and 2). Throughout the paper, we then allow
Ui(a) ̸= W(a) to be misaligned, and focus our attention to
sink equilibrium as our standard solution concept. To define
sink equilibrium, we first outline the best response process.
Under this process, the best decision set for agent i assuming
all other agents’ decisions are fixed is known as the best
response set, that is,

Bri(a) = arg max
āi∈Ai

Ui(āi, a−i). (5)

Then for every step, a randomly selected agent picks an
action from its best response set uniformly. This induces the
following Markovian dynamics on the set of joint actions,
describing the best response process, as

Pr(ã|a) =

{
1

n·|Bri(a)| if ã ∈ (Bri(a), a−i) for some i ∈ I
0 otherwise,

(6)
where Pr(ã|a) represents the probability of reaching the joint
action ã from a in the Markov chain. Note that there is an
equal chance for each player i to perform a best response
at each time step. We refer to a probability distribution over
the joint action set as σ ∈ ∆A, where pσ(a) denotes the
probability of sampling a under σ. We also say that an action
a ∈ supp(σ) ⊆ A is in the support of σ if the probability
pσ(a) > 0 is strictly positive. Furthermore, we say that σ is
a stationary distribution of the Markov chain if the equality
pσ(a) = Eā∼σ[Pr(ã|ā) · pσ(ā)]a for all a ∈ A holds. We
also specify the sink strongly connected components of the
Markov chain defined in Eq. (6). A set S ⊆ A is a sink
strongly connected component if there is exists a path of
positive probability from a to ā under (6) for any a, ā ∈ S
and there are no transitions from S to outside of S. Formally,
if a, ā ∈ S, then there exists a sequence a0, a1, . . . , am where
Pr(aj+1|aj) > 0 for all j with a0 = a and am = ā.
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Additionally, if a ∈ S and ā /∈ S, then no such sequence
exists.

Definition 1. A probability distribution σ ∈ ∆A is a sink
equilibrium of the game G if σ is a stationary distribution
of the Markov chain in Eq. (6) and if supp(σ) = S is a sink
strongly connected component.

In other words, sink equilibria are defined as the attractors
of the best response process. Given a game G, we charac-
terize the behavior of the sink equilibria in a similar manner
to Eq. (4) through the metric of price of sinking [9] as

PoSE(G) = min
σ∈SE

Ea∼σ[W(a)]/W(aopt), (7)

where SE denotes the total set of sink equilibrium of the
game G. We note that under a common interest utility design,
the set of Nash equilibrium NE ≃ SE is equivalent to the
set of sink equilibrium.

We now examine the sink equilibria on two illustrative
examples in which they naturally emerge. In these examples,
we derive guarantees on the sink equilibria using the tools
discussed in Section III. The examples are as follows.

Example 1 (Ecological Monitoring). Ecological monitoring
is necessary to understand the well-being of inhabited pop-
ulations as well as track health of overall ecology. While
this can be handled by field ecologists, autonomous agents
can supplement or even act as substitutes to gather important
ecological data - as was done by the authors in [18]. In this
scenario, a high level control objective of the agents is to
understand how to orient themselves to monitor the region of
interest as best as possible. We can model this as a covering
problem [19]. In this way, let R = {r1, . . . , rm} define
the region monitored by n agents, where we have finitely
partitioned the region into possibly arbitrary segments. For
each segment r, the importance of monitoring that segment
can be associated with a value vr ∈ R≥0 which defines
the intrinsic quality of data that can be collected in that
segment. This can be affected by the number or magnitude
of populations in the segment, relevant climactic conditions,
etc. These parameters are never known before hand, and thus
must be estimated by the agents in the field. Thus each agent
has its noisy estimate of the value vir which we assume is
drawn from a normal distribution N [vr + c, (d · vr)2] with
bias c and variance (d · vr)2. Each agent can decide which
subset of region to monitor (i.e. ai ⊂ R), which depend
on its sensor and motor capabilities. Thus, collectively, the
goal of the agents is to monitor the most and highest valued
portions, as captured by the welfare function below.

