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Abstract— We consider the control design of stochastic
discrete-time linear multi-agent systems (MASs) under a global
signal temporal logic (STL) specification to be satisfied at a
predefined probability. By decomposing the dynamics into de-
terministic and error components, we construct a probabilistic
reachable tube (PRT) as the Cartesian product of reachable
sets of the individual error systems driven by disturbances
lying in confidence regions (CRs) with a fixed probability. By
bounding the PRT probability with the specification probability,
we tighten all state constraints induced by the STL specification
by solving tractable optimization problems over segments of the
PRT, and relax the underlying stochastic problem with a de-
terministic one. This approach reduces conservatism compared
to tightening guided by the STL structure. Additionally, we
propose a recursively feasible algorithm to attack the resulting
problem by decomposing it into agent-level subproblems, which
are solved iteratively according to a scheduling policy. We
demonstrate our method on a ten-agent system, where existing
approaches are impractical.

I. INTRODUCTION

Multi-agent systems (MASs) can be found in many applic-
ations, such as robotics, autonomous vehicles, and cyber-
physical systems. When these systems are stochastic, the
formal specification of system properties can be formulated
probabilistically. As the complexity in control synthesis from
temporal logic under uncertainty grows with the dimension-
ality of the overall system, existing approaches typically
focus on single-agent [1] or non-stochastic [2], [3] systems.

In this paper, we focus on signal temporal logic (STL)
[4] to formally formulate and verify specifications for a
wide range of MASs. STL employs predicates coupled with
Boolean and temporal operators, allowing precise specific-
ation of complex spatio-temporal properties in a dynamical
system. In a deterministic setting, it is possible to design
sound and complete algorithms that guarantee STL satisfac-
tion [5], based on the quantitative semantics of STL [6].
Here, we consider stochastic MASs and a stochastic optimal
control problem, where the goal is to satisfy a multi-agent
STL specification with a predefined probability.

To address stochasticity in the STL framework, the works
in [7]–[9] propose risk constraints over predicates while pre-
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serving Boolean and temporal operators. Probabilistic STL in
[10] allows one to express uncertainty by incorporating ran-
dom variables into predicates, while [11] introduces chance-
constrained temporal logic for modeling uncertainty. Similar
approaches are found in [12], [13]. Top-down approaches
imposing chance constraints on the entire specification are
explored in [1], [14], [15]. Although important, these works
focus on low-dimensional systems and lack guidance on
extending to MASs [16]. A recent extension of [1] to
stochastic MASs under STL [17] considers only a single
joint task per agent and bounded distributions.

Here, we solve a stochastic optimal control problem of a
discrete-time linear MAS subject to additive stochastic per-
turbations and a global STL specification permitting multiple
individual and joint tasks per agent. First, we decompose
the multi-agent dynamics into a deterministic system and an
error closed-loop stochastic system, for which we construct
a probabilistic reachable tube (PRT) [18] as the Cartesian
product of reachable sets of individual error systems. These
are driven by stochastic disturbances lying in confidence
regions (CRs) with a fixed probability. By assuming in-
dependence among individual disturbances, we show that
the PRT probability can be controlled by the product of
probabilities selected for each individual CR and a union-
bound argument applied over time. Thus, by lower bounding
the PRT probability by the specification probability, we can
tighten all state constraints induced by the STL specification
by solving tractable optimization problems over segments of
the PRT. For multi-agent STL specifications, this is a less
conservative alternative to tightening approaches relying on
the STL structure [1], [17]. An attainable feasible solution
to the resulting deterministic problem can then be used
to synthesize multi-agent trajectories that satisfy the STL
specification with the desired confidence level. To the best
of the authors’ knowledge, this work is the first to address
stochastic MASs under STL utilizing PRTs. Subsequently, to
enhance scalability, we decompose the resulting deterministic
problem into agent-level subproblems, which are solved iter-
atively according to a scheduling policy. We show that this
iterative procedure is recursively feasible, ensures satisfac-
tion of local tasks, and guarantees nondecreasing robustness
for joint tasks.

The remainder of the paper is organized as follows.
Preliminaries and the control problem setup are in Sec. II.
The construction of PRTs, the constraint tightening and the
distributed control synthesis, are in Sec. III. An illustrative
numerical example is in Sec. IV, whereas concluding re-
marks are discussed in Sec. V.
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II. PROBLEM SETUP

A. Notation and Preliminaries

The sets of real numbers and nonnegative integers are
IR and IN, respectively. Let N ∈ IN. Then, IN[0,N ] =
{0, 1, . . . , N}. Let x1, . . . , xn be vectors. Then, x =
(x1, . . . , xn) = [x⊺1 · · · x⊺n]⊺. We denote by x(a : b) =
(x(a), . . . , x(b)) an aggregate vector consisting of x(t), t ∈
IN[a,b], representing a trajectory. When it is clear from the
context, we write x(t), omitting the endpoint. When x(t), t ∈
IN[a,b], are random vectors, x(a : b) = (x(a), . . . , x(b)) is a
random process. Let xi(t), for t ∈ IN[0,N ] and i ∈ IN[1,M ].
Then, x(0 : N) = (x(0), . . . , x(N)) denotes an aggregate
trajectory when x(t) = (x1(t), . . . , xM (t)), t ∈ IN[0,N ]. The
remainder of the division of a by b is mod(a, b). A random
variable (vector) w following a distribution Dw is denoted
as w ∼ Dw, the support of Dw is supp(Dw), the expected
value of w is E(w), and the variance (covariance matrix)
of w is Var(w) (Cov(w)). The probability of event Y is
Pr{Y }. The cardinality of a set V is |V|. The Minkowski
sum and the Pontryagin set difference of S1 ⊆ IRn and
S2 ⊆ IRn are S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2} and
S1⊖S2 = {s1 ∈ S1 | s1 + s2 ∈ S1,∀s2 ∈ S2}, respectively.

