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Abstract— This paper studies the dynamic average consensus
problem of multi-agent systems under event-triggered commu-
nication. In this problem, each agent has access to a time-
varying reference signal and aims to track the average of all
reference signals. Distributed algorithms with event-triggered
communication have been developed to achieve dynamic av-
erage consensus. Nevertheless, these existing event-triggered
communication mechanisms cannot guarantee the existence of a
designable positive minimum inter-event time (MIET), which is
important in their practical implementation. Motivated by this
observation, we propose a distributed dynamic event-triggered
communication mechanism (ETCM) for each agent. It is shown
that the proposed ETCM guarantees the existence of a positive
MIET that is locally adjustable by tuning design parameters.
It is also shown that the dynamic average consensus is achieved
with any pre-specified level of accuracy. As an illustrative
example, the theoretical results are applied to a networked
battery energy storage system for state-of-charge balancing and
desired total power tracking.

Index Terms— Distributed algorithms, dynamic average con-
sensus, event-triggered communication, multi-agent systems.

I. INTRODUCTION

The dynamic average consensus problem of a multi-agent
system requires agents to reach an agreement on the average
of some time-varying reference signals, given that each agent
has access to only one reference signal [1]. The distributed
nature of the reference signals motivates the development of
distributed solutions to the dynamic average consensus prob-
lem that only rely on local interaction and decision among
agents (see, for example, [2–11]). Distributed solutions to the
dynamic average consensus problem find their applications in
various problems including distributed formation control of
networked mobile robots [1], distributed state estimation of
wireless sensors [12], distributed resource allocation [13, 14],
distributed optimization [15] and distributed learning [16].

Distributed solutions to the dynamic average consensus
problem evolve either in continuous time [2–8] or in discrete
time [9–11]. Continuous-time solutions, which are analyzed
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and designed using control-perspective methods such as root
locus, Nyquist criterion, and Lyapunov methods, typically
exhibit good convergence properties and offer flexible design
choices. However, the need for continuous communication
among agents makes such algorithms impractical in many
real-world scenarios. Discrete-time algorithms, whether ob-
tained by discretizing continuous-time algorithms or de-
signed using discrete-time approaches, require agents to
communicate only at discrete-time steps, with a fixed step
size. The design of appropriate step size is essential to ensure
convergence but choosing a fixed step size may lead to
inefficient use of the network resources.

To further improve communication efficiency while pre-
serving the benefits of continuous-time algorithms, [17]
proposes distributed dynamic average consensus algorithms
with continuous-time computation and event-triggered com-
munication. These algorithms rely on the ability of advanced
processors to approximate continuous-time computation and
an event-triggered communication mechanism (ETCM) to
initiate communication at certain time instants. ETCMs can
be either static or dynamic (see, for example, [18–21]), with
the latter incorporating an extra dynamic trigger variable. For
the dynamic average consensus problem, [17] designs a static
ETCM with a positive constant triggering threshold for a
strongly connected and weight-balanced network and a static
state-dependent ETCM for an undirected and connected
network. Practical tracking of the averaged signal is achieved
under these two ETCMs. [22] proposes a dynamic ETCM for
an undirected and connected network that achieves perfect
tracking of the averaged signal.

For practical implementation, ETCMs should guarantee
the existence of a locally designable positive minimum inter-
event time (MIET). In discrete-time algorithms with event-
triggered communication, the sampling period naturally acts
as a positive MIET. Nevertheless, the sampling is required
to be globally synchronized for all agents [23]. Although
the ETCMs for continuous-time algorithms such as those in
[17] and [22] guarantee a positive MIET, the MIET in [22]
is not designable, and the MIET in [17] is determined by
global information on the communication network and initial
conditions of global states and thus not locally designable.
Motivated by this observation, we propose a distributed
dynamic ETCM for continuous-time dynamic average con-
sensus. We will establish the existence of a positive MIET
that is locally adjustable by the tuning design parameters.
The tracking of the averaged signal will be shown to be
achieved with any pre-specified level of accuracy.

