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Abstract— In this paper, we consider the problem of learning
online to manage Demand Response (DR) resources. A typical
DR mechanism requires the DR manager to assign a baseline
to the participating consumer, where the baseline is an estimate
of the counterfactual consumption of the consumer had it not
been called to provide the DR service. A challenge of estimating
the baseline is the incentive the consumers have to inflate
the baseline. We consider the problem of learning online to
estimate the baseline and to optimize the operating costs over
a period of time under such incentives. We propose an online
learning scheme that employs least-squares for estimation with
a perturbation to the reward price (for the DR services or load
curtailment) that is designed to balance the exploration and
exploitation trade-off that arises with online learning. We show
that, our proposed scheme is able to achieve a very low regret of
O

(
(log T )2

)
with respect to the optimal operating cost over T

days of the DR program with full knowledge of the baseline, and
is individually rational for the consumers to participate. Our
scheme is significantly better than the averaging type approach,
which only fetches O(T 1/3) regret.

I. INTRODUCTION

Demand Response (DR) programs [1] are potentially pow-
erful tools to modulate the demand for electricity in a wide
variety of situations. For example, at certain times such as
mid-afternoons on hot summer days, the supply of additional
electric power is scarce and expensive. At these times, it
is more cost-effective to reduce demand than to increase
supply to maintain power balance. Another scenario is a grid
with high renewable penetration. Here, DR promises to be a
better alternative compared to other expensive and polluting
reserves to balance the variability in renewable generation.
Realizing its potential, the 2005 Energy Policy Act provided
the Congressional mandate to promote DR in organized
wholesale electricity markets. The FERC order 745 [2] met
this mandate by prescribing that demand response resource
owners should be allowed to offer their demand reduction
as if it were a supply resource rather than a bid to reduce
demand so that the market operates fairly.

Dynamic pricing based DR programs can ideally achieve
market efficiency, but they require complex metering and
communication infrastructure to achieve this, which raises
their implementation costs [3]. Furthermore, consumers may
not be responsive to dynamic pricing [4]. Alternatively,
consumers could be signaled to reduce consumption and
paid for their load reductions. Such schemes are referred
to as Incentive-based DR programs or Demand Reduction
programs. There are two key components of any incentive-
based DR program: (a) a baseline against which demand
reduction is measured, (b) a payment scheme for agents who
reduce their consumption from the baseline.

Thus, incentive-based DR programs require an established
baseline against which consumer’s load reduction is mea-
sured. The baseline is an estimate of the consumption when
the consumer is not participating in the DR program. There
are several ways to approach the estimation of baseline.
One could, for example, use data to estimate the baseline.
For example, the California Independent System Operator
(CAISO) uses the average of the consumption on the ten
most recent non-event days as the baseline estimate [5].
Data driven approaches can be broadly classified as (a)
averaging, (b) regression, and (c) control group methods.
Typically, these methods are prone to baseline manipulation
[6]. There have have been reported cases in the past where
the participants have artificially inflated their baseline for
increasing payments [7]. Another class of approaches are
based on mechanism design, where the consumers are elicited
to report their baselines [8]–[10]. These approaches rely
on suitably designed payment schemes to ensure that the
manipulation or gaming of the reporting is minimal.

While many data-driven approaches for estimating base-
line have been proposed in the literature [11]–[15], [15]–[20],
they typically consider the offline setting where sufficient
data is available for estimation prior to the start of the
DR program. The limitation is that these approaches cannot
be used when the data is limited or when the underlying
conditions can change. The mechanism design approaches
can avoid the need for learning, but have limitations because
the consumers can be unwilling to reveal their baselines or
can even be unaware of their baselines. These considerations
necessitate approaches that can learn online while running
the DR program without needing the consumers to report
any information.

Contribution: In this work, we consider the problem of
managing DR resources where a participating consumer’s
baseline is to be estimated online, i.e., while running the DR
program. We consider the setting where the DR program can
only learn from the consumption data that it gathers over
the course of time. The unique challenge of our setting is
that the DR program manager has to simultaneously learn
the consumers’ baselines and optimize its operating costs
with the information it gathers along the way. This makes
this problem a typical online learning problem. Therefore,
the exploration-exploitation trade-off in any online learning
problem applies to our problem as well. The added complex-
ity in a setting like ours is the incentive the consumers have to
interfere with the baseline estimation. Our formulation of the
online learning DR problem incorporates all of these aspects.
We propose an online learning DR scheme for this problem
and show that our method achieves O((log T )2) regret with
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respect to the optimal operating cost over T days of the
DR program and is individually rational for the consumers
to participate with an upfront payment for participation. Our
main contribution is an online learning scheme for (incentive-
based) DR that converges to the optimal cost with a very low
regret and is at the same time individually rational. Ours is
also the first work to formally study incentive-based DR as
an online learning problem and present algorithms and regret
guarantees.