Lemma 1 (Distributivity of Minkowski sum) Let Xi,Yi
⊆ IRni , i ∈ IN[1,M ]. Then, (X1 × · · · × XM )⊕ (Y1 × · · · ×
YM ) = (X1 ⊕ Y1)× · · · × (XM ⊕ YM ).

Proof: It holds that (X1 × . . . × XM ) ⊕ (Y1 × . . . ×
YM ) = {(x1, . . . , xM ) + (y1, . . . yM ) | ∀xi ∈ Xi, i ∈
IN[1,M ], and ∀yi ∈ Yi, i ∈ IN[1,M ]} = {(x1 + y1, . . . , xM +
yM ) | ∀xi ∈ Xi, yi ∈ Yi, i ∈ IN[1,M ]} = (X1 ⊕ Y1)× . . .×
(XM ⊕ YM ).

We consider STL formulas with standard syntax

φ := ⊤ | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[t1,t2]ϕ2, (1)

where π := (µ(x) ≥ 0) is a predicate, µ(x) := a⊺x + b is
an affine predicate function, with a ∈ IRnx , x ∈ IRnx , and
b ∈ IR, and ϕ, ϕ1, and ϕ2 are STL formulas, which are built
recursively using predicates π, logical operators ¬ and ∧,
and the until temporal operator U , with [t1, t2] ≡ IN[t1,t2].
We omit ∨ (or), ♢ (eventually) and □ (always) operators
from (1) and the sequel, as these may be defined by (1),
e.g., ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), ♢[t1,t2]ϕ = ⊤U[t1,t2]ϕ, and
□[t1,t2]ϕ = ¬♢[t1,t2]¬ϕ.

Let π be a predicate and ϕ an STL formula. We write
π ∈ ϕ to indicate that π is part of the formula ϕ. We denote
by x(t) |= ϕ, t ∈ IN, the satisfaction of ϕ, verified over
x(t) = (x(t), x(t+1), . . .). The validity of a formula ϕ can
be verified using Boolean semantics: x(t) |= π ⇔ µ(x(t)) ≥
0, x(t) |= ¬ϕ ⇔ ¬(x(t) |= ϕ), x(t) |= ϕ1 ∧ ϕ2 ⇔ x(t) |=
ϕ1 ∧ x(t) |= ϕ2, x(t) |= ϕ1U[a,b]ϕ2 ⇔ ∃τ ∈ t⊕ IN[a,b], s.t.
x(τ) |= ϕ2∧∀τ ′ ∈ IN[t,τ ],x(τ

′) |= ϕ1. Based on the Boolean
semantics, the horizon of a formula is recursively defined as
[4]: Nπ = 0, N¬ϕ = Nϕ, Nϕ1∧ϕ2 = max(Nϕ1 , Nϕ2),
Nϕ1 U[a,b]ϕ2 = b+max(Nϕ1 , Nϕ2).

STL is endowed with quantitative semantics [6]: A
scalar-valued function ρϕ : IRn × · · · × IRn → IR

of a signal indicates how robustly a signal x(t) satis-
fies a formula ϕ. The robustness function is defined re-
cursively as follows: ρπ(x(t)) = µ(x(t)), ρ¬ϕ(x(t)) =
−ρϕ(x(t)), ρϕ1∧ϕ2(x(t)) = min(ρϕ1(x(t)), ρϕ2(x(t))), and
ρϕ1U[a,b]ϕ2(x(t)) = maxτ∈t⊕IN[a,b]

(min(Y1(τ), Y2(τ
′))),

with Y1(τ) = ρϕ1(x(τ)), Y2(τ ′) = minτ ′∈IN[t,τ]
ρϕ2(x(τ ′)),

π being a predicate, and ϕ, ϕ1, and ϕ2 being STL formulas.

Definition 1 Let G = (V, E) be an undirected graph con-
taining no self-loops, with node set V , cardinality M = |V|,
and edge set E . Let also V ′ ⊆ V , with |V ′| > 1, and define
EV′ ⊆ E as the set of edges attached to nodes V ′. Then,
G′ = (V ′, EV′) is a clique [19], i.e., a complete subgraph
of G, if EV′ contains all possible edges between nodes V ′.
The set of cliques of G is defined as K = {ν ⊆ V |
(ν, Eν) is a complete subgraph of G}.

Consider a graph G = (V, E) with clique set K, a clique
ν ∈ K, with ν = (i1, . . . , i|ν|), and vectors xij (t), j ∈
IN[1,|ν|], with t ∈ IN, Then, xν(t) = (xi1(t), . . . , xi|ν|(t)) is
an aggregate vector. We denote by xν(t) |= ϕν the validity
of an STL formula defined over the aggregate trajectory
xν(t) = (xν(t), xν(t+1), . . .). If πν ∈ ϕν , πν := (µν(xν) ≥
0), where µν(xν) is an affine predicate function of xν , with
xν = (xi1 , . . . , xi|ν|).

B. Multi-agent system

1) Dynamics: We consider M agents with dynamics

xi(t+ 1) = Aixi(t) +Biui(t) + wi(t), (2)

where xi(t) ∈ Xi ⊆ IRni , ui ∈ Ui ⊆ IRmi , and wi(t) ∈
Wi ⊆ IRni are the state, input and disturbance vectors,
respectively, the initial condition, xi(0), is known, (Ai, Bi)
is a stabilizable pair, with Ai ∈ IRni×ni , Bi ∈ IRni×mi ,
i ∈ IN[1,M ], and t ∈ IN. By collecting individual state, input,
and disturbance vectors, as x(t) = (x1(t), . . . , xM (t)) ∈
X ⊆ IRn, u(t) = (u1(t), . . . , uM (t)) ∈ U ⊆ IRm, and
w(t) = (w1(t), . . . , wM (t)) ∈ W ⊆ IRn, respectively, we
write the dynamics of the entire MAS as

x(t+ 1) = Ax(t) +Bu(t) + w(t), (3)

where A = diag(A1, . . . , AM ), B = diag(B1, . . . , BM ),
and the state, input, and disturbance sets are X = X1 ×
· · · × XM , U = U1 × · · · × UM , and W =W1 × · · · ×WM ,
respectively.