W(a) =
∑

r∈∪iai

vr (8)

The objective that each agent witnesses, however is based on
their estimate, or that their utility is Ui(a) =

∑
r∈∪iai

vir,
which is potentially different for each agent. Thus, when
running a best response algorithm, the agents converge to a
sink equilibrium which may not be a Nash equilibrium. We
derive a guarantee on price of sinking in Proposition 1.

Proposition 1. Consider the problem defined above. The
expected price of sinking is lower bounded by the following
expression

E[PoSE(G)] ≥ max(
1− 4nβΦ

2
, 0), (9)

where Φ is the normal cumulative distribution function and
βΦ is defined as

βΦ = |R|

(
d

√
2

π
e−

c2

2d2 + c(1− 2Φ(−c/d))

)
. (10)

Example 2 (Radio Signalling). Consider the situation in
which n agents have to communicate to each other through
k communication channels, as seen in [20]. However, when
more than one agent selects a channel to communicate under,
the signals experience interference. This can captured by the
parameter wij ≥ 0, which dictates the interference between
agent i and agent j. The system as a whole, would like to
minimize the total interference experienced between all the
agents. In turn, the system welfare can be defined as

W(a) =
∑
i

∑
j:aj ̸=ai

wij , (11)

where ai ∈ {1, . . . k} is the channel that agent i decides
to transmit their messages on. However, these interference
parameters may not be known to the agents and have to
be estimated. For simplicity, we can assume that the agents
have a margin of error of α or that agent i’s estimate is
wi

ij ∈ [α · wij , α
−1 · wij ]. Again, when agents run a best

response algorithm, they are not guaranteed to converge to a
Nash equilibrium due to the informational constraints. Then
we can characterize the guarantee on the price of sinking in
Proposition 2.

Proposition 2. Consider the problem defined above with two
channels (k = 1). The price of sinking is lower bounded by
the following expression

PoSE(G) ≥ 1

3α2 + (1− α2)n
. (12)

III. MAIN RESULTS

The main results of this paper are on providing lower
bounds for the price of sinking for a given game. To do
this, we first recall the notion of smoothness [16] as a useful
analysis tool for the price of anarchy. In this paper, we use a
relaxed version of smoothness to classify a given game. We
say that a game is (λ, µ)-smooth if, for a fixed µ ≥ λ ≥ 0,
we have that∑

i∈I

(
Ui(a)−Ui(a

opt
i , a−i)

)
≤ µW(a)− λW(aopt) (13)

for all actions a ∈ A. Given these parameters, the efficiency
of Nash equilibria for a given game can easily be determined.
This is described in Proposition 3, where a proof is included
for completeness.

Proposition 3. Let G be a (λ, µ)-smooth game. Then the
price of anarchy is lower bounded by PoA(G) ≥ λ

µ .
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Proof. From applying the definition of Nash equilibrium
repeatedly for all i ∈ I with respect to the deviation aopt,
we have the following inequality∑

i

(
Ui(a

ne)−Ui(a
opt
i , ane−i)

)
≥ 0.

Notice that now we can directly substitute the inequality in
Eq. (13) to get that

µW(ane)− λW(aopt) ≥ 0.

Since ane is any arbitrary Nash equilibrium, we can rearrange
the above equation to get that PoA(G) ≥ λ

µ to show the
claim.

We note that there always exist some λ and µ such that the
game is (λ, µ)-smooth, as λ → 0 and µ → ∞ will always
satisfy the inequality in Eq. (13). The main analytical benefit
of smoothness analysis is that instead of searching across the
set of Nash equilibrium directly, we can instead characterize
the price of anarchy through a bi-variable optimization
problem (over λ and µ). This can be done in various game-
theoretic contexts [16]. The optimization problem is written
formally below.

Corollary 1. The price of anarchy for a given game G is
lower bounded by

PoA(G) ≥ sup
µ≥λ≥0

{λ
µ

: G is (λ, µ)− smooth}.