The remainder of this paper is outlined as follows. In
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Section II, some preliminaries, including the notation, system
dynamics and communication network, are provided, and the
dynamic average consensus problem of a multi-agent system
is formulated. Section III reviews an existing dynamic aver-
age consensus algorithm. Section IV presents the proposed
distributed dynamic ETCMs with positive MIET guarantees.
In Section V, a simulation example is given to validate the
effectiveness of the proposed design. Finally, Section VI
concludes this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

Let R and N be the set of real numbers and the set of non-
negative integers, respectively. For a scalar a, |a| represents
its absolute value. For a vector v, ∥v∥ represents its Euclidean
norm. For a matrix A, AT represents its transpose. Let 1N

be the column vector with N elements of 1, 0N be the
column vector with N elements of 0, and IN be the identity
matrix of dimensions N ×N . Given scalars a1, a2, · · · , aN ,
diag{a1, a2, · · · , aN} represents the diagonal matrix with
the diagonal elements being a1, a2, · · · , aN .

B. System Dynamics

Consider a multi-agent system with N agents, whose
dynamics is described by

ẋi(t) = ui(t), t ≥ 0, i = 1, 2, · · · , N, (1)
where xi(t) ∈ R and ui(t) ∈ R are the state and the
driving command of agent i, respectively. The agent dy-
namics under consideration is simple. This is because the
state xi(t) corresponds to some local variable such as the
decision variable of a distributed estimator, rather than some
physical variable governed by complex agent dynamics. In
our problem setting, each agent i has access to a time-varying
reference signal ri(t) ∈ R, and is able to communicate with
its neighbors through a communication network.

C. Communication Network

The communication network among all agents is repre-
sented by an undirected graph G = {N , E}, where N =
{1, 2, · · · , N} is the node set and E ⊆ N × N is the edge
set. An edge (i, j) ∈ E indicates that node i is able to send
information to node j. Let the set of neighbors of node i
be Ni = {j ∈ N : (j, i) ∈ E}. A graph G is said to be
undirected if (i, j) ∈ E implies that (j, i) ∈ E . An undirected
graph G is said to be connected if every pair of nodes in graph
G are connected by a sequence of edges.

Let the adjacency matrix of graph G be A = [aij ] ∈
RN×N , where aii = 0, aij = 1 if (j, i) ∈ E and i ̸= j,
and aij = 0 if (j, i) /∈ E and i ̸= j. For an undirected
graph G, aij = aji. Let the Laplacian matrix of graph G be
L = [lij ] ∈ RN×N , where lij = −aij for i ̸= j and lii =∑N

k=1,k ̸=i aik. Let the eigenvalues of the Laplacian matrix
L be λi, i = 1, 2, · · · , N . For a connected undirected graph
G, 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN , 1T

NL = L1N = 0, and
xTLx ≥ λ2∥x∥2 holds for any column vector x satisfying
1T
Nx = 0. These properties of the Laplacian matrix L can

be found in [24].

D. Problem Statement

The objective of this paper is to design a distributed ETCM
for each agent such that the dynamic average consensus can
be achieved among all agents.

Before proceeding, we make the following mild assump-
tions on the reference signals and the communication net-
work.

Assumption 1: For each agent i, the reference signal ri(t)
satisfies |ṙi(t)| ≤ r̄i, where r̄i is a positive constant.

Assumption 2: The graph G that represents the communi-
cation network is undirected and connected.

The problem to be studied is stated as follows.
Problem 1: Consider a multi-agent system (1) under As-

sumptions 1 and 2. Design a distributed ETCM for each
agent, such that its state tracks the average of all reference
signals with a level of accuracy specified by εr > 0, that is,

lim sup
t→∞

|xi(t)− ra(t)| ≤ εr, i = 1, 2, · · · , N, (2)

where ra(t) ≜ 1
N

∑N
i=1 ri(t).

Remark 1: As observed in [8], for linear dynamic average
consensus algorithms such as those in [3] and [5], exact
convergence cannot be achieved. In [3] and [5], the steady-
state error εr is dependent on the rate of variation of the
reference signals ri(t), i = 1, 2, · · · , N . Because it takes
time for the given dynamics of the agents to react to the
variation of the reference signals, as in [3] and [5], we make
Assumption 1 on the bound of the variation rate of ri(t).

III. DYNAMIC AVERAGE CONSENSUS ALGORITHM

The distributed dynamic average consensus algorithm pro-
posed in [5] is given by

ẋi(t) = ṙi(t)− α (xi(t)− ri(t))

− β

N∑
j=1

aij (xi(t)− xj(t))− vi(t), (3a)

v̇i(t) = αβ

N∑
j=1

aij (xi(t)− xj(t)) , vi(0) = 0, (3b)

where α, β > 0 are design parameters and vi(t) is an
internal state. By Corollary 4.1 in [5], the state xi(t) in the
algorithm (3a)-(3b) exponentially converges to an adjustable
neighborhood of the average of the reference signals.