2) Disturbance: We assume that the uncertain sequence
wi(0) = (wi(0), wi(1), . . .), with i ∈ IN[1,M ], is an in-
dependent and identically distributed random process, and
that wi(t) is a random vector with mean E(wi(t)) = 0
and positive definite covariance matrix Cov(wi(t)) = Qi,
which is known, for all t ∈ IN. We also assume that wi(t),
i ∈ IN[1,M ], are independent for t ∈ IN. We denote by Dwi

the distribution of the disturbance wi(t) ∈ Wi, where Wi is
its support, which may be unbounded. We also may write
that w(t) ∼ Dw, with supp(Dw) = W = W1 × · · · ×WM ,
E(w(t)) = 0, Cov(w(t)) = diag(Q1, . . . , QM ) = Q.
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3) STL specification: Let V = {1, . . . ,M} be the set
collecting the indices of all agents. The MAS is subject to
a conjunctive STL formula ϕ with syntax as in (1), where
each conjunct is either a local subformula ϕi involving agent
i ∈ V , or a joint subformula ϕν involving a subset of agents
ν ⊆ V , where ν is a clique. By collecting all cliques ν in
Kϕ, the global STL task is

ϕ =
∧
i∈V

ϕi ∧
∧
ν∈Kϕ

ϕν . (4)

The structure of ϕ in (4) induces an interaction graph G =
(V, E), where V is the set of nodes, and E = {(νi, νj) |
νi, νj ∈ ν, i ̸= j, ν ∈ Kϕ} is the set of edges. Let π :=
(µ(y) ≥ 0) be a predicate in ϕ, where µ(y) = a⊺y + b,
with a, y ∈ IRny and b ∈ IR. The vector y ∈ IRny represents
either an individual state vector, xi ∈ IRni , i ∈ IN[1,M ], or an
aggregate vector, xν ∈ IRnν , collecting the states of agents
in the clique ν ∈ Kϕ. Formula ϕ can specify tasks between
subsets of agents, by representing their entirety as cliques.

C. Problem statement

We wish to solve the stochastic optimal control problem

Min.
u(0),
x(0)

E

[
M∑
i=1

(N−1∑
t=0

(ℓi(xi(t), ui(t))) + Vf,i(xi(N))
)]

(5a)

s.t. x(t+ 1) = Ax(t) +Bu(t) + w(t), t ∈ IN[0,N), (5b)
Pr{x(0) |= ϕ} ≥ θ, with x(0) = x0, (5c)

where ℓi : IRni × IRmi → IR, Vf,i : IRni → IR, the
optimization variables are u(0) = (u(0), . . . , u(N − 1)),
x(0) = (x(0), . . . , x(N)), ϕ is a multi-agent STL formula,
with structure as in (4) and syntax as in (1), to be satisfied
by x(0) with a probability θ ∈ (0, 1), x0 is a known initial
condition of the MAS, and N is the horizon of ϕ. Solving
the problem directly is challenging due to the probabilistic
constraint, the expectation operator in the cost function, and
uncertain dynamics. To handle complexity, especially for a
large number of agents and complex ϕ, we relax it with a
deterministic problem, which subsequently, we decompose
into smaller agent-level subproblems. Additionally, we make
the following assumption.

Assumption 1 For x(0) = x0 and given θ ∈ (0, 1), Problem
(5) is feasible.

III. MAIN RESULTS

A. Error dynamics and construction of probabilistic tubes

Due to the linearity in (2), the state of each agent can
be decomposed into a deterministic part, zi(t), and an error,
ei(t), i.e., xi(t) = zi(t) + ei(t). Consider the causal control
law ui(t) = Kiei(t) + vi(t), where Ki ∈ IRmi×ni is a
stabilizing state-feedback gain for the pair (Ai, Bi). Then,

zi(t+ 1) = Aizi(t) +Bivi(t), (6a)
ei(t+ 1) = Āiei(t) + wi(t), (6b)

where zi(0) = xi(0), ei(0) = 0, and Āi = Ai + BiKi.
The above choice of ui(t) will allow us to control the
size of the reachable sets of (6b), in light of the probab-
ilistic constraint in (5c). Define now the aggregate vectors
z(t) = (z1(t), . . . , zM (t)), e(t) = (e1(t), . . . , eM (t)), and
v(t) = (v1(t), . . . , vM (t)), the block-diagonal state-feedback
gain K = diag(K1, . . . ,KM ) ∈ IRm×n, and the block-
diagonal closed-loop matrix Ā = diag(Ā1, . . . , ĀM ). Then,
we decompose (3) into

z(t+ 1) = Az(t) +Bv(t), (7a)
e(t+ 1) = Āe(t) + w(t). (7b)

Given a particular state feedback gain K, the error system
(7b) can be analyzed independently of (7a). As a closed-loop
system driven by the random vector w(t), we can predict
its trajectory e(0) = (e(0), . . . , e(N)), with e(0) = 0, by
calculating its reachable sets probabilistically. Probabilistic
reachable sets and tubes for system (7b) are defined next.

Definition 2 A set E(t) ⊆ IRn, t ∈ IN[0,N ], is called a t-step
probabilistic reachable set (t-PRS) for (7b) at probability
level θ̂t ∈ [0, 1], if Pr{e(t) ∈ E(t) | e(0) = 0} ≥ θ̂t.