However, unlike Nash equilibria, when applying the
smoothness inequality directly to the analysis of sink equi-
libria, it is not possible to get non-trivial guarantees. For
all valid smoothness parameters, it is possible to construct a
corresponding game with trivial performance guarantees on
sink equilibria, as stated below.

Proposition 4. For every µ > λ ≥ 0, there exists a (λ, µ)-
smooth game G with a unique sink equilibrium such that the
price of sinking is PoSE(G) = 0.

Proof. Let µ > λ ≥ 0. Consider the following game G
with two agents with the action sets A1 = {e1, e2, e3} and
A2 = {f1, f2, f3}. We define the welfare values W(a) for
each joint action through Table I below. Similarly, we can

f1 f2 f3
e1 1 (λ+ ε)/µ 0
e2 (λ+ ε)/µ 0 0
e3 0 0 0

TABLE I: Welfare W(a) for each joint action a = (ei, fj).

define the utility values Ui(a) for each joint action and for
each agent in Table II.

f1 f2 f3
e1 (0, 0) (0, ε) (0,−ε)
e2 (ε, 0) (λ,−2λ) (−2λ, λ)
e3 (−ε, 0) (−2λ, λ) (λ,−2λ)

TABLE II: Welfare (U1(a),U2(a)) for each joint action a.

We can choose ε = (µ − λ)/2 > 0 such that the
optimal joint action is aopt = (e1, f1) with an optimal
welfare of W(aopt) = 1. Under the best response dynamics,
observe that the set {(e2, f2), (e3, f2), (e2, f3), (e3, f3)} is
the unique strongly connected component. It can be verified
that each joint action a satisfies the smoothness condition
in Eq. (13). Since the welfare of each action in the unique
strongly connected component is 0, the price of sinking
can be upper bounded by PoSE(G) = Ea∈σ[W(a)] ≤∑

a∈supp(σ) W(a) = 0 for the unique sink equilibrium
σ.

This negative result is similar in spirit to the one presented
in [9, Lemma 3.2]. However, we emphasize that the inferior
guarantees are more indicative of inefficacy of a direct
approach rather than the intrinsic behavior of sink equilibria.
This sentiment is also reflected in [11], where in certain game
settings, it is shown that the quality of sink equilibria is
arbitrarily better than the quality of any mixed equilibria.
In fact, if we consider games with added structure, we can
arrive at nontrivial guarantees on sink equilibria.

Therefore, we consider games in which the deviation from
the common interest utility Ui(a) ̸= W(a) is bounded. We
encapsulate the extent of the deviation through the constant
β ∈ [0, 1], where β = 0 signifies no deviation from the
common interest utility and β = 1 signifies the maximum
deviation. We define this formally below 3.

Definition 2. A game G is considered to be β-arithmetically
misaligned if

|Ui(a)−W(a)| ≤ βW(a), (14)

or β-geometrically misaligned if

1− β ≤ Ui(a)

W(a)
≤ 1

1− β
, (15)

is satisfied for all actions a ∈ A and agents i ∈ I.

We note that when β = 0, under the common interest
utility, the sink equilibria are equivalent to the Nash equi-
libria and inherit the price of anarchy guarantees coming
from smoothness analysis. Likewise, we will see that the sink
equilibria in near-common interest games with β close to 0
inherit similar guarantees dictated by the common interest
utility. This observation is also reflected in a different context
in [22]. In this vein, let λc and µc be the parameters that
satisfy the smoothness inequality in Eq. (13) for the common
interest utility∑
i∈I

(
W(a)−W(aopti , a−i)

)
≤ µcW(a)−λcW(aopt), (16)

where we have substituted Ui(a) ≡ W(a). With this, we can
state the main result of the paper.