Let {tik : k ∈ N} be the sequence of event times at which
agent i communicates with its neighbors. Then, based on
event-triggered communication, the dynamic average consen-
sus algorithm (3a)-(3b) is implemented as [17]

ẋi(t) = ṙi(t)− α(xi(t)− ri(t))

− β

N∑
j=1

aij (x̂i(t)− x̂j(t))− vi(t), (4a)

v̇i(t) = αβ

N∑
j=1

aij(x̂i(t)− x̂j(t)), vi(0) = 0, (4b)

where x̂i(t) = xi(t
i
k), t ∈

[
tik, t

i
k+1

)
. The event times tik,

k ∈ N, will be determined in the next section.
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IV. DYNAMIC EVENT-TRIGGERED COMMUNICATION
MECHANISM

In this section, we provide our distributed dynamic
ETCMs with positive MIET guarantees.

A. Event-Triggered Communication Mechanism

For each agent i, we will design a distributed dynamic
ETCM in order to determine the time instants when agent i
broadcasts xi(t) to its neighbors j, j ∈ Ni.

First, we define the following measurement error:
ei(t) = x̂i(t)− xi(t) = xi(t

i
k)− xi(t), t ∈

[
tik, t

i
k+1

)
. (5)

Note that ei(t) is reset to 0 at each event time tik. With
the measurement error ei(t), we define a dynamic trigger
variable governed by{

ξ̇i(t) = min {ϖi(t), 0} − σi, for t ∈ (tik, t
i
k+1),

ξi(t) = ξ̄i, for t = tik,
(6)

where ξ̄i, σi > 0 are design parameters. Here, ϖi(t) is
defined as follows,

ϖi(t) =
β

8 |ei(t)|2
N∑
j=1

aij (x̂i(t)− x̂j(t))
2

− µiξ
2
i (t)− κiξi(t)− βdi, if |ei(t)| ≠ 0, (7)

with di ≜
∑N

i=1 aij and µi ≜ 8βdi+2ϵ2i +2, and ϖi(t) = 0
if |ei(t)| = 0. In (7), ϵi > 0 and κi > 0 are design parameters
and κi is chosen such that 0 < κi ≤ 2

√
βµidi. With the

trigger variable ξi(t), we design a distributed dynamic ETCM
for each agent i as

tik+1 = inf
{
t > tik | ξi(t) ≤ 0

}
, (8)

with ti0 = 0. This ETCM is said to be dynamic because of
the presence of an additional dynamic variable ξi(t). The
dynamics of ξi(t) only depends on information of agent i
and its immediate neighbors. In this sense, the ETCM (8)
involving ξi(t) is distributed. Note that the expression of
ϖi(t) in (7) is derived to guarantee the convergence of the
algorithm (4a)-(4b) and the existence of a positive MIET.

B. Lower Bounds of the Inter-Event Times

The following technical lemma provides a positive lower
bound of the inter-event times for each agent under ETCM
(8).

Lemma 1: Consider the distributed dynamic ETCM (8)
with the trigger variable ξi(t) updated by (6). Then, the
trigger variable ξi(t) satisfies 0 ≤ ξi(t) ≤ ξ̄i, for all t ≥ 0.
Moreover, the inter-event times tik+1 − tik, for each agent i,
have a positive lower bound

τi =
1

√
µici

[
arctan

(√
µi

ci

(
ξ̄i +

κi

2µi

))
− arctan

(√
µi

ci

κi

2µi

)]
, (9)

where ci ≜ σi + βdi − κ2
i

4µi
> 0.

Proof: According to the trigger dynamics (6), ξ̇i(t) < 0
for t ∈ (tik, t

i
k+1) and ξi(t

i+
k ) = ξ̄i. Hence, ξi(t) drops from

ξ̄i during each time interval
[
tik, t

i
k+1

)
. ETCM (8) enforces

that ξi(t) ≥ 0. As a result, ξi(t) satisfies 0 ≤ ξi(t) ≤ ξ̄i, for
all t ≥ 0. To calculate a lower bound of inter-event times, we
evaluate the trigger variable ξi(t) during each time interval

[
tik, t

i
k+1

)
. Specifically, we consider the following two cases

over the time interval
[
tik, t

i
k+1

)
. In the case of |ei(t)| ≠ 0,

ϖi(t) is lower-bounded by

ϖi(t) ≥ −µi

(
ξi(t) +

κi

2µi

)2

+
κ2
i

4µi
− βdi. (10)

Recalling 0 < κi ≤ 2
√
βµidi, we have κ2

i

4µi
− βdi ≤ 0.