It is worth noting that for a probability level θ̂t a t-PRS E(t),
t ∈ IN[0,N ], for (7b) is not unique.

Definition 3 Let e(0) = (e(0), . . . , e(N)) be a trajectory of
(7b). Then, E ⊆ IRn × · · · × IRn is called a probabilistic
reachable tube (PRT) for (7b) at probability level Θ ∈ [0, 1],
if Pr{e(0) ∈ E} ≥ Θ.

Definition 4 Let w ∼ Dw, with supp(Dw) = W . We call
Eθ(Dw) ⊆ W a confidence region (CR) for w ∈ W at
probability level θ, if Pr{w ∈ Eθ(Dw)} ≥ θ.

CRs for wi(t), i ∈ IN[1,M ], can be approximated via Monte
Carlo methods or computed analytically using concentration
inequalities depending on the properties of Dw. Here, since
E(wi(t)) = 0 and Cov(wi(t)) = Qi > 0, for t ∈ IN and
i ∈ IN[1,M ], we construct ellipsoidal CRs at probability level
θi as Eθi(Dwi

) = {wi ∈ IRni | w⊺
i Q

−1
i wi ≤ ni/θi}, by the

multivariate Chebyshev’s inequality. Next, we construct a CR
for the aggregate random vector w(t) = (w1(t), . . . , wM (t)).

Lemma 2 Let Eθi(Dwi
) be a CR for wi(t) ∈ Wi, i ∈

IN[1,M ], at probability level θi, for all t ∈ IN. Then,
Eθ̂(Dw) = Eθ1(Dw1)× · · · × EθM (DwM

), is a CR of w(t) ∈
W at probability level θ̂ for all t ∈ IN, where θ̂ ≥ ΠMi=1θi.

Proof: Without loss of generality let M = 2. Then,
Pr{w(t) ∈ Eθ̂(Dw)} ≥ Pr{(w1(t) ∈ Eθ1(Dw1)) ∧
(w2(t) ∈ Eθ2(Dw2

))} = Pr{w1(t) ∈ Eθ1(Dw1
)}Pr{w2(t) ∈

Eθ2(Dw2
)} ≥ θ1θ2, which is true due to independence of

w1(t), w2(t), for all t ∈ IN.
Based on the CR construction of the disturbance w(t), we

construct t-PRSs at certain probability levels for the multi-
agent error system (7b) as follows.
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Proposition 1 Let Eθ̂(Dw) = Eθ1(Dw1
)× · · · × EθM (DwM

)
be a CR for w(t), where Eθi(Dwi) is an ellipsoidal CR for
wi(t) at probability level θi, i ∈ IN[1,M ]. Then, the sets
E(t) ⊆ IRn, t ∈ IN[0,N ], which are recursively defined as
E(t+1) = ĀE(t)⊕ Eθ̂(Dw), with E(0) = {0}× · · · × {0},
are t-PRSs for (7b) at probability level θ̂ ≥ ΠMi=1θi, and
E(t) = E1(t)× · · · × EM (t), t ∈ IN[0,N ], where Ei(t) is a
t-PRS for (6b) at probability level θi, with i ∈ IN[1,M ].

Proof: Since E(0) = {0} × · · · × {0}, we may write
E(0) = E1(0)×· · ·×EM (0), with Ei(0) = {0}, i ∈ IN[1,M ],
from which we compute E(1) = ĀE(0) ⊕ Eθ̂(Dw) =
(diag(Ā1, . . . , ĀM )E1(0)×· · ·×EM (0))⊕(Eθ1(Dw1)×· · ·×
EθM (DwM

)) = (Ā1E1(0)×· · ·×ĀMEM (0))⊕(Eθ1(Dw1)×
· · · × EθM (DwM

)), which from Lemma 1 results in E(1) =
Ā1E1(0)⊕ Eθ1(Dw1

)× · · · × ĀMEM (0)⊕ EθM (DwM
), that

is, E(1) = E1(1)× · · · × EM (1), with Ei(1) = ĀiEi(0)⊕
Eθi(Dwi), i ∈ IN[1,M ]. Following the recursion, one can
show that Ei(t+1) = ĀiEi(t)⊕Eθi(Dwi), for t ∈ IN[0,N−1],
and E(t) = E1(t)× · · · × EM (t), for t ∈ IN[0,N ].

Let now Dei(t) be the distribution of ei(t), and Eθi(Dei(t))
be a CR for ei(t) at probability θi. Since, Eθi(Dei(0)) ⊆
Ei(0) = {0}, we have ĀiEθi(De(0)) ⊕ Eθi(Dwi) ⊆
ĀiEi(0) ⊕ Eθi(Dwi) = Ei(1), so Eθi(Dei(1)) ⊆ Ei(1), as
Eθi(Dei(t+1)) ⊆ ĀiEθi(Dei(t)) ⊕ Eθi(Dwi

) for all t ∈ IN,
since Eθi(Dwi

) is an ellipsoidal region by [18, Cor. 4].
Inductively we show that Eθi(Dei(t)) ⊆ Ei(t), i ∈ IN[1,M ],
for all t ∈ IN. The latter implies that Pr{ei(t) ∈ Ei(t)} ≥ θi,
i ∈ IN[1,M ], from which we have Pr{e(t) ∈ E(t)} =
Pr{(e1(t) ∈ E1(t))∧· · ·∧(eM (t) ∈ EM (t))} = Pr{(e1(t) ∈
E1(t))} · · ·Pr{(eM (t) ∈ EM (t))} ≥ θ1θ2 · · · θM , which
follows from the independence of Ei(t), i ∈ IN[1,M ].