Theorem 1. Let G be a game such that the best response
Bri(a) is always singular valued. Let λc and µc satisfy

3We can generalize the results to instead consider alignment to a potential
function. In this way, β characterizes the closeness of the game to a potential
game. Near-potential games have been studied in [21].
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Eq. (16) for all a ∈ A. If the game is β-arithmetically
misaligned, as in Eq. (14), then the price of sinking satisfies

PoSE(G) ≥ max(
λc − 4βn

µc
, 0). (17)

If the game is β-geometrically misaligned, as in Eq. (15),
then the price of sinking satisfies

PoSE(G) ≥ λc

(1− β)2µc + (1− (1− β)2)n
. (18)

Proof. First, we introduce the following lemma to character-
ize the sink equilibria in an alternative fashion.

Lemma 1. Let G be a game such that Bri(a) is always
singular valued and let σ ∈ SE be any sink equilibrium of
the game. For any function g : A → R, the following equality
must hold

Ea∼σ[
∑
i∈I

g(a)− g(Bri(a), a−i)] = 0. (19)

Proof. Let σ be a sink equilibrium of the game G. Since
the sink equilibrium is a stationary distribution under the
dynamics outlined in Eq. (6), we have that pσ(a) =∑

ā∈A Pr(a|ā)pσ(ā). Under this statement, we have the
series of equalities below

n
∑
a

pσ(a)g(a) = n
∑
a

∑
ā

Pr(a|ā)pσ(ā)g(a)

Ea∼σ[
∑
i∈I

g(a)] = Eā∼σ[n
∑
a

Pr(a|ā)g(a)]

= Ea∼σ[
∑
i∈I

g(Bri(a), a−i)],

where we change the the naming convention from ā to a in
the last line. Rearranging the terms and using linearity of
expectation gives us the claim.

Proof of Arithmetic. For ease of notation, let aibr =
(Bri(a), a−i). We can apply Lemma 1 with respect to the
welfare function W to get

Ea∼σ[
∑
i∈I

W(a)−W(aibr)] = 0. (20)

Since we assume the game is β-arithmetically misaligned,
we have that Ui(a) ≥ (1 − β)W(a) ≥ W(a) − βW(aopt).
Likewise, we can also bound Ui(a

i
br) ≤ W(aibr)+βW(aopt).

We can substitute these two inequalities in Eq. (20) to get

W(a)−W(aibr) ≤ Ui(a)−Ui(a
i
br) + 2βW(aopt) (21)

We can apply this inequality to Eq. (20) for

Ea∼σ[2βnW(aopt) +
∑
i∈I

Ui(a)−Ui(a
i
br)] ≥ 0.

Further, observe that since Ui(a
i
br) ≥ Ui(a

opt
i , a−i) from

the definition of a best response, we can replace Ui(a
i
br)

Ui(a
opt
i , a−i). We can utilize the β-misalignment and sub-

stitute for the utility functions using Eq. (21) to arrive at

Ea∼σ[4βnW(aopt) +
∑
i∈I

W(a)−W(aopti , a−i)] ≥ 0.

Applying the definition of λc and µc as in Eq. (16) results
in the final inequality.

Ea∼σ[4βnW(aopt) + µcW(a)− λcW(aopt)] ≥ 0.

Notice that the above inequality holds for any arbitrary sink
equilibrium σ. Thus rearranging terms and using linearity of
expectation gives us the price of sinking guarantee in Eq.
(17).

Proof of Geometric. We can apply Lemma 1 with respect to
the welfare function W to get Eq. (20). For ease of notation,
let β̄ = 1 − β. We can successively apply the geometric
misalignment property in Eq. (15), as well as using the fact
that Ui(a

i
br) ≥ Ui(a

opt
i , a−i), to arrive at the following set

of inequalities.

W (aibr) ≥ β̄Ui(a
i
br) ≥ β̄Ui(a

opt
i , a−i) ≥ β̄2W(aopti , a−i)

Substituting these inequalities back into Eq. (20) gives

Ea∼σ[
∑
i

W(a)− β̄2W(aopti , a−i)] ≥ 0.

Now we can substitute the definitions of λc and µc in Eq.
(16) to a portion of the terms and simplify to get

Ea∼σ[n(1− β̄2)W(a) + β̄2
(
µcW(a)− λcW(aopt)

)
] ≥ 0.