A. Related Works

There exists substantial literature on baseline estimation
methods [8], [9], [11]–[15], [15]–[20]. These can be broadly
classified into four classes: (a) averaging, (b) regression, (c)
control group methods and (d) baseline reporting approaches.

Averaging methods determine baselines by averaging the
consumption on past days that are similar (e.g., in weather
conditions) to the event day. A detailed comparison of
different averaging methods is offered in [11], [12], [14]. Av-
eraging methods are simple but they suffer from estimation
biases [14]–[16]. Regression methods estimate a load pre-
diction model based on historical data which is then used to
predict the baseline [13], [18]. They can potentially overcome
biases incurred by averaging methods [15]. Control group
methods have been suggested to have better accuracy than
averaging or regression type methods and do not require large
amounts of historical data [19]. However, these methods
require the SO to recruit an additional set of consumers and
install additional metering infrastructure. In addition, prior
data based analysis might be required to identify the most
appropriate control group depending on the control group
method deployed. This can raise the costs of implementation
[19].

Baseline reporting approaches were proposed in [9], [10],
[21] as an alternative baseline estimation method. These
approaches employ the framework of mechanism design to
design payment and selection schemes to ensure that the
consumers report the correct baseline values. While these
methods can provably reduce the baseline error from that
of averaging type methods [8], they violate privacy and
are infeasible when the consumers can be unaware of their
baselines.

In contrast to the above approaches, we propose an online
approach that does not require large quantities of historical
data, or a control group, or reporting private information.

Notation: We denote the expectation over a probabil-
ity distribution by E[·]. We use O(·) for the standard
big-O notation while Õ(·) denotes the big-O notation
neglecting the poly-log terms. We denote the sequence
(xm1

, xm1+1, . . . , xm2
) compactly by xm1:m2

and the se-
quence (xm1 , xm1+1, . . . , xm2) compactly by xm1:m2 .

II. DEMAND RESPONSE FORMULATION

We consider the problem of managing Demand Response
(DR) in an online setting, where the consumers’ utility
functions are unknown to the System Operator (SO) and the
SO has to learn the necessary consumer relevant parameters

online. In a typical demand response program, the SO
recruits consumers for demand response and calls them to
provide load curtailment on certain days. To incentivize
the consumers to curtail, the SO typically pays a certain
price (reward/kWh) for the load curtailment the consumers
provide. Therefore, the consumer’s response depends on the
incentive or the reward to reduce, which is the price set by the
SO. In addition to the payment for the DR services, the SO
incurs an additional cost for serving the final consumption
after load curtailment. Thus, the total cost for the SO depends
on the payments for the DR services and the cost to serve
the final load after the curtailment.

Typically, the SO can only observe the final consumption
and not the load curtailment. Therefore, in addition to the
price (reward/kWh), the SO needs to specify a baseline
consumption to quantify the load curtailment. Baselines
are estimates of the power that would be consumed had
the consumer not been called to provide load curtailment.
The SO, typically, announces the mechanism to assign the
consumer’s baseline to the consumers participating in the DR
program. Thus, the SO’s DR policy is the procedure to set
the price (reward/kWh) and the baseline. The objective of the
System Operator is to choose a DR policy that minimizes its
overall cost.

We note that it is impossible for the SO to avoid under
payment or over payment for the load curtailment without
the knowledge of the consumer’s correct baseline, which the
SO need not know apriori. Here, we consider the setting,
where the SO learns to set the correct baseline during the
course of the DR program. The price and the baseline that
the SO sets can vary from one day to the other and can
be adapted depending on the response that the SO observes
over its operation. The SO on any day has the following
information: (i) the price for DR on all the previous days (ii)
the baseline set for all the previous days and (iii) the final
consumption of the consumers on all the previous days. The
SO can use this information to set the price and the baseline
consumption. Since the SO has to learn with the observations
made on the fly and there is a cost that the SO incurs every
day, this problem in effect is an online learning problem.