Prop. 1 leads to the following PRT result.

Theorem 1 Let Eθ̂(Dw) = Eθ1(Dw1
) × · · · × EθM (DwM

)
be a CR for w(t), and define t-PRSs, E(t), t ∈ IN[0,N ] for
system (7b) at probability level θ̂ ≥ ΠMi=1θi, where θi is the
confidence level of the region Eθi(Dwi), i ∈ IN[1,M ], as in
Prop. 1. Then, i) Ei = Ei(0) × · · · × Ei(N) is a PRT for
(6b) at probability level Θi ≥ 1 −N(1 − θi), where Ei(t),
t ∈ IN[0,N ], is a t-PRS for (6b) at probability level θi. ii)
E = E(0) × · · · × E(N) is a PRT for (7b) at probability
level Θ = ΠMi=1Θi. iii) Let eν(t + 1) = Āνeν(t) + wν(t)
be the aggregate system collecting individual error systems
from the clique ν ∈ Kϕ, where ν = (i1, . . . , i|ν|), eν(t) =
(ei1(t), . . . , ei|ν|(t)), wν(t) = (wi1(t), . . . , wi|ν|(t)), and
Āν = diag(Āi1 , . . . , Āi|ν|), and let Eν(t) = Ei1(t) × · · · ×
Ei|ν|(t), t ∈ IN[0,N ], be its t-PRSs, with Eij (t), being t-PRS
for (6b) at probability level θij , with j ∈ IN[1,|ν|]. Then,
Eν = Eν(0) × · · · × Eν(N) is a PRT at probability level
Θ = Π

|ν|
j=1Θij .

Proof: i) From Prop. 1, we have that
E(t) = E1(t)×· · ·×EM (t), where Ei(t) is a t-PRS for (6b)
at probability level θi. Let ei(0) = (ei(0), . . . , ei(N)) be
a trajectory of (6b). Then, Pr{ei(0) ∈ Ei} = Pr{(ei(0) ∈
Ei(0)) ∧ · · · ∧ (ei(N) ∈ Ei(N))} = 1 − Pr{(ei(0) /∈

Ei(0)) ∨ · · · ∨ (ei(N) /∈ Ei(N))} ≥ 1 −
∑N
t=0 Pr{ei(t) /∈

Ei(t)} = 1 − N(1 − θi), where we use Boole’s inequality,
that Ei(t), t ∈ IN[0,N ], is a t-PRS at probability level θi,
and Pr(ei(0) /∈ Ei(0)} = 0. ii) It holds that Pr{e(0) ∈
E} = Pr{((e1(0) ∈ E1(0)) ∧ · · · ∧ (eM (0) ∈ EM (0))) ∧
· · · ∧ ((e1(N) ∈ E1(N)) ∧ · · · ∧ (eM (N) ∈ EM (N)))} =
Pr{((e1(0) ∈ E1(0)) ∧ · · · ∧ (e1(N) ∈ E1(N))) ∧ · · · ∧
((eM (0) ∈ EM (0)) ∧ · · · ∧ (eM (N) ∈ EM (N)))}, which is
Pr{(e1(0) ∈ E1) ∧ · · · ∧ (eM (0) ∈ EM )} = Pr{e1(0) ∈
E1} · · ·Pr{eM (0) ∈ EM} = ΠMi=1Θi, by the independence
of the PRTs Ei, i ∈ IN[1,M ]. iii) By setting M = |ν| the
result follows from Prop. 1 and item ii) herein.

Remark 1 Note that our PRT construction reduces conser-
vatism for a large number of agents, while utilizing the
union-bound argument only over time. This may require
conservative choices for the probability levels, θi, for the
CRs of wi(t), i ∈ IN[1,M ], for large horizons. To construct,
e.g., a PRT for (7b) at probability level Θ, one may select
uniform probability levels for the CRs as θi ≥ 1 − 1−Θ

1
M

N ,
where θi → 1 for large N , regardless of Θ.

B. Constraint tightening

We aim to design a trajectory for the deterministic system
(7a) that satisfies an STL formula derived from ϕ, incorpor-
ating tighter predicates. The following proposition underpins
this approach.

Proposition 2 Let x(0) = z(0) + e(0), with x(0) =
(x(0), . . . , x(N)), z(0) = (z(0), . . . , z(N)) and e(0) =
(e(0), . . . , e(N)). Suppose that Pr{e(0) ∈ E} ≥ θ, for
some E = E(0)× · · · × E(N), with E(t) ⊆ IRn, t ∈ IN. If
z(0)+e(0) |= ϕ for all e(0) ∈ E, then Pr{x(0) |= ϕ} ≥ θ.

Proof: Define events Yx := x(0) |= ϕ, Ye :=
e(0) ∈ E, and Y ′

e := e(0) /∈ E. From the law of
total probability, we have Pr{Yx} = Pr{Yx|Ye}Pr{Ye} +
Pr{Yx|Y ′

e}Pr{Y ′
e} ≥ θ, since by assumption, Pr{Yx|Ye} =

1 and Pr{Ye} ≥ θ, and Pr{Yx|Y ′
e}Pr{Y ′

e} ≥ 0.
Let E be a PRT for (7b) at probability level Θ. Next,

we construct a formula ψ such that z(0) |= ψ implies that
z(0)+e(0) |= ϕ, for all e(0) ∈ E, that is, Pr{x(0) |= ϕ} ≥
θ, by Prop. 2. Formula ψ has identical Boolean and temporal
operators with ϕ in (4), and retains its multi-agent structure:

ψ =
∧
i∈V

ψi ∧
∧
ν∈Kϕ

ψν . (8)

Let π := (a⊺y + b ≥ 0) be a predicate, with a, y ∈ IRny ,
b ∈ IR. We denote by τ(π) the tighter version of π, where
τ(π) ∈ ψ if π ∈ ϕ, and ¬τ(π) ∈ ψ if ¬π ∈ ϕ, with

τ(π) := (a⊺y + b+min
g∈G

a⊺g ≥ 0), if τ(π) ∈ ψ, (9a)

τ(π) := (a⊺y + b+max
g∈G

a⊺g ≥ 0), if ¬τ(π) ∈ ψ. (9b)

Here, G =
⋃N
t=1Ei(t) if y = xi(t), for some i ∈ V ,

or G =
⋃N
t=1Eν(t) if y = xν(t) for some ν ∈ Kϕ.