Furthermore, in view of (10), ξ̇i(t) satisfies

ξ̇i(t) ≥ −µi

(
ξi(t) +

κi

2µi

)2

− ci, (11)

where ci is given in (9). Because κ2
i

4µi
−βdi ≤ 0 and σi > 0,

we have ci ≥ σi > 0. Thus, in the case of |ei(t)| = 0, ξ̇i(t)
satisfies

ξ̇i(t) = −σi ≥ −µi

(
ξi(t) +

κi

2µi

)2

− ci. (12)

Combining (11) and (12) yields that in both cases,

ξ̇i(t) ≥ −µi

(
ξi(t) +

κi

2µi

)2

− ci, (13)

for t ∈
[
tik, t

i
k+1

)
. Thus, by the comparison lemma, we

obtain that ξi(t) ≥ ϕi(t), for t ∈
[
tik, t

i
k+1

)
, where ϕi(t)

is the solution of the differential equation

ϕ̇i(t) = −µi

(
ϕi(t) +

κi

2µi

)2

− ci, (14)

with ϕi(t
i+
k ) = ξ̄i. Denote χi(t) =

√
µi

ci

(
ϕi(t) +

κi

2µi

)
.

Then, it follows from (14) that

− 1
√
µici

χ̇i(t)

χ2
i (t) + 1

= 1. (15)

Integrating both sides of (15) from tik to t yields

t− tik =
1

√
µici

(
arctan(χi(t

i
k))− arctan(χi(t))

)
, (16)

for t ∈
[
tik, t

i
k+1

)
. Because ξi(t) ≥ ϕi(t), the inter-event

time tik+1 − tik is lower-bounded by the amount of time that
it takes for ϕi(t) to drop from ξ̄i to 0. Then, we conclude
from (16) that tik+1 − tik ≥ τi > 0.

In Lemma 1, the positive lower bound τi is referred to
as a positive MIET. The MIET τi only relies on the design
parameters β, ξ̄i, σi, ϵi and κi, and hence can be pre-specified
locally by the designer.

C. Exponential Convergence

We are now in a position to analyze the exponential
convergence of the dynamic average consensus algorithm
(4a)-(4b) under ETCM (8).

Let {t̄m : m ∈ N} be the strictly increasing sequence
of event times at which at least one agent is triggered.
By Lemma 1, the Zeno behavior is excluded. This indi-
cates that limk→∞ tik = ∞, for i = 1, 2, · · · , N . Hence,
limm→∞ t̄m = ∞. Let x(t) = [x1(t), x2(t), · · · , xN (t)]T,
r(t) = [r1(t), r2(t), · · · , rN (t)]T, v(t) = [v1(t), v2(t),
· · · , vN (t)]T, and e(t) = [e1(t), e2(t), · · · , eN (t)]T. As in
[17], using the orthogonal transfer matrix Ξ = [η, R] ∈
RN×N , with η = 1√

N
1N , we define the following variable

transformations:
z1(t) = ηTy(t), z2:N (t) = RTy(t),

q1(t) = ηTw(t), q2:N (t) = αRTy(t) +RTw(t),
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where y(t) ≜ x(t) − 1Nra(t) and w(t) ≜ v(t) − αΠr(t),
with Π = IN − 1

N 1N1T
N . As shown in [17], for all t ≥ 0,

q1(t) = 0 and q2:N (t) = q2:N (0)e−αt. Then, the system
composed of z1(t), z2:N (t) and e(t), for t ∈ [t̄m, t̄m+1), is

ż1(t) = −αz1(t), (17a)

ż2:N (t) = −βRTLRz2:N (t)− βRTLe(t)

+RTṙ(t)− q2:N (t), (17b)
ė(t) = βLe(t) + αηz1(t) + βLRz2:N (t)

+Rq2:N (t)− ṙ(t). (17c)
By analyzing the stability of the system in (17a)-(17c), we

are ready to present the convergence result of the dynamic
average consensus algorithm (4a)-(4b) under ETCM (8).