Like in a typical online learning problem, the SO has to
balance the exploration and exploitation trade-off. Specifi-
cally, in this context, the SO cannot afford to set a constant
price throughout to learn the correct baseline. This is because
the total payment is a function of the assigned baseline,
which creates an incentive for consumers to modify their
consumption so as to inflate their future baselines and
thence their future payments. Therefore, the SO has to be
strategic in how the prices are set initially so as to infer the
correct baseline over time. This is the exploration part. The
exploration thus has to be balanced against deviating from
the optimal outcome so as to ensure that on average the SO
does not deviate from the best outcome. We characterize the
effectiveness of the SO’s DR policy, as is done typically
in online learning, through a metric called regret, which in
our case is the difference between the cumulative cost over
a set of days and the achievable optimal cost with the full
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baseline information over the same set of days. Our objective
is to develop an online learning scheme that achieves sub-
linear regret and thereby achieve an outcome that on average
converges to the best DR outcome.

A. DR Setting

We index the days by t. We denote the number of
consumers participating in the DR program by N . The SO,
before any given day, decides whether to call a DR event or
not. If it decides to call a DR event, it assigns a baseline b̂it
to the ith consumer participating in the DR program and the
price for DR pt (reward/kWh) prior to day t. The consumers
are paid at the price pt for the reduction of consumption from
the assigned baseline. The price pt is a reward or incentive
for the consumer to reduce its consumption. The price and
the baseline is set by the SO using the following information:
(i) the price for DR on all the previous days (ii) the baseline
set for all the previous days and (iii) the final consumption
of the consumers on all the previous days. Thus, the SO can
adapt its price and the baselines online as it makes newer
observations. As in any DR program, the SO announces the
procedure for setting the price for DR and the baseline prior
to the first day, which is the SO’s DR policy.

B. Consumer Model

We denote the electricity consumption of a consumer i on
day t by qit. Then, the payment P to consumer i for curtailing
from b̂it is given by

P i
t = pt(b̂

i
t − qit).

We denote the utility that the consumer derives from the
electricity consumption qit by

ui
t = ui(qit, ϵ

i
t) =

(
ai + ϵit

)
qit −

di(qit)
2

2
,

where ϵit is a zero mean random variable and models the un-
predictability or the uncertainty in the consumer’s behavior.
The assumption is that, by day t, the consumers observe their
respective ϵits and that this information is private to them.

As in a typical power market, the consumers pay a retail
price to the electricity provider for their daily consumption.
We denote the retail price that the consumers pay by p0.
Therefore, the net utility to consumer i on day t is given by

U i
t (q

i
t) = ui

t − p0q
i
t + P i

t .

The correct average baseline b̃i for a consumer i can be
derived from the consumer’s utility function. Following the
definition that the correct baseline is the optimal consumption
when the consumer is not called to provide DR, the correct
average baseline for a consumer i is given by

b̃i = Eϵit
bit =

ai − p0
di

, where bit =
ai + ϵit − p0

di
.

The optimal consumption in the hypothetical case when the
set baselines are fixed to the correct values and do not depend
on the past consumption can be derived by minimizing U i

t

individually. Therefore, the consumption for this hypothetical
case is given by

sit(pt) = argmin
qit

U i
t (q

i
t) =

ai + ϵit − p0 − pt
di

. (1)

Consumer’s Optimal Decision: In a DR setting, since a
consumer’s current consumption determines the future base-
line and payments, the consumer typically has an incentive
to modify its consumption to influence the future baselines
and the DR payments. To model this effect, we consider
the setting, where a consumer’s current decision is also
determined by its effect on the outcome of the next m days.
In this setting, the optimal consumer response on a day t is
given by

q∗it = arg max
qit:t+m

E
t+m∑
s=t

U i
s(q

i
s), (2)

where expectation is over all randomness in ϵis, ps, b̂
i
s for all

s > t.

C. System Operator’s Objective

The system operator’s decision variables on a day t are
the price for DR and the baselines, which we collectively
denote by (pt, b̂

1:N
t ). We denote the aggregate of the assigned

baselines on a day t by

b̂t =

N∑
i=1

b̂it.

Similarly, we denote the aggregate consumption on a day t
by

qt =

N∑
i=1

qit.

Typically, the SO has to procure power from an external
market to serve the demand of the consumers. Therefore, the
SO incurs a cost for procuring the power consumed by the
consumers. We denote the cost of procuring an unit of power
by c. Therefore, the total cost that is incurred by the SO on
a day t is the sum of the purchase cost and the cost for DR:

Ct(pt, b̂t) = cqt + pt(b̂t − qt).