We remark that the optimizations in (9) are tractable since
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the domain G is the union of finitely many convex and
compact sets by the construction of t-PRSs, Ei(t), Eν(t),
t ∈ IN[1,N ], in Prop. 1 and Thm. 1. Practically, the tightening
in (9) can be retrieved by solving a convex optimization
by taking the convex hull of G, or, better, by solving N
convex optimization problems, one for every Ei(t), Eν(t),
t ∈ IN[1,N ], and selecting the worst-case (minimum for (9a)
and maximum for (9b)) solution among them. We are now
ready to state the following result.

Theorem 2 Let ψ be the STL formula resulting from ϕ
according to (8)-(9), and assume that the deterministic
problem:

Minim.
v(0),
z(0)

M∑
i=1

(
N−1∑
t=0

(ℓi(zi(t), vi(t))) + Vf,i(zi(N))

)
(10a)

s.t. z(t+ 1) = Az(t) +Bv(t), t ∈ IN[0,N), (10b)
z(0) |= ψ, with z(0) = x0, (10c)

has a feasible solution v(0) = (v(0), . . . , v(N − 1)), with
v(t) ∈ U ⊖KE(t), t ∈ IN[0,N−1], where K is a stabilising
gain for (A,B) in (7b), and E(t) = E1(t) × · · · × EM (t),
Ei(t), i ∈ IN[1,M ], being t-PRS for (6b), at probability
level θi, such that ΠMi=1 (1−N(1− θi)) ≥ θ. Let e(0) =
(e(0), . . . , e(N)) be a trajectory of (7b). Then, u(0) =
diag(K, . . . ,K)e(0) + v(0) is a feasible solution for (5).

Proof: By Thm. 1, E = E(0)× · · · ×E(N) is a PRT
for (7b) at probability level Θ ≥ θ, that is, Pr{e(0) ∈ E} ≥
θ. Let z(0) |= ψ be a trajectory resulting from the input
trajectory v(0) starting from z(0) = x0. By the tightening in
(9), we have that for all π ∈ ϕ and τ(π) ∈ ψ, if z(0) |= τ(π),
then z(0) + e(0) |= π ∀e(0) ∈ E, and for all ¬π′ ∈ ϕ
and ¬τ(π′) ∈ ψ, if z(0) |= ¬τ(π′), then z(0) + e(0) |=
¬π′ ∀e(0) ∈ E. Since ϕ and ψ differ only in predicates, it
follows that if z(0) |= ψ, then z(0)+ e(0) |= ϕ ∀e(0) ∈ E.
Since u(0) = diag(K, . . . ,K)e(0)+v(0) is a feasible input
trajectory for (3) ∀e(0) ∈ E, the resulting state trajectory of
(3), x(0) = z(0)+ e(0), ensures that x(0) |= ϕ ∀e(0) ∈ E.
The result follows by Prop. 2 since Pr{e(0) ∈ E} ≥ θ.

The gain K affects the feasible domain of (10) and the
volume of E. Its construction will be addressed in future
work. By selecting ∥ · ∥1-based costs, problem (10) can
be formulated as a mixed-integer linear program (MILP)
[5]. Next, we decompose (10) into individual agent-level
problems to address its complexity.

C. Distributed control synthesis

We propose an iterative procedure that handles the com-
plexity of (10). First, we assume the following.

Assumption 2 The optimization (10) has a feasible solution
v(0) = (v(0), . . . , v(N − 1)), z(0) = (z(0), . . . , z(N)),
where v(t) ∈ U ⊖ KE(t), t ∈ IN[0,N), with the gain K
and the t-PRSs E(t), t ∈ IN[0,N ], being as in Thm. 2.

1) Decomposition of STL formula ψ: For a node i parti-
cipating in at least one clique, i.e., i ∈ ν, with ν ∈ Kϕ, we
define Ti by the set of cliques containing i excluding i, i.e.,

Ti = {ν \ i : ν ∈ cl(i)}, (11)

where cl(i) = {ν ∈ Kϕ, ν ∋ i} is the set of cliques
that contain i. Let j ∈ Ti, with j = (i1, . . . , i|j|). Let a
trajectory zij(0) = (zij(0), . . . , zij(N)), where zij(t) =
(zi1(t), . . . , zi(t), . . . , zi|j|(t)), with t ∈ IN[0,N ], and the
order i1 < . . . < i < . . . < i|j| being specified by the
lexicographic ordering of the node set V = IN[1,M ]. Using
(11), an equivalent formula to the tighter formula (8)-(9), ψ,
is defined as ψ̂ =

∧
i∈V ψ̂i, where

ψ̂i = ψi ∧
∧
j∈Ti

ψij . (12)

2) Iterative algorithm: For simplicity, we drop the time
argument and introduce an iteration index as a superscript
in the trajectory notation, e.g., zki (zkij) indicates a trajectory
zi(0) (zij(0)) that is retrieved at the kth iteration of the
following procedure. To initialize the procedure, we generate
initial guesses on the agents’ trajectories by solving