Theorem 1: Consider the distributed event-triggered dy-
namic average consensus algorithm (4a)-(4b) under ETCM
(8). There exists constant γ > 0 such that, for any α > 0
and β > 0, the state xi(t) exponentially converges to a
neighborhood of ra(t), that is,

lim sup
t→∞

|xi(t)− ra(t)|

≤ γ

θβλ2
+ γ

[(
1

θβλ2

)2

+
1

ϵ2minθβλ2

] 1
2

, (18)

where ϵmin = mini ϵi > 0 and 0 < θ < 1, and the rate of
exponential convergence is ϱ = min{α, (1− θ)βλ2, κmin},
with κmin = mini κi.

Proof: Consider the Lyapunov function candidate

W (z1(t), z2:N (t), e(t)) =
1

2
α |z1(t)|2 +

1

2
zT2:N (t)z2:N (t)

+

N∑
i=1

ξi(t) |ei(t)|2 . (19)

At time t = t̄m, at least one agent, say agent i, is triggered.
In this case, ξi(t̄

−
m) = 0, ξi(t̄

+
m) = ξ̄i, and ei(t̄

+
m) =

0. Thus, ξi(t) |ei(t)|2 is continuous at t = t̄m for any
m ∈ N. Furthermore, ξi(t) |ei(t)|2 is continuous over the
time interval [0,∞). Note that z1(t) and z2:N (t) are always
continuous. Thus, W (t) is continuous over the time interval
[0,∞). Under Assumption 1, there exists constant γ > 0
such that ∥RTṙ(t)∥ ≤ γ and ∥ṙ(t)∥ ≤ γ. The time derivative
of W (t) along the trajectories of (17a)-(17c) over each time
interval [t̄m, t̄m+1) is evaluated as

Ẇ (t) ≤ −α2 |z1(t)|2 −
1

2
βzT2:N (t)RTLRz2:N (t)

− 1

2
βx̂T(t)Lx̂(t) +

1

2
βeT(t)Le(t)

+
(
γ + ∥q2:N (0)∥ e−αt

)
∥z2:N (t)∥

+ 2βeT(t)Ξ(t)Lx̂(t)

+ 2eT(t)Ξ(t) (αηz1(t) +Rq2:N (t))

− 2eT(t)Ξ(t)ṙ(t) +

N∑
i=1

ξ̇i(t) |ei(t)|2 , (20)

where Ξ(t) ≜ diag{ξ1(t), ξ2(t), · · · , ξN (t)} and we have
used RRT = Π, LΠ = ΠL = L, and 1T

NL = L1N = 0.
Using Young’s inequality ab ≤ a2

2ε + εb2

2 , with ε > 0, leads
to

1

2
βeT(t)Le(t)

≤ 1

2
β

N∑
i=1

di |ei(t)|2 +
1

4
β

N∑
i=1

N∑
j=1

aij

(
|ei(t)|2 + |ej(t)|2

)
= β

N∑
i=1

di |ei(t)|2 , (21)

2βeT(t)Ξ(t)Lx̂(t)

≤ 8β

N∑
i=1

diξ
2
i (t) |ei(t)|

2
+

1

8
β

N∑
i=1

N∑
j=1

aij (x̂i(t)−x̂j(t))
2
,

(22)
2eT(t)Ξ(t) (αηz1(t) +Rq2:N (t))− 2eT(t)Ξ(t)ṙ(t)

≤ 1

2
α2 |z1(t)|2 +

N∑
i=1

(
2ϵ2i + 2

)
ξ2i (t) |ei(t)|

2

+
1

2ϵ2min

(
γ + ∥q2:N (0)∥ e−αt

)2
, (23)

where we have used
∑N

i=1

∑N
j=1 aij |ej(t)|2 =∑N

i=1

∑N
j=1 aij |ei(t)|2, as aij = aji. Substituting (21), (22)

and (23) in (20) and recalling the property of the Laplacian
matrix L in Section II.C yield