Therefore, the SO’s expected cost on day t conditioned on
the set baseline and the price is given by

C̃t(pt, b̂t) = E[Ct(pt, b̂t)|pt, b̂t] = cq̃t + pt(b̂t − q̃t),

where q̃t = Eqt. In the analysis, we assume that consumer
chooses qt according to Eq. (2).

SO’s Objective: Let the price that minimizes SO’s ex-
pected cost when the baselines are set to the correct values
be denoted by p∗. Then, the consumption under this price,
with the baselines set to the correct values, is given by
s∗it = sit(p

∗) for all i. Therefore, the optimal expected cost
for the SO, when the baselines are set to the correct values,
is given by

C̃∗
t = cs̃∗t + p∗(b̃− s̃∗t ),
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where s̃∗t = Eϵts
∗
t and s∗t =

∑N
i=1 s

∗i
t , b̃ =

∑N
i=1 b̃

i. Since
the primary objective of the SO is not to inflate the baseline
and over pay, it is reasonable to define the regret with respect
to the total optimal cost when the baselines are set to the
correct values. Therefore, we define the SO’s expected regret
over a time period T , under a DR policy, as

RT =

T∑
t=1

(
E[C̃t(pt, b̂t)]− C̃∗

t

)
.

The SO’s objective is to prescribe a DR policy such that

lim
T→∞

RT

T
= 0 (No Regret).

The SO has to achieve zero regret on average while ensuring
that the consumer’s individual rationality is satisfied on
average, i.e.,

lim
T→∞

E[
∑T

t=1 U
i
t (q

i
t)]− TU∗i

T
≥ 0 ∀ i,

(Individual Rationality),

where U∗i = E[ui(sit(0), ϵ
i
t)− p0s

i
t(0)]. (3)

Remark 1 (Individual Rationality). The individual rationality
condition in Eq. (3) is essential, since, otherwise the SO
can set a very low baseline and under pay the consumers
for the DR services. Thus, this condition is essential in the
formulation. Moreover, the consumer will not participate in
the DR program if the consumer does not receive a benefit
that is on average at least as much as the benefit when not
participating in the DR program. Therefore, to enforce this
constraint, we set U∗i in the individual rationality condition
as the optimal expected utility for a consumer when not
participating in the DR program.

Remark 2 (Regret Definition). The question is whether C̃∗
t is

appropriate as the cost to be compared with in the regret. It
can be shown that if the SO inflates the baseline by a certain
quantity ∆b > 0 then the optimal expected cost necessarily
increases till the incentives for the consumers to participate
in the DR program are positive. Therefore, given that the
primary objective is to mitigate over payment while ensuring
individual rationality, it follows that C̃∗

t is the right candidate
for the cost to be compared with.

III. ONLINE LEARNING DR MECHANISM

In this section, we discuss our algorithm and present the
properties of our algorithm formally.

We recall that q1, q2, q3, .... denote the sequence of con-
sumption by the consumer and p1, p2, ... denote the sequence
of price set by the SO for DR. The SO, at the end of a day
t, calculates a b̂i1,t+1 and b̂it+1 for each consumer i by[

b̂e,i1,t+1

b̂e,it+1

]
= argmin

b̂,b̂1

t∑
k=1

(qik − (b̂− b̂1pk))
2. (4)

The SO then assigns b̂it+1 = b̂e,it+1 as the baseline for day t+1
to the ith consumer and calls all the consumers to provide

DR service. The price pt for DR is given by

pt = p∗ + δpe−t, (5)

where δp is a constant. In addition, the SO also pays a
payment Po to the consumer upfront. This payment is needed
for meeting the individual rationality condition. Later, we
give the specific form of this payment.

Algorithm 1 Online Learning DR Mechanism (OL-DRM)
Input: N,P i

o for each i ∈ [1, N ]
Make the payment P i

o to each i ∈ [1, N ].
Announce the price sequence for the DR program as given
by Eq. (5) and the process of baseline estimation.

Initialize b̂i1 for each i ∈ [1, N ] arbitrarily.
for t = [1, T ] do

Assign b̂it as the baseline for each i ∈ [1, N ].
Set pt as the price for DR.
Receive the demand request qit from each consumer i ∈
[1, N ].

Serve qit to each consumer i ∈ [1, N ].
Incur the purchase cost cqt and the DR cost pt(b̂t − qt).
Update b̂it → b̂it+1 for each i ∈ [1, N ] according to Eq.