Minimize
v0
i ,z

0
i

N−1∑
t=0

(ℓi(z
0
i (t), v

0
i (t))) + Vf,i(z

0
i (N)) (13a)

s.t. z0i (t+ 1) = Aiz
0
i (t) +Biv

0
i (t), t ∈ IN[0,N), (13b)

z0
i |= ψi, with z

0
i (0) = x0,i, (13c)

at k = 0 for i ∈ IN[1,M ]. After solving problem (13), which
is feasible by Assumption 2, at iteration k ≥ 1, only a
subset of agents, denoted by Ok⊂V , are allowed to update
their input sequences by performing an optimization. The
remaining agents retrieve their input sequences from the
previous iteration k − 1 ≥ 0. Roughly, the set Ok ⊂ V
is constructed so that any combination of its elements does
not belong to a clique ν ∈ Kϕ. Due to space limitations,
we simply construct Ok as a singleton, which only affects
the number of agents’ trajectories that can be optimized
in parallel per iteration. For the graph G = (V, E), with
V = IN[1,M ], Ok = mod(Ok−1,M) + 1, for k > 1, with
O1 = 1. We refer readers to [20, Sec. V.B] for a more
efficient construction of Ok enabling parallel computations
at each iteration (see Sec. IV for a numerical example).

At the kth iteration, with k ≥ 1, if i /∈ Ok, then, zki =
zk−1
i and vki = vk−1

i . Otherwise, the input sequence of the
ith agent is updated by solving

Minim.
vk
i ,z

k
i

N−1∑
t=0

(ℓi(z
k
i (t), v

k
i (t))) + Vf,i(z

k
i (N))− µkijk (14a)

s.t. zki (t+ 1) = Aiz
k
i (t) +Biv

k
i (t), t ∈ IN[0,N), (14b)

zki |= ψi, with zi(0) = x0,i, (14c)

ρψijk (zkijk) ≥ µ
k
ijk
, jk = argmin

j∈Ti

{ρψij (zk−1
ij )}, (14d)

µkijk ≥ min
(
0, ρψijk (zk−1

ijk
)
)
, (14e)

ρψij (zkij) ≥ min
(
0, ρψij (zk−1

ij )
)
, ∀j ∈ Ti \ jk, (14f)
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where ρψij (zkij) is the robustness function of the formula
ψij evaluated over the trajectory zkij . Agent-i, with i ∈ Ok,
by solving (14), retrieves an input sequence that guarantees
1) the satisfaction of the individual task ψi (see constraint
(14c)), 2) the improvement of the most violating (or least
robust) joint task ψijk (see constraints (14d)-(14e)), and 3)
either improvement on or non-violation of the remaining
joint tasks (see constraint (14f)). The inclusion of the min
operator in the constraints (14e)-(14f) relaxes the satisfaction
of joint tasks that have already been found to be satisfiable in
previous iterations. This allows the algorithm to emphasize
the satisfaction of joint tasks with the smallest robustness
function. The algorithm may terminate if it exceeds a max-
imum number of iterations, denoted as kmax and defined by
the designer, yielding a minimally violating solution. Altern-
atively, termination occurs when verifying the satisfiability
of all joint tasks, i.e., when µkij ≥ 0 for all i ∈ V , j ∈ Ti,
and some k ≤ kmax, returning a feasible solution to (10).
The overall iterative procedure is summarized in Alg. 1, the
integrity of which relies on the following result.

Theorem 3 At each iteration k ≥ 1, the optimization
problem (14) is feasible for all i ∈ Ok.

Proof: Let k = 1. The lower bounds in (14d)-(14f) are
defined over trajectories, z0

i , i∈O1, obtained by solving (13)
at k=0. Thus z0

i satisfies the constraints in (14d)-(14f) for
all i∈O1 ⊂ V . Moreover, the constraint in (14c) is satisfied
by z0

i , since (13) is feasible. Hence, u1
i = u0

i is a feasible
solution of (14) at iteration k = 1. Now, let k>1. The lower
bounds in (14d)-(14f) are defined over trajectories, zk−1

i ,
obtained by the solutions uk−1

i , i∈Ok, at iteration k − 1.
Thus, zk−1

i , i∈Ok, satisfy the constraints in (14d)-(14f).
Additionally, the constraint in (14c) is satisfied by zk−1

i ,
i ∈ Ok, since it is retrieved by uk−1

i , which is obtained
by solving (14) or (13) at some iteration κ ≤ k − 1. Thus,
uki=uk−1

i is a feasible solution of (14) for all k ≥ 1.

Algorithm 1 Iterative procedure for solving (10)

1: Compute Ti (11) and construct ψ̂i (12), for i ∈ IN[1,M ]

2: Solve (13) and store v0
i , z0

i , for i ∈ IN[1,M ]

3: Construct Ok, for k ∈ IN[1,kmax]

4: for k in 1 : kmax do
5: for i in 1 :M do
6: if i ∈ Ok, solve (14), and store (vki , z

k
i )

7: if i /∈ Ok, update vki ← vk−1
i and zki ← zk−1

i

8: Construct (v(0), z(0)) from (vki , z
k
i ), i ∈ IN[1,M ]

9: if ρψ(z(0)) ≥ 0 go to 10
10: return (v(0), z(0))

IV. EXAMPLE

We consider ten agents with aggregate dynamics given
by x(t + 1) = x(t) + u(t) + w(t), where x(t) =
(x1(t), ..., x10(t)) ∈ IR20, u(t) = (u1(t), ..., u10(t)) ∈ IR20,
and w(t) = (w1(t), ..., w10(t)) ∈ IR20. States xi(t) ∈ X ,

2 3 4 7 8 10

1 5 6 9

ϕ123

ϕ34

ϕ15 ϕ56

ϕ47 ϕ78

ϕ 6
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ϕ69

ϕ8 10

ϕ 9
10

ϕ
4
5

Fig. 1: The ten agents of the MAS and the cliques Kϕ in ϕ.