Ẇ (t) ≤− 1

2
α2 |z1(t)|2 −

1

2
(1− θ)βλ2 ∥z2:N (t)∥2

− 1

8
β

N∑
i=1

N∑
j=1

aij (x̂i(t)− x̂j(t))
2
+ β

N∑
i=1

di |ei(t)|2

+

N∑
i=1

(
8βdi + 2ϵ2i + 2

)
ξ2i (t) |ei(t)|

2

+

N∑
i=1

ξ̇i(t) |ei(t)|2 +∆, (24)

where ∆ ≜ − 1
2θβλ2 ∥z2:N (t)∥2 + (γ +

∥q2:N (0)∥ e−αt) ∥z2:N (t)∥ + 1
2ϵ2min

(γ + ∥q2:N (0)∥ e−αt)2.
Note that ∆ ≤ 0 if ∥z2:N (t)∥ satisfies

∥z2:N (t)∥ ≥ γ + ∥q2:N (0)∥ e−αt

θβλ2
+
(
γ + ∥q2:N (0)∥ e−αt

)
×

[(
1

θβλ2

)2

+
1

ϵ2minθβλ2

] 1
2

≜ ζ(t). (25)

Thus, we can obtain from (6) and (24) that
Ẇ (t)

≤ −1

2
α2 |z1(t)|2 −

1

2
(1− θ)βλ2 ∥z2:N (t)∥2

− 1

8
β

N∑
i=1

N∑
j=1

aij (x̂i(t)− x̂j(t))
2
+ β

N∑
i=1

di |ei(t)|2

+

N∑
i=1

(
8βdi + 2ϵ2i + 2

)
ξ2i (t) |ei(t)|

2
+

N∑
i=1

ξ̇i(t) |ei(t)|2

≤ −1

2
α2 |z1(t)|2 −

1

2
(1− θ)βλ2 ∥z2:N (t)∥2

−
N∑
i=1

κiξi(t) |ei(t)|2

≤ −ϱW (t), t ∈ [t̄m, t̄m+1), (26)
as long as ∥z2:N (t)∥ ≥ ζ(t). This implies that when
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∥z2:N (t)∥ ≥ ζ(t), W (t) ≤ W (0)e−ϱt and, hence,
∥z2:N (t)∥ ≤ 2W (t) ≤ 2W (0)e−ϱt. Consequently, ∥z2:N (t)∥
is bounded by

lim sup
t→∞

∥z2:N (t)∥ ≤ γ

θβλ2
+γ

[(
1

θβλ2

)2

+
1

ϵ2minθβλ2

] 1
2

. (27)

Denote z(t) = [z1(t) z
T
2:N (t)]T ∈ RN×1. Recalling z1(t) =

z1(0)e
−αt, we obtain that ∥z(t)∥ is bounded. Note that

∥xi(t)−ra(t)∥≤∥x(t)−1Nra(t)∥=∥y(t)∥=∥z(t)∥ . (28)
Combining (27) and (28), we arrive at (18).

Remark 2: By increasing the values of the design param-
eters β and ϵi, the steady-state error in (18) can be made
arbitrarily small.

Remark 3: The two types of static ETCMs proposed in
[17] for the dynamic average consensus algorithm in (4a)-
(4b) are

tik+1 = inf

{
t > tik | |ei(t)|2 ≥

1

4di

N∑
j=1

aij(x̂i(t)− x̂j(t))
2 + ρi

}
, (29)

tik+1 = inf
{
t > tik | |ei(t)|2 ≥ ρi

}
, (30)

where ρi > 0. Compared to ETCM (30), ETCM (29)
can lead to fewer communication events while ensuring
a similar consensus performance, as shown in [17]. The
MIETs guaranteed by (29) and (30) rely on the initial
values of the global states and the global information on the
communication network and, hence, cannot be pre-specified
locally by the designer, in contrast to MIET (9).

V. SIMULATION STUDIES

In this section, we validate our distributed dynamic ETCM
on a networked battery energy storage system consisting of
ten battery units. The state-of-charge (SoC) of each battery
unit i (see [13, 14, 25] for details) is determined by

si(t) = si(0)−
1

Ci

∫ t

0

ii(ς)dς, i = 1, 2, · · · , 10, (31)

where si(t) is the SoC, ii(t) is the output current, and Ci is
the battery capacity. Given a constant output voltage Vi, the
output power pi(t) of battery unit i is pi(t) = Viii(t). Then,
the SoC dynamics can be written as

ṡi(t) = − 1

CiVi
pi(t). (32)

The objective is to achieve SoC balancing among all battery
units while delivering the desired total power pref in dis-
charging or charging mode, that is, limt→∞(si(t)−sj(t)) =
0 and limt→∞ pΣ(t) = pref , where pΣ(t) =