(4).
end

Remark 3 (Optimal Price for DR). For the consumer utility
model considered here (1), it is straightforward to show that
the optimal price p∗, given by the condition dC̃t(pt,b̃)

dpt
= 0,

is p∗ = c/2.
Remark 4 (Exploration Strategy). The prescribed policy for
the SO explores by perturbing the price from the optimal
price p∗. These perturbations cannot be persistent and there-
fore the prescribed policy reduces the perturbations with
time. The decreasing of the perturbation is the balancing part
of the exploration necessary to achieve sub-linear regret or
“No Regret”.

Definition 1.

∆̃i
t =

1

di

m∑
j=1

pt+j

(
−
∑t+j−1

s=1 pspt +
∑t+j−1

s=1 p2s

)
(t+ j − 1)

∑t+j
s=1

(
ps − 1

t+j−1

∑t+j−1
l=1 pl

)2 .

P i
o =

T∑
t=1

pt

 ∑t
k=1 p

∗δpe−k∆̃i
k∑t

k=1

(
pk −

∑t
l=1 pl

t

)2
 .

Next, we present the regret guarantee for our algorithm.

Theorem 1. Under the Algorithm OL-DRM (Algorithm 1),
with P i

o given by Definition 1, for δp = O(1), and T > 1,

RT = O((log T )2),

and individual rationality holds for each i ∈ [1, N ].

We give the detailed analysis in the next section. We
observe that the regret guarantee for our approach leads to
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the desired “No Regret” and individually rational outcome.

Remark 5 (Approach). Our approach is the online equivalent
of the regression approach to estimate baseline. An alternate
approach is to not call the consumers for a certain number
of days and use the consumption on these days to set the
baseline for the future. This is the online equivalent of the
averaging approach to estimate baseline. It can be shown
that this approach leads to O(T 1/3) regret. Our result, there-
fore, provides theoretical justification that regression type
approaches can be superior to averaging type approaches.

Remark 6 (Extensions). Our setting assumes that the con-
sumer utility model is quadratic, and the consumer’s decision
depends only on a finite horizon m. Our approach can be
trivially extended to the infinite horizon case, where the
future benefits are discounted by a discounting factor. For
this case, the algorithm requires no change except for the
definition of P i

o . We can use the same proof technique to
analyse this case to show that the same regret is achievable.
The extension to a general utility model is a subject of future
work.

IV. REGRET ANALYSIS

First, we derive an expression for b̂it.

Lemma 1. Under the baseline estimation procedure of OL-
DRM Algorithm 1, for any t > 1,

b̂it+1 =
−
∑t

k=1 pk
∑t

k=1 pkq
i
k +

∑t
k=1 p

2
k

∑t
k=1 q

i
k

t
∑t

k=1

(
pk −

∑t
l=1 pl

t

)2 .

Proof: Let

Φ =

[ ∑t
k=1 p

2
k −

∑t
k=1 pk

−
∑t

k=1 pk t

]
.

The determinant of matrix Φ is given by

Det(Φ) = t

t∑
k=1

(
pk −

∑t
l=1 pl
t

)2

.

Now, given how pt is defined (Eq. (5)),
(
pk −

∑t
l=1 pl

t

)2
>

0 for k = 1 and any t > 1. Therefore, Φ is invertible for
any t > 1. Therefore, from standard least-squares estimation
solution, it follows that[

b̂e,i1,t+1

b̂e,it+1

]
= Φ−1

[
−
∑t

k=1 pkq
i
k∑t

k=1 q
i
k

]
.

By using the standard formula for the inverse of a matrix,
which for a given matrix A is Adj(A)⊤/Det(A), we get that,
for any t > 1,

[
b̂e,i1,t+1

b̂e,it+1

]
=

[
t

∑t
k=1 pk∑t

k=1 pk
∑t

k=1 p
2
k

]
t
∑t

k=1

(
pk −

∑t
l=1 pl

t

)2 [ −
∑t

k=1 pkq
i
k∑t

k=1 q
i
k

]
,

i.e., b̂e,it+1 =
−
∑t

k=1 pk
∑t

k=1 pkq
i
k +

∑t
k=1 p

2
k

∑t
k=1 q

i
k

t
∑t

k=1

(
pk −

∑t
l=1 pl

t

)2 .

Next, we derive an expression for the optimal consumer
response given by Eq. (2).