where X is the workspace confined by the dashed border
in Fig. 2. Individual inputs are constrained by ∥ui(t)∥∞ ≤
0.8, and disturbances, wi(t), are Gaussian random vectors,
independent time- and agent-wise, with zero mean and
covariance, Qi = 0.05I2, for all t ∈ IN and i ∈ IN[1,10]. The
MAS is assigned a specification ϕ =

∧10
i=1 ϕi ∧

∧
ν∈Kϕ

ϕν ,
with horizon N = 100, where Kϕ is the set of cliques
shown in Fig. 1, and ϕi, ϕν , are tasks assigned to agent
i, and the agents in ν ∈ Kϕ, respectively. In (5), we
select ℓi(xi(t), ui(t)) = ∥ui(t)∥1, Vf,i(xi(100)) = 0, for
all i ∈ IN[1,10], and set θ = 0.70.

Let ϕi =
(
□[0,100](φ

X
i ∧ ¬φ

O1
i ∧ ¬φ

O2
i ∧ ¬φ

O3
i )
)
∧(

♢[10,50]φ
Ti
i

)
∧
(
♢[70,100]φ

Gi
i

)
be an individual task, which

requires agent-i, starting from xi(0) to pass through Ti and
Gi within the intervals IN[10,50] and IN[70,100], respectively,
while always staying within X and avoiding O1, O2, O3.
Regions Ti, Gi, i ∈ IN[1,10], and obstacles O1, O2, O3,
are in Fig. 2. Note that xi(t) |= φY

i if xi(t) ∈ Y , Y =
{X , O1, O2, O3, T1, . . . , T10, G1, . . . , G10}, for t ∈ IN[0,100].

Let ϕν = ♢[0,100] (∥Cνxν(t)∥∞ ≤ 1), where Cν = [I −I]

if |ν| = 2 or Cν =
[
I −I 0
0 I −I
I 0 −I

]
if |ν| = 3, be a joint task

requiring agents in ν ∈ Kϕ (see Fig. 1) to approach one
another at least once within the horizon.

To formulate the deterministic problem (10), we proceed
as follows: First, we select closed-loop matrices Āi =
I2 + Ki, with Ki = −0.5I2, i ∈ IN[1,10], and construct
t-PRSs, Ei(t), t ∈ IN[0,100], for (6b), by the recursion
Ei(t + 1) = ĀiEi(t) ⊕ Eθi(Dwi

), with Ei(0) = {0}, at
probability levels θi = 1 − 1−0.7

1
10

100 = 0.9996, i ∈ IN[1,10],
such that Π10

i=1 (1− 100(1− θi)) ≥ 0.7, and Eθi(Dwi
) =

{wi|w⊺
i Q

−1
i wi ≤ χ2

2(θi)}, where χ2
2 is the chi-squared distri-

bution of degree 2. Last, given that E = E(0)×· · ·×E(100),
with E(t) = E1(t)×· · ·×E10(t), t ∈ IN[0,100], is a PRT for
(7b) at probability level Θ = 0.7, by Thm. 1, we perform
the optimizations in (9), derive the tighter formula ψ as in
(8), and formulate (10) as an MILP. We have attempted to
solve (10) in a centralized manner using the GUROBI solver
[21], which produces a solution after running for 2.5 hours,
with its feasibility iteration limit set to a maximum of ten.
To obtain a solution faster, we first decompose ψ according
to (12), based on the sets T1 = {(2, 3), 5}, T2 = {(1, 3)},
T3 = {(1, 2), 4}, T4 = {3, 5}, T5 = {1, 4, 6}, T6 = {5, 8, 9},
T7 = {4, 8}, T8 = {6, 7, 10}, T9 = {6, 10}, and T10 =
{8, 9}. By selecting sets Ok, k ≥ 1, as O1 = {1, 4, 6, 10},
O2 = {3, 5, 7, 9}, O3 = {8, 9, 2, 5}, O4 = O1, O5 = O2,
O6 = O3, O7 = O1, and so on, we run Alg. 1, which
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terminates in less than six minutes returning a multi-agent
trajectory, illustrated in Fig. 2, that satisfies the global STL
task ψ. Fig. 3 shows the computational overhead of Alg. 1 vs.
the centralized solution for varying agent numbers, using a
log scale to highlight the different runtime magnitudes. Note
that the runtime of Alg. 1 can further be improved if agent-
level subproblems, (13), (14), can be solved in parallel. By
evaluating the robustness function of ϕ for numerous noisy
realizations, we see that ϕ is violated in less than 30% of
the time, verifying Thm. 2.
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Fig. 2: Nominal trajectories (solid lines) by Alg. 1, with
initial states marked by crosses. Tubes (transparent covers)
around trajectories, at probability levels Θi = 0.965.

1 2 3 4 5 6 7 8 9 10

101

102

103

104

Number of Agents

R
un

tim
e

(s
) Algorithm 1

Centralized

Fig. 3: Compute times (log scale) for solving (10) via Alg.
1 and a centralized approach for varying agent numbers.

V. CONCLUSION

We have considered stochastic linear multi-agent systems
under STL specifications formulated probabilistically. Lever-
aging linearity, we construct a PRT at the specification
probability level and relax the underlying stochastic control
problem with a deterministic one with tighter constraints.
Our PRT-based tightening reduces conservatism compared
to approaches relying on the STL specification structure.
To enhance scalability, we propose an algorithm, where the
multi-agent problem is decomposed into agent-level subprob-
lems that can be solved iteratively. Although our method
fits large-scale MAS settings, the conservatism introduced
by the construction of PRTs increases with the specification
horizon. Future work will address this via efficient, data-
driven approaches, avoiding union-bound arguments.
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