∑10
i=1 pi(t) is

the total power. To achieve this objective, a power control
law was designed in [25] as

pi(t) =
ri(t)

xi(t)
pa, (33)

where pa = 1
10pref is the average desired total power, xi(t)

is the estimate of ra(t) = 1
10

∑N
i=1 ri(t), and ri(t) is the

unit state of battery unit i defined as

ri(t) =

{
CiVisi(t) (in discharging mode),
CiVi (1− si(t)) (in charging mode). (34)

We conduct the dynamic average consensus algorithm
(4a)-(4b) under the proposed ETCM (8) in the following
case study. The desired total power pref is 14000 W. The
capacities Ci, 1, 2, · · · , 10 are (190, 210, 230, 200, 220,
180, 195, 215, 225, 205) Ah. The output voltages Vi, i =
1, 2, · · · , 10, are all 50 V. The initial SoC values are (0.90,
0.81, 0.75, 0.85, 0.88, 0.76, 0.83, 0.73, 0.75, 0.88). The
communication topology among ten battery units is shown
in Fig. 1. The initial values of the dynamic variables in (4a),
(4b) and (8) are xi(0) = 5000, vi(0) = 0 and ξi(0) = ξ̄i,
i = 1, 2, · · · , 10. The design parameters are chosen as
follows: 1) α = 2, β = 12; 2) ξ̄i = 5+0.1× i, σi = 0.1× i,
ϵi = 5+0.2×i, κi = 2+0.1×i, i = 1, 2, · · · , 10. According
to Lemma 1, the guaranteed MIETs τi, i = 1, 2, · · · , 10,
given by (9), are (0.0194, 0.0134, 0.0190, 0.0132, 0.0186,
0.0184, 0.0182, 0.0128, 0.0178, 0.0126) h.
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Fig. 1. The communication topology.

The simulation results in the discharging mode are shown
in Figs. 2-5. As seen in Figs. 2 and 3, the SoC balancing
and the desired total power tracking are achieved with a high
level of accuracy, under the power control law (33). Shown
in Fig. 4 are the average unit state estimates of all battery
units. These estimates are obtained by the dynamic average
consensus algorithm (4a)-(4b) under ETCM (8). It can be
observed that the average unit state estimates quickly achieve
the dynamic average consensus. To illustrate the triggering
mechanism, the trigger variable of battery unit 5 is displayed
in Fig. 5. As seen, the trigger variable ξ5 drops from ξ̄5 to
0 and is reset to ξ̄5 whenever ξ5 reaches 0.
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Fig. 2. The SoC of all battery units.
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Fig. 3. The total power and the desired power.

Finally, we make a comparison between ETCMs (8) and
(29). For comparison, we choose ρi = 20 in ETCM (29) such
that the resulting estimation performance is similar to that
of ETCM (8) in Fig. 4. Table I shows the number of events
(NUM), the observed MIET and the average inter-event time
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Fig. 4. The average unit state estimates of all battery units.
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Fig. 5. The trigger variable of battery unit 5.

(AIET) during the first 5 h for battery units 1, 2, · · · , 5 under
ETCMs (8) and (29). In Table I, it is observed that ETCM
(8) can significantly reduce the communication load when
compared to ETCM (29).

TABLE I
SIMULATION RESULTS UNDER ETCMS (8) AND (29).

Unit NUM Observed MIET (h) AIET (h)
(8) (29) (8) (29) (8) (29)

Unit 1 235 1379 0.0200 0.0010 0.0212 0.0036
Unit 2 318 1283 0.0135 0.0010 0.0157 0.0039
Unit 3 225 1083 0.0198 0.0009 0.0222 0.0046
Unit 4 295 986 0.0136 0.0010 0.0169 0.0051
Unit 5 217 899 0.0199 0.0007 0.0230 0.0056

VI. CONCLUSIONS

We investigated the dynamic average consensus problem
of multi-agent systems under event-triggered communica-
tion. In order to address this problem, we reviewed one
existing dynamic average consensus algorithm. Based on this
algorithm, we designed a distributed dynamic ETCM for
each agent such that it can determine when to communicate
with its neighbors. An appealing feature of the proposed
ETCM for each agent is the guarantee of the existence of
a positive MIET that is locally adjustable by tuning the
design parameters. It was shown that the dynamic average
consensus algorithm under the proposed ETCM exponen-
tially converges to an arbitrarily small neighborhood of the
average of all reference signals. The obtained theoretical
results were applied to achieve both SoC balancing and
desired total power tracking for a networked battery energy
storage system.
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