Lemma 2. The optimal consumer response under OL-DRM
Algorithm 1 is given by

q∗it = bit −
pt
di

+ ∆̃i
t, ∆̃i

t =
1

di

m∑
j=1

pt+j

∂b̂it+j

∂qit
,

∂b̂it+j

∂qit
=

−
∑t+j−1

s=1 pspt +
∑t+j−1

s=1 p2s

(t+ j − 1)
∑t+j

s=1

(
ps − 1

t+j−1

∑t+j−1
l=1 pl

)2 .
Proof: Recall that the optimal consumer decision is

given by

q∗it = arg max
qit:t+m

Eϵit+1:t+m
[J(qit:t+m)],

J(qit:t+m) =

 m∑
j=1

U i
t+j(q

i
t+j)

 .

The general expectation in Eq. (2) reduces to the specific
expectation in the equation above because (i) the price
sequence for DR is set deterministically, and (ii) the fact
that, at time t, the only randomness in the baselines to be
assigned in the future, b̂it+j for j ∈ [1,m], is in the qiks for
k ∈ [t+ 1, t+m]; refer to Lemma 2 for the expression for
b̂it.

Next, we observe that the only term in U i
t+j(q

i
t+j) that is

a function of qit for all j ∈ [1,m] is the assigned baseline
b̂it+j ; see Lemma 2 for the dependence of b̂it+j on qit. Given
that J(qit:t+m) is concave in qit+js and qit, it follows that
Eϵit+1:t+m

[J(qit:t+m)] is also concave in qit. Therefore, given
the concavity, by applying first order condition for optimality,
we get that the optimal qi∗t satisfies

ai + ϵit − diq∗it − (p0 + pt) + di∆̃i
t = 0.

The final expression follows from here.

Remark 7. The optimal consumer response has the following
terms: (i) bit, the standard response when not participating in
DR, (ii) the second term is the reduction incentivized by the
reward/kWh pt, and (iii) the third term is the inflation in
consumption that arises from the incentive to inflate future
baseline assignments.

In the next lemma, we derive an upper bound for the regret
in terms of the cumulative error in the baseline estimation.

Lemma 3. The regret under the OL-DRM Algorithm 1 is

RT =

T∑
t=1

(c− pt)∆̃t +

T∑
t=1

(δp)2e−2t

d

+

T∑
t=1

ptE[b̂t − b̃] + Po,
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where 1/d =
∑N

i=1 1/d
i, ∆̃t =

∑N
i=1 ∆̃

i
t, Po =

∑
i P

i
o .

Please see [22] for the proof.

Remark 8. The regret has the following terms: (i) the first
term reflects the increase in the power purchase cost from
consumption inflation and the decrease in DR payments
from consumption inflation, (ii) the second term reflects
the exploration cost that arises from the deviation from the
optimal price, (iii) the third term reflects the increase in DR
payments from baseline inflation, and (iv) the final term is
the total payment made to the consumers upfront.

Next, we bound a key term that contributes to the con-
sumption inflation term.

∆t,k :=
pt+1

d

[
−
∑t

s=1 pspt−k +
∑t

s=1 p
2
s

t
∑t

s=1(ps −
∑t

l=1 pl

t )2

]
. (6)

Lemma 4. Under the OL-DRM Algorithm 1, for any t > 1

∆t,k = O
(
(p∗ + δp)t−1

)
.

Please see [22] for the proof. The bound on the consump-
tion inflation term ∆̃t follows from adding m terms of the
type bounded in Lemma 4; see Lemma 2. In the next lemma,
we derive an upper bound for the cumulative error in the
baseline estimation and the payment Po.

Lemma 5. Under the OL-DRM Algorithm 1, for T > 1,
T∑

t=1

ptE[b̂t − b̃] + Po = O
(
(log T )2

)
.

Please see [22] for the proof. Then, combining Lemma 3
and Lemma 5, we get the final regret result. Also, see [22]
for the proof for individual rationality.

V. CONCLUSION

In this work, we study the DR problem where the par-
ticipating consumers’ baselines have to be estimated online.
The online nature of our baseline learning problem results
in an exploration-exploitation trade-off between learning the
baseline and optimizing the overall operating cost simulta-
neously, with an added complexity that the consumers can
have incentives to inflate the baseline estimate. We propose
a novel, online learning DR scheme for this problem and
show that our approach achieves a low regret of O((log T )2)
over T days of the DR program with respect to the best
DR outcome with full information of the baselines and
ensures that participating is individually rational for each
consumer. The utility of our approach lies in the fact all
prior approaches either require large quantity data or the
consumers to report their baselines, both of which could be
infeasible. Our contribution is a low regret online learning
DR scheme.
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