Notice that the above inequality holds for any arbitrary sink
equilibrium σ. Thus rearranging terms and using linearity of
expectation gives us the price of sinking guarantee in Eq.
(18).

Thus we have shown the bounds for both geometric and
arithmetic misalignment cases.

We see that when the utility functions are close to the
common interest utility design with β ∼ 0, the price of
sinking guarantees match the guarantees for the common
interest utility. We note that while our approach allows us
to get nontrivial guarantees on the sink equilibria, we still
suffer from the degradation of the guarantee as the number
of agents n → ∞ increases arbitrarily. However, we assume
worst case deviations (see W(aibr) ≥ β̄2W(aopti , a−i) in the
proof of the geometric misalignment) for all actions in the
game, which is not true for most natural games and produces
a conservative bound. Thus the focus of future work will be
to address this concern to get tighter guarantees. We can
also get alternative guarantees if we consider sink induced
by better responses. This is discussed in the next section.

IV. SINK EQ. FROM BETTER RESPONSES

In this section we consider sink equilibria that are induced
by a better (rather than best) response process. In contrast
to the best response set in Eq. (5), we consider the better
response set defined as

bri(ā) = {ai ∈ Ai : Ui(ai, ā−i) ≥ Ui(ā)} (22)
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for a given agent i. The better response process is then
defined by a random walk, similar to Eq. (6) as

Pr(ã|a) =

{
1

n·|bri(a)| if ã ∈ (bri(a), a−i) for some i ∈ I
0 otherwise.

(23)
The sink equilibria are similarly defined for these dynamics.
If we consider sink equilibria that are induced by better
responses, it is possible to get positive guarantees on the
behavior of sink equilibrium. More specifically, we show that
there always exists a joint action in the support of the sink
equilibria that has similar guarantees to the Nash equilibria.

Proposition 5. Let G be (λ, µ)-smooth. Every sink equilib-
rium in G induced by better responses contains a joint action
ã ∈ supp(σ) in its support such that W(ã) ≥ λ

µW(aopt).

Proof of Proposition 5. We show that W(a) ≥ λ
µW(aopt)

for some a ∈ supp(σ) in the sink induced by better
responses. We first claim that for any sink σ, there exists
a joint action a ∈ supp(σ) such that for all i ∈ I,

Ui(a)−Ui(a
opt
i , a−i) ≥ 0. (24)

Consider an arbitrary action a ∈ supp(σ) in which the
condition does not hold true. Let i be the smallest number
such that a does not satisfy Eq. (24) for agent i. Then the
action â = (aopti , a−i) is a better response to a and therefore
â ∈ supp(σ) is in the support of σ as well. Note that â also
satisfies Eq. (24) for agent i. By induction, we can then
derive an action a∗ ∈ supp(σ) such that Eq. (24) is satisfied
for all i. By the smoothness inequality in Eq. (13), we have
that

µW(a∗)− λW(aopt) ≥
∑
i

Ui(a
∗)−Ui(a

opt
i , a∗−i) ≥ 0.

Therefore for some a∗ ∈ supp(σ), the efficiency is lower
bounded by W(a∗) ≥ λ

µW(aopt).

V. CONCLUSION

The main focus of this paper is on studying the limiting
behavior of self-interested agents when it is not guaranteed
that they converge to Nash equilibria. As such, we consider
sink equilibria as our main solution concept, which is natu-
rally defined as a limiting distribution of the best response
process. To quantify performance of the sink equilibrium of
a game, we examine the price of sinking as an appropriate
approximation metric. For Nash equilibrium, smoothness
has been classically used to derive guarantees for price of
anarchy, the respective approximation metric. However, we
show that smoothness is not enough to guarantee anything
for the price of sinking. But by using a novel method of
misalignment parametrization, this work provides nontriv-
ial guarantees on the sink equilibria. We implement our
guarantees into two natural application settings and provide
bounds on the resulting sink equilibria. Future work consists
of considering additional settings where sink equilibria may
appear and providing tighter approximation guarantees.
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